Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
RNA Biol ; 21(1): 1-13, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38797889

RESUMEN

Although circular RNAs (circRNAs) play important roles in regulating gene expression, the understanding of circRNAs in livestock animals is scarce due to the significant challenge to characterize them from a biological sample. In this study, we assessed the outcomes of bovine circRNA identification using six enrichment approaches with the combination of ribosomal RNAs removal (Ribo); linear RNAs degradation (R); linear RNAs and RNAs with structured 3' ends degradation (RTP); ribosomal RNAs coupled with linear RNAs elimination (Ribo-R); ribosomal RNA, linear RNAs and RNAs with poly (A) tailing elimination (Ribo-RP); and ribosomal RNA, linear RNAs and RNAs with structured 3' ends elimination (Ribo-RTP), respectively. RNA-sequencing analysis revealed that different approaches led to varied ratio of uniquely mapped reads, false-positive rate of identifying circRNAs, and the number of circRNAs per million clean reads (Padj <0.05). Out of 2,285 and 2,939 highly confident circRNAs identified in liver and rumen tissues, respectively, 308 and 260 were commonly identified from five methods, with Ribo-RTP method identified the highest number of circRNAs. Besides, 507 of 4,051 identified bovine highly confident circRNAs had shared splicing sites with human circRNAs. The findings from this work provide optimized methods to identify bovine circRNAs from cattle tissues for downstream research of their biological roles in cattle.


Asunto(s)
ARN Circular , Bovinos , ARN Circular/genética , Animales , ARN Ribosómico/genética , Análisis de Secuencia de ARN/métodos , Hígado/metabolismo , Rumen/metabolismo , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Humanos
2.
J Dairy Sci ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38825126

RESUMEN

This comprehensive review highlights the intricate interplay between maternal factors and the co-development of the microbiome and immune system in neonatal calves. Based on human and mouse studies, multiple prenatal and postnatal factors influence this process by altering the host-associated microbiomes (gut, respiratory tract, skin), microbial colonization trajectories, and priming of the immune systems (mucosal and systemic). This review emphasizes the importance of early life exposure, highlighting postnatal factors that work in synergy with maternal factors in further finetuning the co-development of the neonatal microbiome and immunity. In cattle, there is a general lack of research to identify the maternal effect on the early colonization process of neonatal calves (gut, respiratory tract) and its impact on the priming of the immune system. Past studies have primarily investigated the maternal effects on the passive transfer of immunity at birth. The co-development process of the microbiome and immune system is vital for lifelong health and production in cattle. Therefore, comprehensive research beyond the traditional focus on passive immunity is an essential step in this endeavor. Calf microbiome research reports the colonization of diverse bacterial communities in newborns, which is affected by the colostrum feeding method immediately after birth. In contrast to human studies reporting a strong link between maternal and infant bacterial communities, there is a lack of evidence to clearly define cow-to-calf transmission in cattle. Maternal exposure has been shown to promote the colonization of beneficial bacteria in neonatal calves. Nonetheless, calf microbiome research lacks links to early development of the immune system. An in-depth understanding of the impact of maternal factors on microbiomes and immunity will improve the management of pregnant cows to raise immune-fit neonatal calves. It is essential to investigate the diverse effects of maternal health conditions and nutrition during pregnancy on the gut microbiome and immunity of neonatal calves through collaboration among researchers from diverse fields such as microbiology, immunology, nutrition, veterinary science, and epidemiology.

3.
Genomics ; 115(5): 110680, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37454938

RESUMEN

This study aims to characterize changes in the structure and the molecules related to immune function in the colon mucosa in dairy calves during the weaning transition (weaned at week 6 of age). Colon mucosa thickness, measured at week 5 to 8 and 12 of age, decreased for 2 weeks after weaning, but then recovered. Colon mucosa's transcriptome profiling at week 5, 7, and 12 of age was obtained using RNA-sequencing. Functional analysis showed that pathways related to immune function were up-regulated postweaning. A weighted gene co-expression network analysis identified 17 immune function related genes, expressed higher postweaning, which were negatively correlated with colon mucosa thickness, suggesting that these genes may be involved in colon mucosa inflammation and recovery from mucosa thickness decrement during the weaning transition. As such, it is important to determine the function of immune cells in the colon mucosa during the weaning transition in dairy calves.


Asunto(s)
Colon , Mucosa Intestinal , Animales , Bovinos , Masculino , Destete , Colon/metabolismo , Perfilación de la Expresión Génica , Inmunidad
4.
Genomics ; 115(5): 110664, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37286013

RESUMEN

This study aims to characterize the functional changes of the rumen epithelium associated with ruminal short-chain fatty acid (SCFA) concentration and epithelium-attached microbes during the weaning transition in dairy calves. Ruminal SCFA concentrations were determined, and transcriptome and microbiota profiling in biopsied rumen papillae were obtained from Holstein calves before and after weaning using RNA- and amplicon sequencing. Metabolic pathway analysis showed that pathways related to SCFA metabolism and cell apoptosis were up- and down-regulated postweaning, respectively. Functional analysis showed that genes related to SCFA absorption, metabolism, and protective roles against oxidative stress were positively correlated with ruminal SCFA concentrations. The relative abundance of epithelium-attached Rikenellaceae RC9 gut group and Campylobacter was positively correlated with genes involved in SCFA absorption and metabolism, suggesting that these microbes can cooperatively affect host functions. Future research should examine the contribution of attenuated apoptosis on rumen epithelial functional shifts during the weaning transition.


Asunto(s)
Microbiota , Rumen , Animales , Bovinos , Rumen/metabolismo , Destete , Epitelio/metabolismo , Ácidos Grasos Volátiles/metabolismo , Perfilación de la Expresión Génica
5.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38612463

RESUMEN

Vitis vinifera L. possesses high economic value, but its growth and yield are seriously affected by salt stress. Though melatonin (MT) has been widely reported to enhance tolerance towards abiotic stresses in plants, the regulatory role melatonin plays in resisting salt tolerance in grapevines has scarcely been studied. Here, we observed the phenotypes under the treatment of different melatonin concentrations, and then transcriptome and metabolome analyses were performed. A total of 457 metabolites were detected in CK- and MT-treated cell cultures at 1 WAT (week after treatment) and 4 WATs. Exogenous melatonin treatment significantly increased the endogenous melatonin content while down-regulating the flavonoid content. To be specific, the melatonin content was obviously up-regulated, while the contents of more than a dozen flavonoids were down-regulated. Auxin response genes and melatonin synthesis-related genes were regulated by the exogenous melatonin treatment. WGCNA (weighted gene coexpression network analysis) identified key salt-responsive genes; they were directly or indirectly involved in melatonin synthesis and auxin response. The synergistic effect of salt and melatonin treatment was investigated by transcriptome analysis, providing additional evidence for the stress-alleviating properties of melatonin through auxin-related pathways. The present study explored the impact of exogenous melatonin on grapevines' ability to adapt to salt stress and provided novel insights into enhancing their tolerance to salt stress.


Asunto(s)
Melatonina , Vitis , Tolerancia a la Sal/genética , Melatonina/farmacología , Vitis/genética , Metaboloma , Perfilación de la Expresión Génica , Flavonoides , Ácidos Indolacéticos
6.
J Fish Biol ; 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38852940

RESUMEN

The Poyang Lake region is home to large-blackspot loaches (LBL), small-blackspot loaches (SBL), and non-blackspot loaches (NBL), Misgurnus anguillicaudatus. To investigate the impact of tyrosinase on spot development, the complementary DNAs (cDNA) of tyrosinase in M. anguillicaudatus (designated as Matyr) were cloned using the rapid amplification of cDNA ends (RACE)-PCR method. The full-length cDNA for Matyr was 2020 bp, and the open-reading frame comprised 1617 bp, encoding a predicted protein with 538 amino acids. Phylogenetic studies revealed that MaTyr was first grouped with Tyr of Triplophysa tibetana and Leptobotia taeniops, and then Tyr of other cyprinid fish. The quantitative reverse-transcription-PCR results show that Matyr was highly expressed in the muscle, caudal fin, and dorsal skin. The Matyr gene's messenger RNA expression pattern steadily increased from the fertilized ovum period to the somitogenesis period, and from the muscle effect stage to 6 days after fertilization, it considerably increased (p < 0.01). The Matyr hybridization signals with similar location could be found in all developmental stages of three kinds of loaches using whole-mount in situ hybridization (WISH) technology and were the strongest during the organ development period and melanin formation period. Dot hybridization signals in LBLs rapidly spread to the back of the body beginning at the period when the eyes first formed melanin, and their dimensions were larger than those of NBLs during the same time period. The body color of loaches could change reversibly with black/white background adaptation. The α-msh, mitfa, and tyr are mainly expressed in loaches adapted with a black background. Tyr gene could be involved in the development of blackspots and body color polymorphism, and contribute to organ development in the loach.

7.
Int J Mol Sci ; 25(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39062834

RESUMEN

Chrysanthemum (Chrysanthemum morifolium, ground-cover Chrysanthemums), one of the important garden flowers, has a high ornamental and economic value. However, its ornamental value is significantly diminished by the low temperature experienced in northeastern China. Here, metabolomics and transcriptomics were performed on three Chrysanthemum cultivars before and after a low temperature to investigate the dynamic metabolite changes and the molecular regulatory mechanisms. The results showed that 1324 annotated metabolites were detected, among which 327 were identified as flavonoids derived from Chrysanthemum. The accumulation of metabolites and gene expression related to the flavonoid biosynthesis pathway significantly increased in the three cultivars under the low temperature, indicating flavonoid metabolism actively participates in the Chrysanthemum cold response. Specifically, the content of cyanidin and pelargonidin derivatives and the expression of anthocyanin biosynthesis genes significantly increases in XHBF, providing a reasonable explanation for the change in petal color from white to purple under the low temperature. Six candidate UDP-glycosyltransferase genes involved in the glycosylation of flavonoids were identified through correlation networks and phylogenetic analysis. CmNAC1, CmbZIP3, and other transcription factors potentially regulating flavonoid metabolism and responding to low temperatures were discovered by correlation analysis and weighted gene co-expression network analysis (WGCNA). In conclusion, this study elucidated the specific response of flavonoids to low temperatures in Chrysanthemums, providing valuable insights and metabolic data for investigating cold tolerance.


Asunto(s)
Chrysanthemum , Flavonoides , Regulación de la Expresión Génica de las Plantas , Metabolómica , Transcriptoma , Chrysanthemum/genética , Chrysanthemum/metabolismo , Flavonoides/metabolismo , Metabolómica/métodos , Frío , Perfilación de la Expresión Génica/métodos , Flores/metabolismo , Flores/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Antocianinas/metabolismo , Respuesta al Choque por Frío , Redes Reguladoras de Genes , Metaboloma
8.
Appl Environ Microbiol ; 89(12): e0132023, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38054735

RESUMEN

IMPORTANCE: Ruminants play a key role in the conversion of cellulolytic plant material into high-quality meat and milk protein for humans. The rumen microbiome is the driver of this conversion, yet there is little information on how gene expression within the microbiome impacts the efficiency of this conversion process. The current study investigates gene expression in the rumen microbiome of beef heifers and bison and how transplantation of ruminal contents from bison to heifers alters gene expression. Understanding interactions between the host and the rumen microbiome is the key to developing informed approaches to rumen programming that will enhance production efficiency in ruminants.


Asunto(s)
Bison , Microbiota , Humanos , Animales , Bovinos , Femenino , Alimentación Animal/análisis , Rumen/metabolismo , Rumiantes , Dieta/veterinaria , Fermentación
9.
Genomics ; 113(3): 1522-1533, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33774166

RESUMEN

BACKGROUND: The enriched nitrogenous compounds in the dairy farms negatively affect the surrounding soil quality and air condition. The objective of this study is to investigate the transcriptomes of five key tissues involved in nitrogen metabolism and their changes under different diets to elucidate the molecular regulatory mechanisms of urine urea nitrogen (UUN) yield, one of the indicators of nitrogenous compound secretion of dairy cows. RESULTS: Cows fed high quality forage-based diet had lower UUN content and UUN yield, compared to those fed low quality forage (crop byproducts) based diets. From the transcriptomes of rumen, duodenum, jejunum, liver and udder, key driver genes and their UUN yield-associated functional gene networks were identified. In addition, the functional networks and expression of key drivers in various tissues (such as S100A8, CA1 and BPIFA2C in the duodenum; A2ML1, HMGCS2 and S100A12 in the jejunum; CYP2B6 and GLYCAM1 in the liver; APOE in the udder) changed in the cows fed crop byproducts based diet, which might be the predominant molecules to drive the increase UUN yield in these cows. CONCLUSION: The information suggested that gut, liver and udder play important roles in regulating UUN yield, which could regulate nitrogen excretion waste. These findings provide fundamental information on future nutritional intervention strategies to reduce the UUN yield from dairy cows fed human inedible crop byproducts, which is vital for a sustainable and environmentally friendly dairy industry.


Asunto(s)
Lactancia , Urea , Animales , Bovinos , Femenino , Leche/metabolismo , Nitratos/metabolismo , Rumen/metabolismo , Urea/metabolismo
10.
Genomics ; 113(6): 4116-4125, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34743958

RESUMEN

Our objective was to evaluate the effect of colostrum feeding times on genome-wide gene expression of neonatal calves. In total, twenty-seven calves were assigned to three colostrum feeding treatments: within 45 min (TRT0h, n = 9), 6 h (TRT6h, n = 9) and 12 h (TRT12h, n = 9). Ileum tissues were collected at 51 h and transcriptomic analysis was conducted. Uniquely expressed genes were identified in TRT0h group with enriched "Antigen Presentation" function. Meanwhile, the weighted gene co-expression network analysis (WGCNA) identified four significant gene modules (|correlation| > 0.50 and P ≤ 0.05). In particular, Turquoise gene module with the enriched "Cadherin binding involved in cell-cell adhesion" and "Cell-cell adherences junction" GO terms were significantly correlated with Faecalibacterium prausnitzii (R = -0.70, P < 0.01) and Bifidobacterium (R = -0.55, P < 0.01). Our findings suggest feeding colostrum without delay could stimulate the expression of genes involved in immune function development related to host response and microbial colonization in neonatal claves.


Asunto(s)
Calostro , Íleon , Animales , Animales Recién Nacidos , Bovinos , Calostro/metabolismo , Femenino , Perfilación de la Expresión Génica , Sistema Inmunológico , Embarazo
11.
J Fish Biol ; 100(2): 366-377, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34751443

RESUMEN

Pigment cell composition, pigment content, tyrosinase content and activity analysis were investigated on three kinds of loaches Misgurnus anguillicaudatus: big blackspot loaches (BBL), small blackspot loaches (SBL) and non-blackspot loaches (NBL), from Poyang Lake. Results showed that there were three types of skin pigment cells, namely melanophores, xanthophores and iridophores. Melanophores in dorsum were more than those in abdomen. Melanophore cytosomes in BBL were larger than those in SBL and NBL, and melanosomes were the largest in stage four. The melanophores in dorsal skin of SBL or NBL were small cell bodies, spindle-like and in chain distribution. There was an extremely significant difference in melanin content in BBL between the dorsum and abdomen (P < 0.01). There were no significant differences in melanin abdominal content, lutein and carotenoid contents among three kinds of loaches (P > 0.05). In dorsal skin, tyrosinase content was the highest in BBL, and it was significantly lower in NBL than in BBL and SBL (P < 0.01). This study reveals the differences in pigment and tyrosinase content in three kinds of loaches and provides a theoretical basis for further study of the mechanism of black spot formation.


Asunto(s)
Cipriniformes , Animales , Lagos , Melanóforos , Monofenol Monooxigenasa , Pigmentación
12.
Planta ; 253(4): 84, 2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33788027

RESUMEN

MAIN CONCLUSION: White-fleshed grape cv. 'Gamay' and its two teinturier variants presented distinct spatial-temporal accumulation of anthocyanins, with uncoupled accumulation of sugars and anthocyanins in 'Gamay Fréaux'. In most red grape cultivars, anthocyanins accumulate exclusively in the berry skin, while 'teinturier' cultivars also accumulate anthocyanins in the pulp. Here, we investigated the teinturier cvs. 'Gamay de Bouze' and 'Gamay Fréaux' (two somatic variants of the white-fleshed cv. 'Gamay') through metabolic and transcript analysis to clarify whether these two somatic variants have the same anthocyanin accumulation pattern in the skin and pulp, and whether primary metabolites are also affected. The skin of the three cultivars and the pulp of 'Gamay de Bouze' begun to accumulate anthocyanins at the onset of berry ripening. However, the pulp of 'Gamay Fréaux' exhibited a distinct anthocyanin accumulation pattern, starting as early as fruit set with very low level of sugars. The highest level of anthocyanins was found in 'Gamay Fréaux' skin, followed by 'Gamay de Bouze' and 'Gamay'. Consistently, the transcript abundance of genes involved in anthocyanin biosynthesis were in line with the anthocyanin levels in the three cultivars. Despite no evident differences in pulp sugar content, the concentration of glucose and fructose in the skin of 'Gamay Fréaux' was only half of those in the skin of 'Gamay' and 'Gamay de Bouze' throughout all berry ripening, suggesting an uncoupled accumulation of sugars and anthocyanins in 'Gamay Fréaux'. The study provides a comprehensive view of metabolic consequences in grape somatic variants and the three almost isogenic genotypes can serve as ideal reagents to further uncover the mechanisms underlying the linkage between sugar and anthocyanin accumulation.


Asunto(s)
Vitis , Antocianinas , Fructosa , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Azúcares , Vitis/genética
13.
Plant Biotechnol J ; 19(6): 1216-1239, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33440072

RESUMEN

In grape, MYBA1 and MYBA2 at the colour locus are the major genetic determinants of grape skin colour, and the mutation of two functional genes (VvMYBA1 and VvMYBA2) from these loci leads to white skin colour. This study aimed to elucidate the regulation of grape berry coloration by isolating and characterizing VvMYBA2w and VvMYBA2r alleles. The overexpression of VvMYBA2r up-regulated the expression of anthocyanin biosynthetic genes and resulted in higher anthocyanin accumulation in transgenic tobacco than wild-type (WT) plants, especially in flowers. However, the ectopic expression of VvMYBA2w inactivated the expression of anthocyanin biosynthetic genes and could not cause obvious phenotypic modulation in transgenic tobacco. Unlike in VvMYBA2r, CA dinucleotide deletion shortened the C-terminal transactivation region and disrupted the transcriptional activation activity of VvMYBA2w. The results indicated that VvMYBA2r positively regulated anthocyanin biosynthesis by forming the VvMYBA2r-VvMYCA1-VvWDR1 complex, and VvWDR1 enhanced anthocyanin accumulation by interacting with the VvMYBA2r-VvMYCA1 complex; however, R44 L substitution abolished the interaction of VvMYBA2w with VvMYCA1. Meanwhile, both R44 L substitution and CA dinucleotide deletion seriously affected the efficacy of VvMYBA2w to regulate anthocyanin biosynthesis, and the two non-synonymous mutations were additive in their effects. Investigation of the colour density and MYB haplotypes of 213 grape germplasms revealed that dark-skinned varieties tended to contain HapC-N and HapE2, whereas red-skinned varieties contained high frequencies of HapB and HapC-Rs. Regarding ploidy, the higher the number of functional alleles present in a variety, the darker was the skin colour. In summary, this study provides insight into the roles of VvMYBA2r and VvMYBA2w alleles and lays the foundation for the molecular breeding of grape varieties with different skin colour.


Asunto(s)
Vitis , Alelos , Antocianinas , Barajamiento de ADN , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pigmentación de la Piel , Vitis/genética , Vitis/metabolismo
14.
Bioinformatics ; 36(8): 2530-2537, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31873721

RESUMEN

MOTIVATION: Enhancing the utilization of human-inedible crop by-products by ruminants to produce high-quality milk for human consumption is an emerging global task. We performed a multi-omics-based study to decipher the regulatory biological processes of milk production when cows fed low-quality crop by-products with the aim to improve their utilization. RESULTS: Seven types of different high-throughput omics data were generated across three central organs [rumen, liver and mammary gland (MG)] and biofluids (rumen fluid and blood) that involved in milk production. The integrated multi-omics analysis including metabolomics, metagenomics and transcriptomics showed altered microbiome at compositional and functional levels, microbial metabolites in the rumen, down-regulated genes and associated functions in liver and MG. These changes simultaneously contributed to down-regulated three key metabolic nodes (propionate, glucose and amino acid) across these organs and biofluids that led to lowered milk yield and quality when cows consumed corn stover (CS). Hippuric acid was identified as a biomarker that led to low milk production in CS-fed cows, suggesting a future evaluation parameter related to the metabolic mechanism of low-quality forage utilization. This study unveils the milk production-related biological mechanism across different biofluids and tissues under a low-quality forage diet, which provides a novel understanding and potential improvement strategies for future crop by-products utilization and sustainable ruminant production. AVAILABILITY AND IMPLEMENTATION: The raw files of metagenomics, metabolomics, and transcriptomics data can be accessed at NCBI SRA (No. SRR5028206), EMBI-EBI (No. MTBLS411), and GEO (NO. GSE78524) databases respectively. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Lactancia , Leche , Animales , Bovinos , Dieta , Femenino , Genómica , Rumen , Zea mays
15.
RNA Biol ; 18(6): 854-862, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32931715

RESUMEN

Increasing the healthy/unhealthy fatty acid (FA) ratio in meat is one of the urgent tasks required to address consumer concerns. However, the regulatory mechanisms ultimately resulting in FA profiles vary among animals and remain largely unknown. In this study, using ~1.2 Tb high-quality RNA-Seq-based transcriptomic data of 188 samples from four key metabolic tissues (rumen, liver, muscle, and backfat) together with the contents of 49 FAs in backfat, the molecular regulatory mechanisms of these tissues contributing to FA formation in cattle were explored. Using this large dataset, the alternative splicing (AS) events, one of the transcriptional regulatory mechanisms in four tissues were identified. The highly conserved and absent AS events were detected in rumen tissue, which may contribute to its functional differences compared with the other three tissues. In addition, the healthy/unhealthy FA ratio related AS events, differential expressed (DE) genes, co-expressed genes, and their functions in four tissues were analysed. Eight key genes were identified from the integrated analysis of DE, co-expressed, and AS genes between animals with high and low healthy/unhealthy FA ratios. This study provides an applicable pipeline for AS events based on comprehensive RNA-Seq analysis and improves our understanding of the regulatory mechanism of FAs in beef cattle.


Asunto(s)
Empalme Alternativo , Bovinos/genética , Ácidos Grasos/metabolismo , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Transducción de Señal/genética , Animales , Bovinos/metabolismo , Proteoglicanos de Heparán Sulfato/genética , Proteoglicanos de Heparán Sulfato/metabolismo , Hígado/metabolismo , Masculino , Músculos/metabolismo , Protoporfirinógeno-Oxidasa/genética , Protoporfirinógeno-Oxidasa/metabolismo , Rumen/metabolismo , Grasa Subcutánea/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
J Dairy Sci ; 104(2): 2290-2301, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33358167

RESUMEN

Branched-chain fatty acids (BCFA) have recently been reported to play a role in human gut health during early life. However, little information is available on the fecal BCFA profiles in young ruminants and whether they are associated with the development of neonatal calf diarrhea. The objectives of this study were to (1) characterize BCFA profiles in feces collected from young calves, (2) compare the fecal BCFA composition between diarrheic and nondiarrheic dairy calves, and (3) explore the potential relationships between BCFA and microbiota in the feces. A total of 32 male Holstein dairy calves (13 ± 3 d old) with the same diet management were grouped as diarrheic (n = 16) or healthy (n = 16) based on fecal score (determined by liquid fecal consistency with some solid particles); diarrhea cases were defined as fecal score ≥2 for at least 2 d. Fecal samples were collected on the seventh day after calf arrival, and the fecal BCFA and microbial profiles were assessed using gas chromatograph and amplicon sequencing, respectively. In total, 7 BCFA were detected in the feces of all dairy calves; however, the concentrations of fecal BCFA differed between diarrheic and nondiarrheic calves. Specifically, the concentrations of iso-C16:0, iso-C17:0, anteiso-C17:0, and total even-chain BCFA were significantly higher in the feces of diarrheic calves. When the associations between BCFA and bacteria were studied, the relative abundance of Eggerthella was positively correlated with the concentrations of iso-C16:0 (ρ = 0.67), iso-17:0 (ρ = 0.77), anteiso-C17:0 (ρ = 0.73), and iso-C18:0 (ρ = 0.65), whereas the relative abundance of Subdoligranulum was positively correlated with the concentrations of iso-C14:0 (ρ = 0.62), iso-C15:0 (ρ = 0.78), and anteiso-C15:0 (ρ = 0.63). Use of random forest algorithm showed that BCFA such as anteiso-C15:0, iso-C16:0, iso-C17:0, iso-C18:0, and total even-chain BCFA could be used as biomarkers to differentiate diarrheic calves from healthy ones. Our findings generated fundamental knowledge on the potential roles of BCFA in neonatal calf gut health. Follow-up studies with larger animal populations are warranted to validate the feasibility of using BCFA as indicators of health status in neonatal calves.


Asunto(s)
Enfermedades de los Bovinos/metabolismo , Diarrea/veterinaria , Ácidos Grasos/análisis , Heces/química , Heces/microbiología , Microbioma Gastrointestinal , Animales , Animales Recién Nacidos , Bovinos , Enfermedades de los Bovinos/microbiología , Diarrea/microbiología , Femenino , Estado de Salud
17.
Genomics ; 112(6): 3968-3977, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32650099

RESUMEN

Bovine respiratory disease (BRD) is the most common disease in beef cattle and leads to considerable economic losses in both beef and dairy cattle. It is important to uncover the molecular mechanisms underlying BRD and to identify biomarkers for early identification of BRD cattle in order to address its impact on production and welfare. In this study, a longitudinal transcriptomic analysis was conducted using blood samples collected from 24 beef cattle at three production stages in the feedlot: 1) arrival (Entry group); 2) when identified as sick (diagnosed as BRD) and separated for treatment (Pulled); 3) prior to marketing (Close-out, representing healthy animals). Expressed genes were significantly different in the same animal among Entry, Pulled and Close-out stages (false discovery rate (FDR) < 0.01 & |Fold Change| > 2). Beef steers at both Entry and Pulled stages presented obvious difference in GO terms (FDR < 0.05) and affected biological functions (FDR < 0.05 & |Z-score| > 2) when compared with animals at Close-out. However, no significant functional difference was observed between Entry and Pulled animals. The interferon signaling pathway showed the most significant difference between animals at Entry/Pulled and Close-out stages (P < .001 & |Z-score| > 2), suggesting the animals initiated antiviral responses at an early stage of infection. Six key genes including IFI6, IFIT3, ISG15, MX1, and OAS2 were identified as biomarkers to predict and recognize sick cattle at Entry. A gene module with 169 co-expressed genes obtained from WGCNA analysis was most positively correlated (R = 0.59, P = 6E-08) with sickness, which was regulated by 11 transcription factors. Our findings provide an initial understanding of the BRD infection process in the field and suggests a subset of novel marker genes for identifying BRD in cattle at an early stage of infection.


Asunto(s)
Enfermedades de los Bovinos/genética , Bovinos/genética , Perfilación de la Expresión Génica , Enfermedades Respiratorias/veterinaria , Animales , Estudios Longitudinales , Enfermedades Respiratorias/genética
18.
BMC Genomics ; 21(1): 444, 2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32600251

RESUMEN

BACKGROUND: The class III peroxidases (PODs) are involved in a broad range of physiological activities, such as the formation of lignin, cell wall components, defense against pathogenicity or herbivore, and abiotic stress tolerance. The POD family members have been well-studied and characterized by bioinformatics analysis in several plant species, but no previous genome-wide analysis has been carried out of this gene family in grapevine to date. RESULTS: We comprehensively identified 47 PODs in the grapevine genome and are further classified into 7 subgroups based on their phylogenetic analysis. Results of motif composition and gene structure organization analysis revealed that PODs in the same subgroup shared similar conjunction while the protein sequences were highly conserved. Intriguingly, the integrated analysis of chromosomal mapping and gene collinearity analysis proposed that both dispersed and tandem duplication events contributed to the expansion of PODs in grapevine. Also, the gene duplication analysis suggested that most of the genes (20) were dispersed followed by (15) tandem, (9) segmental or whole-genome duplication, and (3) proximal, respectively. The evolutionary analysis of PODs, such as Ka/Ks ratio of the 15 duplicated gene pairs were less than 1.00, indicated that most of the gene pairs exhibiting purifying selection and 7 pairs underwent positive selection with value greater than 1.00. The Gene Ontology Enrichment (GO), Kyoto Encyclopedia of Genes Genomics (KEGG) analysis, and cis-elements prediction also revealed the positive functions of PODs in plant growth and developmental activities, and response to stress stimuli. Further, based on the publically available RNA-sequence data, the expression patterns of PODs in tissue-specific response during several developmental stages revealed diverged expression patterns. Subsequently, 30 genes were selected for RT-PCR validation in response to (NaCl, drought, and ABA), which showed their critical role in grapevine. CONCLUSIONS: In conclusion, we predict that these results will lead to novel insights regarding genetic improvement of grapevine.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Peroxidasas/genética , Vitis/crecimiento & desarrollo , Secuenciación Completa del Genoma/métodos , Mapeo Cromosómico , Evolución Molecular , Duplicación de Gen , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Proteínas de Plantas/genética , Análisis de Secuencia de ARN , Estrés Fisiológico , Vitis/genética
19.
BMC Plant Biol ; 20(1): 384, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32825825

RESUMEN

BACKGROUND: Grape is highly sensitive to gibberellin (GA), which is crucial during seed and berry development (SBD) either by itself or by interacting with other hormones, such as auxin, Abscisic acid (ABA), and Cytokinin (CK). However, no systematic analysis of GA metabolic and signal transduction (MST) pathway has been undertaken in grapevine. RESULTS: In this study, total endogenous GA3 content significantly decreased during SBD, and a total of 48 known genes in GA metabolic (GAM; 31) and signal transduction (ST; 17) pathways were identified in this process. In the GAM pathway, out of 31 genes, VvGA20ox1-1, VvGA3ox4-1, and VvGA2ox1-1 may be the major factors interacting at the green-berry stage (GBS) accompanied with higher accumulation rate. GA biosynthesis was greater than GA inactivation at GBS, confirming the importance of seeds in GA synthesis. The visible correlation between endogenous GA3 content and gene expression profiles suggested that the transcriptional regulation of GA biosynthesis pathway genes was a key mechanism of GA accumulation at the stone-hardening stage (SHS). Interestingly, we observed a negative feedback regulation between VvGA3oxs-VvGAI1-4, VvGA2oxs-VvGAI1-4, and VvGID1B-VvGAI1-4 in maintaining the balance of GA3 content in berries. Moreover, 11 miRNAs may be involved in the modulation of GA MST pathway by mediating their target genes, such as VvGA3ox, VvGID1B, and VvGAMYB. Many genes in auxin, ABA, and CK MST pathways were further identified and found to have a special pattern in the berry, and the crosstalk between GA and these hormones may modulate the complex process during SBD through the interaction gene network of the multihormone pathway. Lastly, based on the expression characterization of multihormone MST pathway genes, a proposed model of the GA-mediated multihormone regulatory network during SBD was proposed. CONCLUSIONS: Our results provided novel insights into GA-mediated regulatory networks during SBD in grape. The complexity of GA-mediated multihormone ST in SBD was also elucidated, thereby providing valuable information for future functional characterizations of specific genes in grape.


Asunto(s)
Frutas/crecimiento & desarrollo , Giberelinas/metabolismo , Vitis/metabolismo , Cromosomas de las Plantas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , ARN de Planta , RNA-Seq , Transducción de Señal/genética , Vitis/genética , Vitis/crecimiento & desarrollo
20.
Bioinformatics ; 35(10): 1712-1719, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30329014

RESUMEN

MOTIVATION: Feed efficiency is an important trait for sustainable beef production that is regulated by the complex biological process, but the mode of action behinds it has not been clearly defined. Here, we aimed to elucidate the regulatory mechanisms of this trait through studying the landscape of the genome-wide gene expression of rumen, liver, muscle and backfat tissues, the key ones involved in the energy metabolism. RESULTS: The transcriptome of 189 samples across four tissues from 48 beef steers with varied feed efficiency were generated using Illumina HiSeq4000. The analysis of global gene expression profiles of four tissues, functional analysis of tissue-shared and -unique genes, co-expressed network construction of tissue-shared genes, weighted correlations analysis between gene modules and feed efficiency-related traits in each tissue were performed. Among four tissues, the transcriptome of muscle tissue was distinctive from others, while those of rumen and backfat tissues were similar. The associations between co-expressed genes and feed efficiency related traits at single or all tissues level exhibited that the gene expression in the rumen, liver, muscle and backfat were the most correlated with feed conversion ratio, dry matter intake, average daily gain and residual feed intake, respectively. The 19 overlapped genes identified from the strongest module-trait relationships in four tissues are potential generic gene markers for feed efficiency. AVAILABILITY AND IMPLEMENTATION: The distribution of gene expression data can be accessed at https://www.cattleomics.com/transcriptome. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Alimentación Animal , Carne Roja , Animales , Bovinos , Redes Reguladoras de Genes , Fenotipo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA