Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
IEEE/ACM Trans Comput Biol Bioinform ; 19(5): 2697-2711, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34415836

RESUMEN

In the assembly pipeline of Whole Genome Sequencing (WGS), read mapping is a widely used method to re-assemble the genome. It employs approximate string matching and dynamic programming-based algorithms on a large volume of data and associated structures, making it a computationally intensive process. Currently, the state-of-the-art data centers for genome sequencing incur substantial setup and energy costs for maintaining hardware, data storage and cooling systems. To enable low-cost genomics, we propose an energy-efficient architectural methodology for read mapping using a single system-on-chip (SoC) platform. The proposed methodology is based on the q-gram lemma and designed using a novel architecture for filtering and verification. The filtering algorithm is designed using a parallel sorted q-gram lemma based method for the first time, and it is complemented by an in-situ verification routine using parallel Myers bit-vector algorithm. We have implemented our design on the Zynq Ultrascale+ XCZU9EG MPSoC platform. It is then extensively validated using real genomic data to demonstrate up to 7.8× energy reduction and up to 13.3× less resource utilization when compared with the state-of-the-art software and hardware approaches.


Asunto(s)
Algoritmos , Programas Informáticos , Genoma , Genómica , Análisis de Secuencia de ADN/métodos
2.
Artículo en Inglés | MEDLINE | ID: mdl-36086088

RESUMEN

Myers bit-vector algorithm for approximate string matching (ASM) is a dynamic programming based approach that takes advantage of bit-parallel operations. It is one of the fastest algorithms to find the edit distance between two strings. In computational biology, ASM is used at various stages of the computational pipeline, including proteomics and genomics. The computationally intensive nature of the underlying algorithms for ASM operating on the large volume of data necessitates the acceleration of these algorithms. In this paper, we propose a novel ASM architecture based on Myers bit-vector algorithm for parallel searching of multiple query patterns in the biological databases. The proposed parallel architecture uses multiple processing engines and hardware/software codesign for an accelerated and energy-efficient design of ASM algorithm on hardware. In comparison with related literature, the proposed design achieves 22× better performance with a demonstrative energy efficiency of  âˆ¼ 500×109 cell updates per joule.


Asunto(s)
Biología Computacional , Conservación de los Recursos Energéticos , Algoritmos , Computadores , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA