Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37420811

RESUMEN

This paper outlines the development of an onboard computer prototype for data registration, storage, transformation, and analysis. The system is intended for health and use monitoring systems in military tactical vehicles according to the North Atlantic Treaty Organization Standard Agreement for designing vehicle systems using an open architecture. The processor includes a data processing pipeline with three main modules. The first module captures the data received from sensor sources and vehicle network buses, performs a data fusion, and saves the data in a local database or sends them to a remote system for further analysis and fleet management. The second module provides filtering, translation, and interpretation for fault detection; this module will be completed in the future with a condition analysis module. The third module is a communication module for web serving data and data distribution systems according to the standards for interoperability. This development will allow us to analyze the driving performance for efficiency, which helps us to know the vehicle's condition; the development will also help us deliver information for better tactical decisions in mission systems. This development has been implemented using open software, allowing us to measure the amount of data registered and filter only the relevant data for mission systems, which avoids communication bottlenecks. The on-board pre-analysis will help to conduct condition-based maintenance approaches and fault forecasting using the on-board uploaded fault models, which are trained off-board using the collected data.


Asunto(s)
Computadores , Programas Informáticos , Vehículos a Motor , Comunicación , Manejo de Datos
2.
Sensors (Basel) ; 23(8)2023 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37112186

RESUMEN

Currently, in many data landscapes, the information is distributed across various sources and presented in diverse formats. This fragmentation can pose a significant challenge to the efficient application of analytical methods. In this sense, distributed data mining is mainly based on clustering or classification techniques, which are easier to implement in distributed environments. However, the solution to some problems is based on the usage of mathematical equations or stochastic models, which are more difficult to implement in distributed environments. Usually, these types of problems need to centralize the required information, and then a modelling technique is applied. In some environments, this centralization may cause an overloading of the communication channels due to massive data transmission and may also cause privacy issues when sending sensitive data. To mitigate this problem, this paper describes a general-purpose distributed analytic platform based on edge computing for distributed networks. Through the distributed analytical engine (DAE), the calculation process of the expressions (that requires data from diverse sources) is decomposed and distributed between the existing nodes, and this allows sending partial results without exchanging the original information. In this way, the master node ultimately obtains the result of the expressions. The proposed solution is examined using three different computational intelligence algorithms, i.e., genetic algorithm, genetic algorithm with evolution control, and particle swarm optimization, to decompose the expression to be calculated and to distribute the calculation tasks between the existing nodes. This engine has been successfully applied in a case study focused on the calculation of key performance indicators of a smart grid, achieving a reduction in the number of communication messages by more than 91% compared to the traditional approach.

3.
Sensors (Basel) ; 22(3)2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35161877

RESUMEN

The proposal of this paper is to introduce a low-level blockchain marketplace, which is a blockchain where participants could share its power generation and demand. To achieve this implementation in a secure way for each actor in the network, we proposed to deploy it over efficient and generic low-performance devices. Thus, they are installed as IoT devices, registering measurements each fifteen minutes, and also acting as blockchain nodes for the marketplace. Nevertheless, it is necessary that blockchain is lightweight, so it is implemented as a specific consensus protocol that allows each node to have enough time and computer requirements to act both as an IoT device and a blockchain node. This marketplace will be ruled by Smart Contracts deployed inside the blockchain. With them, it is possible to make registers for power generation and demand. This low-level marketplace could be connected to other services to execute matching algorithms from the data stored in the blockchain. Finally, a real test-bed implementation of the marketplace was tested, to confirm that it is technically feasible.


Asunto(s)
Cadena de Bloques , Algoritmos , Humanos
4.
Sensors (Basel) ; 21(4)2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33572186

RESUMEN

Nowadays, the presence of renewable generation systems and mobile loads (i.e., electric vehicle) spread throughout the distribution network is increasing. The problem is that this type of system introduces an added difficulty since they present a strong dependence on the meteorology and the mobility needs of the users. This problem forces the distribution system operators to seek tools that make it possible to balance the relationship between consumption and generation. In this sense, automated demand response systems are an appropriate solution that allow the operator to request specific reductions in customers' consumption, offering a discount to the customer and avoiding network congestion. This paper analyzes the implementation and architecture of a demand response solution based on OpenADR standard and its possible integration with a building management system through a use case. As will be analyzed, a key part of the architecture is the measurement system based on smart meters acting as sensors. This is the base of the auditing system which makes it possible to verify compliance with the consumption reduction agreements. Additionally, this study is completed with a parallel auditing system which makes it possible to verify compliance with the consumption reduction agreements. All of the proposed demand response cycle is implemented as a proof of concept in a classroom in the Escuela Politécnica Superior at the University of Seville, which makes it possible to identify the advantages of this architecture in the ambit of connection between distribution network and buildings.

5.
Sensors (Basel) ; 19(3)2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30704066

RESUMEN

One of the fundamental tasks of electric distribution utilities is guaranteeing a continuous supply of electricity to their customers. The primary distribution network is a critical part of these facilities because a fault in it could affect thousands of customers. However, the complexity of this network has been increased with the irruption of distributed generation, typical in a Smart Grid and which has significantly complicated some of the analyses, making it impossible to apply traditional techniques. This problem is intensified in underground lines where access is limited. As a possible solution, this paper proposes to make a deployment of a distributed sensor network along the power lines. This network proposes taking advantage of its distributed character to support new approaches of these analyses. In this sense, this paper describes the aquiculture of the proposed network (adapted to the power grid) based on nodes that use power line communication and energy harvesting techniques. In this sense, it also describes the implementation of a real prototype that has been used in some experiments to validate this technological adaptation. Additionally, beyond a simple use for monitoring, this paper also proposes the use of this approach to solve two typical distribution system operator problems, such as: fault location and failure forecasting in power cables.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA