Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
PLoS Pathog ; 19(3): e1011157, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36862652

RESUMEN

Malaria remains a significant threat to global health, and despite concerted efforts to curb the disease, malaria-related morbidity and mortality increased in recent years. Malaria is caused by unicellular eukaryotes of the genus Plasmodium, and all clinical manifestations occur during asexual proliferation of the parasite inside host erythrocytes. In the blood stage, Plasmodium proliferates through an unusual cell cycle mode called schizogony. Contrary to most studied eukaryotes, which divide by binary fission, the parasite undergoes several rounds of DNA replication and nuclear division that are not directly followed by cytokinesis, resulting in multinucleated cells. Moreover, despite sharing a common cytoplasm, these nuclei multiply asynchronously. Schizogony challenges our current models of cell cycle regulation and, at the same time, offers targets for therapeutic interventions. Over the recent years, the adaptation of advanced molecular and cell biological techniques have given us deeper insight how DNA replication, nuclear division, and cytokinesis are coordinated. Here, we review our current understanding of the chronological events that characterize the unusual cell division cycle of P. falciparum in the clinically relevant blood stage of infection.


Asunto(s)
Malaria Falciparum , Parásitos , Plasmodium , Animales , División Celular , Ciclo Celular , Citocinesis , Eucariontes
2.
PLoS Pathog ; 19(12): e1011899, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38150475

RESUMEN

Centrins are small calcium-binding proteins that have a variety of roles and are universally associated with eukaryotic centrosomes. Rapid proliferation of the malaria-causing parasite Plasmodium falciparum in the human blood depends on a particularly divergent and acentriolar centrosome, which incorporates several essential centrins. Their precise mode of action, however, remains unclear. In this study calcium-inducible liquid-liquid phase separation is revealed as an evolutionarily conserved principle of assembly for multiple centrins from P. falciparum and other species. Furthermore, the disordered N-terminus and calcium-binding motifs are defined as essential features for reversible biomolecular condensation, and we demonstrate that certain centrins can form co-condensates. In vivo analysis using live cell STED microscopy shows liquid-like dynamics of centrosomal centrin. Additionally, implementation of an inducible protein overexpression system reveals concentration-dependent formation of extra-centrosomal centrin assemblies with condensate-like properties. The timing of foci formation and dissolution suggests that centrin assembly is regulated. This study thereby provides a new model for centrin accumulation at eukaryotic centrosomes.


Asunto(s)
Calcio , Parásitos , Animales , Humanos , Calcio/metabolismo , Parásitos/metabolismo , Proteínas de Unión al Calcio/metabolismo , Centrosoma/metabolismo
3.
PLoS Pathog ; 19(12): e1011807, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38051755

RESUMEN

Malaria is caused by the rapid proliferation of Plasmodium parasites in patients and disease severity correlates with the number of infected red blood cells in circulation. Parasite multiplication within red blood cells is called schizogony and occurs through an atypical multinucleated cell division mode. The mechanisms regulating the number of daughter cells produced by a single progenitor are poorly understood. We investigated underlying regulatory principles by quantifying nuclear multiplication dynamics in Plasmodium falciparum and knowlesi using super-resolution time-lapse microscopy. This confirmed that the number of daughter cells was consistent with a model in which a counter mechanism regulates multiplication yet incompatible with a timer mechanism. P. falciparum cell volume at the start of nuclear division correlated with the final number of daughter cells. As schizogony progressed, the nucleocytoplasmic volume ratio, which has been found to be constant in all eukaryotes characterized so far, increased significantly, possibly to accommodate the exponentially multiplying nuclei. Depleting nutrients by dilution of culture medium caused parasites to produce fewer merozoites and reduced proliferation but did not affect cell volume or total nuclear volume at the end of schizogony. Our findings suggest that the counter mechanism implicated in malaria parasite proliferation integrates extracellular resource status to modify progeny number during blood stage infection.


Asunto(s)
Malaria Falciparum , Malaria , Parásitos , Animales , Humanos , Parásitos/fisiología , Malaria Falciparum/parasitología , Malaria/parasitología , Plasmodium falciparum/fisiología , Merozoítos/fisiología , Eritrocitos/parasitología
4.
PLoS Pathog ; 19(5): e1011325, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37130129

RESUMEN

Malaria-causing parasites achieve rapid proliferation in human blood through multiple rounds of asynchronous nuclear division followed by daughter cell formation. Nuclear divisions critically depend on the centriolar plaque, which organizes intranuclear spindle microtubules. The centriolar plaque consists of an extranuclear compartment, which is connected via a nuclear pore-like structure to a chromatin-free intranuclear compartment. Composition and function of this non-canonical centrosome remain largely elusive. Centrins, which reside in the extranuclear part, are among the very few centrosomal proteins conserved in Plasmodium falciparum. Here we identify a novel centrin-interacting centriolar plaque protein. Conditional knock down of this Sfi1-like protein (PfSlp) caused a growth delay in blood stages, which correlated with a reduced number of daughter cells. Surprisingly, intranuclear tubulin abundance was significantly increased, which raises the hypothesis that the centriolar plaque might be implicated in regulating tubulin levels. Disruption of tubulin homeostasis caused excess microtubules and aberrant mitotic spindles. Time-lapse microscopy revealed that this prevented or delayed mitotic spindle extension but did not significantly interfere with DNA replication. Our study thereby identifies a novel extranuclear centriolar plaque factor and establishes a functional link to the intranuclear compartment of this divergent eukaryotic centrosome.


Asunto(s)
Microtúbulos , Proteínas Protozoarias , Tubulina (Proteína) , Centrosoma/metabolismo , Homeostasis , Microtúbulos/metabolismo , Tubulina (Proteína)/genética , Plasmodium falciparum , Proteínas Protozoarias/genética
5.
PLoS Biol ; 19(3): e3001105, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33705378

RESUMEN

Apicomplexan parasites are defined by complex apical structures, which are necessary for interaction with incredibly diverse host cells. Two studies now amend a long-standing paradigm by showing conservation of an essential ring structure in the entire phylum.


Asunto(s)
Apicomplexa , Parásitos , Animales , Citoesqueleto
6.
Cell ; 136(3): 473-84, 2009 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-19203582

RESUMEN

Genomic abnormalities are often seen in tumor cells, and tetraploidization, which results from failures during cytokinesis, is presumed to be an early step in cancer formation. Here, we report a cell division control mechanism that prevents tetraploidization in human cells with perturbed chromosome segregation. First, we found that Aurora B inactivation promotes completion of cytokinesis by abscission. Chromosome bridges sustained Aurora B activity to posttelophase stages and thereby delayed abscission at stabilized intercellular canals. This was essential to suppress tetraploidization by furrow regression in a pathway further involving the phosphorylation of mitotic kinesin-like protein 1 (Mklp1). We propose that Aurora B is part of a sensor that responds to unsegregated chromatin at the cleavage site. Our study provides evidence that in human cells abscission is coordinated with the completion of chromosome segregation to protect against tetraploidization by furrow regression.


Asunto(s)
Segregación Cromosómica , Citocinesis , Ploidias , Proteínas Serina-Treonina Quinasas/metabolismo , Aurora Quinasa B , Aurora Quinasas , División Celular , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo
7.
Nature ; 563(7729): 121-125, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30333624

RESUMEN

Many evolutionarily distant pathogenic organisms have evolved similar survival strategies to evade the immune responses of their hosts. These include antigenic variation, through which an infecting organism prevents clearance by periodically altering the identity of proteins that are visible to the immune system of the host1. Antigenic variation requires large reservoirs of immunologically diverse antigen genes, which are often generated through homologous recombination, as well as mechanisms to ensure the expression of one or very few antigens at any given time. Both homologous recombination and gene expression are affected by three-dimensional genome architecture and local DNA accessibility2,3. Factors that link three-dimensional genome architecture, local chromatin conformation and antigenic variation have, to our knowledge, not yet been identified in any organism. One of the major obstacles to studying the role of genome architecture in antigenic variation has been the highly repetitive nature and heterozygosity of antigen-gene arrays, which has precluded complete genome assembly in many pathogens. Here we report the de novo haplotype-specific assembly and scaffolding of the long antigen-gene arrays of the model protozoan parasite Trypanosoma brucei, using long-read sequencing technology and conserved features of chromosome folding4. Genome-wide chromosome conformation capture (Hi-C) reveals a distinct partitioning of the genome, with antigen-encoding subtelomeric regions that are folded into distinct, highly compact compartments. In addition, we performed a range of analyses-Hi-C, fluorescence in situ hybridization, assays for transposase-accessible chromatin using sequencing and single-cell RNA sequencing-that showed that deletion of the histone variants H3.V and H4.V increases antigen-gene clustering, DNA accessibility across sites of antigen expression and switching of the expressed antigen isoform, via homologous recombination. Our analyses identify histone variants as a molecular link between global genome architecture, local chromatin conformation and antigenic variation.


Asunto(s)
Variación Antigénica/genética , Cromatina/genética , Cromatina/metabolismo , ADN Protozoario/metabolismo , Genoma/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/inmunología , ADN Protozoario/genética , Haplotipos/genética , Histonas/deficiencia , Histonas/genética , Familia de Multigenes/genética , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/genética , Glicoproteínas Variantes de Superficie de Trypanosoma/biosíntesis , Glicoproteínas Variantes de Superficie de Trypanosoma/genética
8.
PLoS Pathog ; 17(10): e1009969, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34614006

RESUMEN

The pathology associated with malaria infection is largely due to the ability of infected human RBCs to adhere to a number of receptors on endothelial cells within tissues and organs. This phenomenon is driven by the export of parasite-encoded proteins to the host cell, the exact function of many of which is still unknown. Here we inactivate the function of one of these exported proteins, PFA66, a member of the J-domain protein family. Although parasites lacking this protein were still able to grow in cell culture, we observed severe defects in normal host cell modification, including aberrant morphology of surface knobs, disrupted presentation of the cytoadherence molecule PfEMP1, and a total lack of cytoadherence, despite the presence of the knob associated protein KAHRP. Complementation assays demonstrate that an intact J-domain is required for recovery to a wild-type phenotype and suggest that PFA66 functions in concert with a HSP70 to carry out host cell modification. Strikingly, this HSP70 is likely to be of host origin. ATPase assays on recombinant protein verify a functional interaction between PFA66 and residual host cell HSP70. Taken together, our data reveal a role for PFA66 in host cell modification, strongly implicate human HSP70s as being essential in this process and uncover a new KAHRP-independent molecular factor required for correct knob biogenesis.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Interacciones Huésped-Parásitos/fisiología , Malaria Falciparum/metabolismo , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/metabolismo , Humanos , Malaria Falciparum/parasitología , Malaria Falciparum/patología , Plasmodium falciparum/metabolismo , Virulencia
9.
Nature ; 513(7518): 431-5, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-25043062

RESUMEN

Antigenic variation of the Plasmodium falciparum multicopy var gene family enables parasite evasion of immune destruction by host antibodies. Expression of a particular var subgroup, termed upsA, is linked to the obstruction of blood vessels in the brain and to the pathogenesis of human cerebral malaria. The mechanism determining upsA activation remains unknown. Here we show that an entirely new type of gene silencing mechanism involving an exonuclease-mediated degradation of nascent RNA controls the silencing of genes linked to severe malaria. We identify a novel chromatin-associated exoribonuclease, termed PfRNase II, that controls the silencing of upsA var genes by marking their transcription start site and intron-promoter regions leading to short-lived cryptic RNA. Parasites carrying a deficient PfRNase II gene produce full-length upsA var transcripts and intron-derived antisense long non-coding RNA. The presence of stable upsA var transcripts overcomes monoallelic expression, resulting in the simultaneous expression of both upsA and upsC type PfEMP1 proteins on the surface of individual infected red blood cells. In addition, we observe an inverse relationship between transcript levels of PfRNase II and upsA-type var genes in parasites from severe malaria patients, implying a crucial role of PfRNase II in severe malaria. Our results uncover a previously unknown type of post-transcriptional gene silencing mechanism in malaria parasites with repercussions for other organisms. Additionally, the identification of RNase II as a parasite protein controlling the expression of virulence genes involved in pathogenesis in patients with severe malaria may provide new strategies for reducing malaria mortality.


Asunto(s)
Exorribonucleasas/metabolismo , Silenciador del Gen , Genes Protozoarios/genética , Malaria Cerebral/parasitología , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , ARN Protozoario/metabolismo , Alelos , Variación Antigénica/genética , Cromatina/enzimología , Regulación hacia Abajo/genética , Eritrocitos/parasitología , Exorribonucleasas/deficiencia , Exorribonucleasas/genética , Humanos , Intrones/genética , Malaria Falciparum/parasitología , Plasmodium falciparum/patogenicidad , Regiones Promotoras Genéticas/genética , Proteínas Protozoarias/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Protozoario/genética , ARN no Traducido/genética , ARN no Traducido/metabolismo , Sitio de Iniciación de la Transcripción , Virulencia/genética , Factores de Virulencia/genética
10.
Nucleic Acids Res ; 44(20): 9710-9718, 2016 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-27466391

RESUMEN

Monoallelic expression of the var multigene family enables immune evasion of the malaria parasite Plasmodium falciparum in its human host. At a given time only a single member of the 60-member var gene family is expressed at a discrete perinuclear region called the 'var expression site'. However, the mechanism of var gene counting remains ill-defined. We hypothesize that activation factors associating specifically with the expression site play a key role in this process. Here, we investigate the role of a GC-rich non-coding RNA (ncRNA) gene family composed of 15 highly homologous members. GC-rich genes are positioned adjacent to var genes in chromosome-central gene clusters but are absent near subtelomeric var genes. Fluorescence in situ hybridization demonstrates that GC-rich ncRNA localizes to the perinuclear expression site of central and subtelomeric var genes in trans. Importantly, overexpression of distinct GC-rich ncRNA members disrupts the gene counting process at the single cell level and results in activation of a specific subset of var genes in distinct clones. We identify the first trans-acting factor targeted to the elusive perinuclear var expression site and open up new avenues to investigate ncRNA function in antigenic variation of malaria and other protozoan pathogens.


Asunto(s)
Composición de Base , Regulación de la Expresión Génica , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , ARN no Traducido/genética , Activación Transcripcional , Secuencia de Bases , Expresión Génica , Humanos , Hibridación Fluorescente in Situ , Microscopía Fluorescente , Conformación de Ácido Nucleico , Plasmodium falciparum/metabolismo , ARN no Traducido/química
11.
Cell Microbiol ; 15(5): 718-26, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23351305

RESUMEN

Phenotypic variation in genetically identical malaria parasites is an emerging topic. Although antigenic variation is only part of a more global parasite strategy to create adaptation through epigenetically controlled transcriptional variability, it is the central mechanism enabling immune evasion and promoting pathogenesis. The var gene family is the best-studied example in a wide range of clonally variant gene families in Plasmodium falciparum. It is unique in its strict selection of a single member for activation, a process termed monoallelic expression. The conceptual advances that have emerged from studying var genes show striking common epigenetic features with many other clonally variant gene families or even single-copy genes that show a variegated expression in parasite populations. However, major mechanistic questions, such as the existence of a potential expression site and the identity of transcription factors or genetic elements driving singular gene choice, are still unanswered. In this review we discuss the recent findings in the molecular processes essential for clonal variation, namely silencing, activation, poising and switching. Integrating findings about all clonally variant gene families and other mutually exclusive expression systems will hopefully drive mechanistic understanding of antigenic variation.


Asunto(s)
Variación Antigénica/inmunología , Malaria Falciparum/genética , Plasmodium falciparum/inmunología , Animales , Variación Antigénica/genética , Regulación de la Expresión Génica , Silenciador del Gen , Humanos , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Regiones Promotoras Genéticas
12.
Eukaryot Cell ; 12(5): 697-702, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23475702

RESUMEN

The human malaria parasite Plasmodium falciparum modifies the erythrocyte it infects by exporting variant proteins to the host cell surface. The var gene family that codes for a large, variant adhesive surface protein called P. falciparum erythrocyte membrane protein 1 (PfEMP1) plays a particular role in this process, which is linked to pathogenesis and immune evasion. A single member of this gene family is highly transcribed while the other 59 members remain silenced. Importantly, var gene transcription occurs at a spatially restricted, but yet undefined, perinuclear site that is distinct from repressed var gene clusters. To advance our understanding of monoallelic expression, we investigated whether nuclear pores associate with the var gene expression site. To this end, we studied the nuclear pore organization during the asexual blood stage using a specific antibody directed against a subunit of the nuclear pore, P. falciparum Nup116 (PfNup116). Ring and schizont stage parasites showed highly polarized nuclear pore foci, whereas in trophozoite stage nuclear pores redistributed over the entire nuclear surface. Colocalization studies of var transcripts and anti-PfNup116 antibodies showed clear dissociation between nuclear pores and the var gene expression site in ring stage. Similar results were obtained for another differentially transcribed perinuclear gene family, the ribosomal DNA units. Furthermore, we show that in the poised state, the var gene locus is not physically linked to nuclear pores. Our results indicate that P. falciparum does form compartments of high transcriptional activity at the nuclear periphery which are, unlike the case in yeast, devoid of nuclear pores.


Asunto(s)
ADN Ribosómico/genética , Poro Nuclear/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/genética , Células Cultivadas , ADN Ribosómico/metabolismo , Eritrocitos/parasitología , Expresión Génica , Regulación de la Expresión Génica , Genes Protozoarios , Humanos , Proteínas de Complejo Poro Nuclear/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/ultraestructura , Transporte de Proteínas , Proteínas Protozoarias/metabolismo , Trofozoítos/diagnóstico por imagen , Trofozoítos/metabolismo , Ultrasonografía
13.
mBio ; 14(4): e0077923, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37345936

RESUMEN

Plasmodium falciparum proliferates through schizogony in the clinically relevant blood stage of infection. During schizogony, consecutive rounds of DNA replication and nuclear division give rise to multinucleated stages before cellularization occurs. Although these nuclei reside in a shared cytoplasm, DNA replication and nuclear division occur asynchronously. Here, by mapping the proteomic context of the S-phase-promoting kinase PfCRK4, we show that it has a dual role for nuclear-cycle progression: PfCRK4 orchestrates not only DNA replication, but in parallel also the rearrangement of intranuclear microtubules from hemispindles into early mitotic spindles. Live-cell imaging of a reporter parasite showed that these microtubule rearrangements coincide with the onset of DNA replication. Together, our data render PfCRK4 a key factor for nuclear-cycle progression, linking entry into S-phase with the initiation of mitotic events. In part, such links may compensate for the absence of canonical cell cycle checkpoints in P. falciparum. IMPORTANCE The human malaria parasite Plasmodium falciparum proliferates in erythrocytes through schizogony, forming multinucleated stages before cellularization occurs. In marked contrast to the pattern of proliferation seen in most model organisms, P. falciparum nuclei multiply asynchronously despite residing in a shared cytoplasm. This divergent mode of replication is, thus, a good target for therapeutic interventions. To exploit this potential, we investigated a key regulator of the parasite's unusual cell cycle, the kinase PfCRK4 and found that this kinase regulated not only DNA replication but also in parallel the rearrangement of nuclear microtubules into early mitotic spindles. Since canonical cell cycle checkpoints have not been described in P. falciparum parasites, linking entry into S-phase and the initiation of mitotic events via a kinase, may be an alternative means to exert control, which is typically achieved by checkpoints.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Humanos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteómica , División Celular , Ciclo Celular , Fase S , Malaria Falciparum/parasitología , Eritrocitos/parasitología , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
14.
Semin Cell Dev Biol ; 21(9): 909-16, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20708087

RESUMEN

Cytokinesis leads to the separation of dividing cells, which in animal cells involves the contraction of an actin-myosin ring and subsequent fission during abscission. Abscission requires a series of dynamic events, including midbody-targeted vesicle secretion, specialization of plasma membrane domains, disassembly of midbody-associated microtubule bundles and plasma membrane fission. A large number of molecular factors required for abscission have been identified through localization, loss-of-function and proteomics studies, but their coordinate function in abscission is still poorly understood. Here, we review the structural elements and molecular factors known to contribute to abscission, and discuss their potential role in the context of proposed models for the abscission mechanism.


Asunto(s)
Membrana Celular/metabolismo , Citocinesis , Animales , Humanos
15.
J Cell Sci ; 123(Pt 9): 1395-400, 2010 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-20356927

RESUMEN

Germline mutations in the tumor-suppressor gene BRCA2 predispose to breast and ovarian cancer. BRCA2 plays a well-established role in maintaining genome stability by regulating homologous recombination. BRCA2 has more recently been implicated in cytokinesis, the final step of cell division, but the molecular basis for this remains unknown. We have used time-lapse microscopy, recently developed cytokinesis assays and BAC recombineering (bacterial artificial chromosome recombinogenic engineering) to investigate the function and localization of BRCA2 during cell division. Our analysis suggests that BRCA2 does not regulate cytokinesis in human cells. Thus, cytokinesis defects are unlikely to contribute to chromosomal instability and tumorigenesis in BRCA2-related cancers.


Asunto(s)
Proteína BRCA2/metabolismo , Citocinesis , Proteínas Reguladoras de la Apoptosis , Núcleo Celular/metabolismo , Cromosomas Artificiales Bacterianos/metabolismo , Marcación de Gen , Células HeLa , Humanos , Microtúbulos/metabolismo , ARN Interferente Pequeño/metabolismo , Recombinasa Rad51/metabolismo , Huso Acromático/metabolismo , Factores de Tiempo , Transfección
16.
Methods Mol Biol ; 2470: 425-433, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35881363

RESUMEN

Immunofluorescence labeling enables the detection and characterization of various parasite proteins presented on the surface of the infected red blood cell. Several approaches for immunofluorescence detection of red blood cell surface-presented proteins of Plasmodium spp. have been successfully established and published over the years. However, finding the right approach depends on the scientific question, and different protocols have different advantages. Here, we discuss some aspects that should be considered and present an easily applicable protocol for labeling parasite surface antigens, which subsequently can be analyzed by immunofluorescence microscopy (or flow cytometry).


Asunto(s)
Eritrocitos , Plasmodium falciparum , Antígenos de Superficie/metabolismo , Eritrocitos/metabolismo , Proteínas de la Membrana/metabolismo , Microscopía Fluorescente/métodos , Plasmodium falciparum/metabolismo , Coloración y Etiquetado
17.
Sci Adv ; 8(13): eabj5362, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35353560

RESUMEN

Malaria-causing parasites proliferate within erythrocytes through schizogony, forming multinucleated stages before cellularization. Nuclear multiplication does not follow a strict geometric 2n progression, and each proliferative cycle produces a variable number of progeny. Here, by tracking nuclei and DNA replication, we show that individual nuclei replicate their DNA at different times, despite residing in a shared cytoplasm. Extrapolating from experimental data using mathematical modeling, we provide strong indication that a limiting factor exists, which slows down the nuclear multiplication rate. Consistent with this prediction, our data show that temporally overlapping DNA replication events were significantly slower than partially overlapping or nonoverlapping events. Our findings suggest the existence of evolutionary pressure that selects for asynchronous DNA replication, balancing available resources with rapid pathogen proliferation.


Asunto(s)
Núcleo Celular , Plasmodium falciparum , División Celular , Replicación del ADN , Eritrocitos/parasitología , Plasmodium falciparum/genética
18.
Front Cell Infect Microbiol ; 11: 658616, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34026661

RESUMEN

Regulating the number of progeny generated by replicative cell cycles is critical for any organism to best adapt to its environment. Classically, the decision whether to divide further is made after cell division is completed by cytokinesis and can be triggered by intrinsic or extrinsic factors. Contrarily, cell cycles of some species, such as the malaria-causing parasites, go through multinucleated cell stages. Hence, their number of progeny is determined prior to the completion of cell division. This should fundamentally affect how the process is regulated and raises questions about advantages and challenges of multinucleation in eukaryotes. Throughout their life cycle Plasmodium spp. parasites undergo four phases of extensive proliferation, which differ over three orders of magnitude in the amount of daughter cells that are produced by a single progenitor. Even during the asexual blood stage proliferation parasites can produce very variable numbers of progeny within one replicative cycle. Here, we review the few factors that have been shown to affect those numbers. We further provide a comparative quantification of merozoite numbers in several P. knowlesi and P. falciparum parasite strains, and we discuss the general processes that may regulate progeny number in the context of host-parasite interactions. Finally, we provide a perspective of the critical knowledge gaps hindering our understanding of the molecular mechanisms underlying this exciting and atypical mode of parasite multiplication.


Asunto(s)
Malaria Falciparum , Parásitos , Animales , Citocinesis , Eritrocitos , Merozoítos , Plasmodium falciparum
19.
Life Sci Alliance ; 4(11)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34535568

RESUMEN

Proliferation of Plasmodium falciparum in red blood cells is the cause of malaria and is underpinned by an unconventional cell division mode, called schizogony. Contrary to model organisms, P. falciparum replicates by multiple rounds of nuclear divisions that are not interrupted by cytokinesis. Organization and dynamics of critical nuclear division factors remain poorly understood. Centriolar plaques, the centrosomes of P. falciparum, serve as microtubule organizing centers and have an acentriolar, amorphous structure. The small size of parasite nuclei has precluded detailed analysis of intranuclear microtubule organization by classical fluorescence microscopy. We apply recently developed super-resolution and time-lapse imaging protocols to describe microtubule reconfiguration during schizogony. Analysis of centrin, nuclear pore, and microtubule positioning reveals two distinct compartments of the centriolar plaque. Whereas centrin is extranuclear, we confirm by correlative light and electron tomography that microtubules are nucleated in a previously unknown and extended intranuclear compartment, which is devoid of chromatin but protein-dense. This study generates a working model for an unconventional centrosome and enables a better understanding about the diversity of eukaryotic cell division.


Asunto(s)
Centrosoma/fisiología , Espacio Intranuclear/metabolismo , Microtúbulos/metabolismo , División Celular/fisiología , Línea Celular , Centrosoma/metabolismo , Cromatina , Citocinesis , Humanos , Centro Organizador de los Microtúbulos/fisiología , Microtúbulos/fisiología , Poro Nuclear , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo
20.
Commun Biol ; 4(1): 600, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-34017052

RESUMEN

The eukaryotic signal recognition particle (SRP) contains an Alu domain, which docks into the factor binding site of translating ribosomes and confers translation retardation. The canonical Alu domain consists of the SRP9/14 protein heterodimer and a tRNA-like folded Alu RNA that adopts a strictly 'closed' conformation involving a loop-loop pseudoknot. Here, we study the structure of the Alu domain from Plasmodium falciparum (PfAlu), a divergent apicomplexan protozoan that causes human malaria. Using NMR, SAXS and cryo-EM analyses, we show that, in contrast to its prokaryotic and eukaryotic counterparts, the PfAlu domain adopts an 'open' Y-shaped conformation. We show that cytoplasmic P. falciparum ribosomes are non-discriminative and recognize both the open PfAlu and closed human Alu domains with nanomolar affinity. In contrast, human ribosomes do not provide high affinity binding sites for either of the Alu domains. Our analyses extend the structural database of Alu domains to the protozoan species and reveal species-specific differences in the recognition of SRP Alu domains by ribosomes.


Asunto(s)
Elementos Alu , Plasmodium falciparum/metabolismo , Ribosomas/metabolismo , Partícula de Reconocimiento de Señal/química , Sitios de Unión , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Ribosomas/genética , Dispersión del Ángulo Pequeño
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA