Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Inflamm Res ; 71(12): 1433-1448, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36264363

RESUMEN

INTRODUCTION: Cardiovascular diseases (CVD) have been associated with high exposure to fine particulate air pollutants (PM2.5). Alveolar macrophages are the first defense against inhaled particles. As soon as they phagocytize the particles, they reach an inflammatory phenotype, which affects the surrounding cells and associates with CVD. Not coincidentally, CVD are marked by a depleted heat shock response (HSR), defined by a deficit in inducing 70-kDa heat shock protein (HSP70) expression during stressful conditions. HSP70 is a powerful anti-inflammatory chaperone, whose reduced levels trigger a pro-inflammatory milieu, cellular senescence, and a senescence-associated secretory phenotype (SASP). However, whether macrophage senescence is the main mechanism by which PM2.5 propagates low-grade inflammation remains unclear. OBJECTIVE AND DESIGN: In this article, we review evidence supporting that chronic exposure to PM2.5 depletes HSR and determines the ability to solve the initial stress. RESULTS AND DISCUSSION: When exposed to PM2.5, macrophages increase the production of reactive oxygen species, which activate nuclear factor-kappa B (NF-κB). NF-κB is naturally a pro-inflammatory factor that drives prostaglandin E2 (PGE2) synthesis and causes fever. PGE2 can be converted into prostaglandin A2, a powerful inducer of HSR. Therefore, when transiently activated, NF-κB can trigger the anti-inflammatory response through negative feedback, by inducing HSP70 expression. However, when chronically activated, NF-κB heads a set of pathways involved in mitochondrial dysfunction, endoplasmic reticulum stress, unfolded protein response, inflammasome activation, and apoptosis. During chronic exposure to PM2.5, cells cannot properly express sirtuin-1 or activate heat shock factor-1 (HSF-1), which delays the resolution phase of inflammation. Since alveolar macrophages are the first immune defense against PM2.5, we suppose that the pollutant impairs HSR and, consequently, induces cellular senescence. Accordingly, senescent macrophages change its secretory phenotype to a more inflammatory one, known as SASP. Finally, macrophages' SASP would propagate the systemic inflammation, leading to endothelial dysfunction and atherosclerosis.


Asunto(s)
Contaminación del Aire , Aterosclerosis , Neumonía , Humanos , FN-kappa B/metabolismo , Dinoprostona , Respuesta al Choque Térmico , Macrófagos/metabolismo , Inflamación/metabolismo , Material Particulado/toxicidad , Antiinflamatorios , Contaminación del Aire/efectos adversos
2.
Genet Mol Biol ; 44(4): e20200411, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34874050

RESUMEN

Different intrauterine exposures are associated with different metabolic profiles leading to growth and development characteristics in children and also relate to health and disease patterns in adult life. The objective of this work was to evaluate the impact of four different intrauterine environments on the telomere length of newborns. This is a longitudinal observational study using a convenience sample of 222 mothers and their term newborns (>37 weeks of gestational age) from hospitals in Porto Alegre, Rio Grande do Sul (Brazil), from September 2011 to January 2016. Sample was divided into four groups: pregnant women with Gestational Diabetes Mellitus (DM) (n=38), smoking pregnant women (TOBACCO) (n=52), mothers with small-for-gestational age (SGA) children due to idiopathic intrauterine growth restriction (n=33), and a control group (n=99). Maternal and newborn genomic DNA were obtained from epithelial mucosal cells. Telomere length was assessed by qPCR, with the calculation of the telomere and single copy gene (T/S ratio). In this sample, there was no significant difference in telomere length between groups (p>0.05). There was also no association between childbirth weight and telomere length in children (p>0.05). For term newborns different intrauterine environments seems not to influence telomere length at birth.

3.
Phytother Res ; 34(4): 796-807, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31795012

RESUMEN

Alzheimer's disease is a neurodegenerative disorder characterized by extracellular deposition of amyloid-ß (Aß) peptide and hyperphosphorylation of Tau protein, which ultimately leads to the formation of intracellular neurofibrillary tangles and cell death. Increasing evidence indicates that genistein, a soy isoflavone, has neuroprotective effects against Aß-induced toxicity. However, the molecular mechanisms involved in its neuroprotection are not well understood. In this study, we have established a neuronal damage model using retinoic-acid differentiated SH-SY5Y cells treated with different concentrations of Aß25-35 to investigate the effect of genistein against Aß-induced cell death and the possible involvement of protein kinase B (PKB, also termed Akt), glycogen synthase kinase 3ß (GSK-3ß), and Tau as an underlying mechanism to this neuroprotection. Differentiated SH-SY5Y cells were pre-treated for 24 hr with genistein (1 and 10 nM) and exposed to Aß25-35 (25 µM), and we found that genistein partially inhibited Aß induced cell death, primarily apoptosis. Furthermore, the protective effect of genistein was associated with the inhibition of Aß-induced Akt inactivation and Tau hyperphosphorylation. These findings reinforce the neuroprotective effects of genistein against Aß toxicity and provide evidence that its mechanism may involve regulation of Akt and Tau proteins.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Genisteína/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Animales , Apoptosis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Neuronas/fisiología , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas tau/efectos de los fármacos , Proteínas tau/metabolismo
4.
Int J Neuropsychopharmacol ; 20(6): 445-454, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28339618

RESUMEN

Background: Growing evidence supports the existence of neurobiological trait abnormalities in individuals at genetic risk for bipolar disorder. The aim of this study was to examine potential differences in brain-derived neurotrophic factor, cytokines, oxidative stress, and telomere length markers between patients with bipolar disorder, their siblings, and healthy controls. Methods: Thirty-six patients with bipolar disorder type I, 39 siblings, and 44 healthy controls were assessed. Serum levels of brain-derived neurotrophic factor, interleukin-6, interleukin-10, tumor necrosis factor-α, C-C motif chemokine 11, C-C motif chemokine 24, and 3-nitrotyrosine were measured, as were the activities of glutathione peroxidase, glutathione reductase, and glutathione S-transferase. Telomere length (T/S ratio) was measured using quantitative polymerase chain reaction. Results: Telomere length was different between the 3 groups (P = .041) with both patients and siblings showing a shorter T/S ratio compared with healthy controls. Patients showed increased levels of interleukin-6 (P = .005) and interleukin-10 (P = .002) compared with controls as well as increased levels of interleukin-6 (p = 0.014) and CCL24 (P = .016) compared with their siblings. C-C motif chemokine 11 levels were increased in siblings compared with controls (P = .015), and a similar tendency was found in patients compared with controls (P = .045). Glutathione peroxidase activity was decreased in patients compared with controls (P = .006) and siblings (P = .025). No differences were found for the other markers. Conclusions: The present results suggest that unaffected siblings may present accelerated aging features. These neurobiological findings may be considered as endophenotypic traits. Further prospective studies are warranted.


Asunto(s)
Trastorno Bipolar/metabolismo , Senescencia Celular/fisiología , Inflamación/sangre , Estrés Oxidativo/fisiología , Hermanos , Telómero/metabolismo , Biomarcadores/sangre , Trastorno Bipolar/tratamiento farmacológico , Estudios Transversales , Femenino , Predisposición Genética a la Enfermedad , Humanos , Entrevista Psicológica , Masculino , Persona de Mediana Edad
5.
Cell Biochem Biophys ; 79(4): 873-885, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34176101

RESUMEN

Astrocytes play an important role in the central nervous system function and may contribute to brain plasticity response during static magnetic fields (SMF) brain therapy. However, most studies evaluate SMF stimulation in brain plasticity while few studies evaluate the consequences of SMF at the cellular level. Thus, we here evaluate the effects of SMF at 305 mT (medium-intensity) in a primary culture of healthy/normal cortical astrocytes obtained from neonatal (1 to 2-day-old) Wistar rats. After reaching confluence, cells were daily subjected to SMF stimulation for 5 min, 15 min, 30 min, and 40 min during 7 consecutive days. Oxidative stress parameters, cell cycle, cell viability, and mitochondrial function were analyzed. The antioxidant capacity was reduced in groups stimulated for 5 and 40 min. Although no difference was observed in the enzymatic activity of superoxide dismutase and catalase or the total thiol content, lipid peroxidation was increased in all stimulated groups. The cell cycle was changed after 40 min of SMF stimulation while 15, 30, and 40 min led cells to death by necrosis. Mitochondrial function was reduced after SMF stimulation, although imaging analysis did not reveal substantial changes in the mitochondrial network. Results mainly revealed that SMF compromised healthy astrocytes' oxidative status and viability. This finding reveals how important is to understand the SMF stimulation at the cellular level since this therapeutic approach has been largely used against neurological and psychiatric diseases.


Asunto(s)
Astrocitos , Supervivencia Celular
6.
Int J Bipolar Disord ; 7(1): 13, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31152269

RESUMEN

BACKGROUND: Innate immune system dysfunction has been recognized as an important element in the pathophysiology of bipolar disorder (BD). We aimed to investigate whether there are differences in the response of macrophages derived from patients in the early stages and late stages of BD and healthy subjects. METHODS: Human monocytes purified from peripheral blood mononuclear cells (PBMCs) of patients with BD type I (n = 18)-further classified into early- and late stage BD patients according to their functioning- and from healthy individuals (n = 10) were differentiated into macrophages in vitro. Monocyte-derived macrophages (M) were exposed to IFNγ plus LPS-M(IFNγ + LPS)- or IL-4-M(IL-4)-to induce their polarization into the classical (also called M1) or alternative (also called M2) activation phenotypes, respectively; or either Mψ were not exposed to any stimuli characterizing the resting state (denominated M0). In vitro secretion of cytokines, such as IL-1ß, IL-6, IL-10, and TNF-α, was used as an index of macrophage activity. RESULTS: M(IFNγ + LPS) from late-stage BD patients produced less amount of IL-1ß, IL-6, and IL-10 when compared to early-stage BD patients and healthy controls. Following alternative activation, M(IL-4) derived from late-stage patients secreted less IL-6 compared to the other groups. TNFα was less secreted by all macrophage phenotypes derived from late-stage patients when compared to healthy controls only (p < 0.005). Mψ from late-stage patients exhibited lower production of IL-1ß and IL-10 compared to macrophages from healthy subjects and early-stage patients respectively. Interestingly, cytokines secretion from M(IFNγ + LPS), M(IL-4) and Mψ were similar between early-stage patients and healthy controls. CONCLUSION: Our results suggest a progressive dysfunction in the response of peripheral innate immune cells of BD patients in the late stages of the illness. This failure in the regulation of the immune system function may be implicated in the multisystemic progression of BD.

7.
Pediatr Rheumatol Online J ; 15(1): 34, 2017 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-28472973

RESUMEN

BACKGROUND: Advances in juvenile idiopathic arthritis (JIA) treatment is promoting free disease survival. Cardiovascular disease (CVD) may emerge as an important cause of morbidity and mortality. Pulse wave velocity (PWV), a surrogate marker of arterial stiffness, and telomere length (TL) are considered as potential predictors of CVD and its outcomes. The study aim was to assess PWV, TL in a JIA population and to test its correlation. In a cross sectional study, 24 JIA patients, 21 controls for TL and 20 controls for PWV were included. PWV was assessed by an oscillometric device. TL was assessed by qPCR. JIA activity was accessed by JADAS-27. Smoking, diabetes, obesity, renal impairment, hypertension, dyslipidemia and inflammatory diseases were excluded. FINDINGS: Between cases and controls for TL, there was significant difference in age. No differences in gender, ethnics and bone mass index between JIA and control groups for PWV and TL. The JADAS-27 median was 8. TL was significantly reduced in JIA (0.85 ± 0.34 vs. 1. 67 ± 1.38, P = 0.025). When age adjusted by ANCOVA, the difference remained significant (P = 0,032). PWV was normal in all patients (5.1 ± 0.20 m/s vs. 4.98 ± 0.06 m/s, P = 0, 66). There was no correlation between TL, PWV or JADAS-27. CONCLUSION: Compared to controls, JIA with high disease activity and no CVD risk factors have shorter telomeres and normal PWV. As far as we know, this first time this correlation is being tested in rheumatic disease and in paediatrics.


Asunto(s)
Artritis Juvenil/metabolismo , Telómero/metabolismo , Rigidez Vascular , Adolescente , Artritis Juvenil/epidemiología , Artritis Juvenil/fisiopatología , Enfermedades Cardiovasculares/epidemiología , Estudios de Casos y Controles , Niño , Estudios Transversales , Femenino , Humanos , Masculino , Análisis de la Onda del Pulso , Factores de Riesgo , Adulto Joven
8.
Toxicol In Vitro ; 25(1): 28-36, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20837132

RESUMEN

Central nervous system dysfunctions are among the most significant effects of exposure to ethanol and the glial cells that play an important role in maintaining neuronal function, are extremely involved with these effects. The actin cytoskeleton plays a crucial role in a wide variety of cellular functions, especially when there is some injury. Therefore the aim of the present study was to analyze the short-term effects of ethanol (50, 100 and 200 mM) on the cytoskeleton of C6 glioma cells. Here we report that acute ethanol exposure profoundly disrupts the actin cytoskeleton in C6 cells decreasing stress fiber formation and downregulating RhoA and vinculin immunocontent. In contrast, microtubule and GFAP networks were not altered. We further demonstrate that anti-oxidants prevent ethanol-induced actin alterations, suggesting that the actions of ethanol on the actin cytoskeleton are related with generation of reactive oxygen species (ROS) in these cells. Our results show that ethanol at concentrations described to be toxic to the central nervous system was able to target the cytoskeleton of C6 cells and this effect could be related with increased ROS generation. Therefore, we propose that the dynamic restructuring of the cytoskeleton of glial cells might contribute to the response to the injury provoked by binge-like ethanol exposure in brain.


Asunto(s)
Actinas/metabolismo , Fármacos del Sistema Nervioso Central/toxicidad , Citoesqueleto/efectos de los fármacos , Etanol/toxicidad , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Actinas/genética , Animales , Antioxidantes/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Fármacos del Sistema Nervioso Central/antagonistas & inhibidores , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Regulación hacia Abajo/efectos de los fármacos , Etanol/antagonistas & inhibidores , Neuroglía/metabolismo , Neuroglía/ultraestructura , Concentración Osmolar , Estrés Oxidativo/efectos de los fármacos , ARN Mensajero/metabolismo , Ratas , Fibras de Estrés/efectos de los fármacos , Fibras de Estrés/metabolismo , Factores de Tiempo , Vinculina/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA