Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurovirol ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713307

RESUMEN

Despite antiretroviral therapy (ART), HIV persistence in the central nervous system (CNS) continues to cause a range of cognitive impairments in people living with HIV (PLWH). Upon disease progression, transmigrating CCR5-using T-cell tropic viruses are hypothesized to evolve into macrophage-tropic viruses in the CNS that can efficiently infect low CD4-expressing cells, such as microglia. We examined HIV-1 RNA concentration, co-receptor usage, and CSF compartmentalization in paired CSF and blood samples from 19 adults not on treatment. Full-length envelope CSF- and plasma-derived reporter viruses were generated from 3 subjects and phenotypically characterized in human primary CD4+ T-cells and primary microglia. Median HIV RNA levels were higher in plasma than in CSF (5.01 vs. 4.12 log10 cp/mL; p = 0.004), and coreceptor usage was mostly concordant for CCR5 across the paired samples (n = 17). Genetically compartmentalized CSF viral populations were detected in 2 subjects, one with and one without neurological symptoms. All viral clones could replicate in T-cells (R5 T cell-tropic). In addition, 3 CSF and 1 plasma patient-derived viral clones also had the capacity to replicate in microglia/macrophages and, therefore have an intermediate macrophage tropic phenotype. Overall, with this study, we demonstrate that in a subset of PLWH, plasma-derived viruses undergo genetic and phenotypic evolution within the CNS, indicating viral infection and replication in CNS cells. It remains to be studied whether the intermediate macrophage-tropic phenotype observed in primary microglia represents a midpoint in the evolution towards a macrophage-tropic phenotype that can efficiently replicate in microglial cells and propagate viral infection in the CNS.

2.
J Neurovirol ; 28(1): 64-91, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35138593

RESUMEN

HIV persistence in the CNS despite antiretroviral therapy may cause neurological disorders and poses a critical challenge for HIV cure. Understanding the pathobiology of HIV-infected microglia, the main viral CNS reservoir, is imperative. Here, we provide a comprehensive comparison of human microglial culture models: cultured primary microglia (pMG), microglial cell lines, monocyte-derived microglia (MDMi), stem cell-derived microglia (iPSC-MG), and microglia grown in 3D cerebral organoids (oMG) as potential model systems to advance HIV research on microglia. Functional characterization revealed phagocytic capabilities and responsiveness to LPS across all models. Microglial transcriptome profiles of uncultured pMG showed the highest similarity to cultured pMG and oMG, followed by iPSC-MG and then MDMi. Direct comparison of HIV infection showed a striking difference, with high levels of viral replication in cultured pMG and MDMi and relatively low levels in oMG resembling HIV infection observed in post-mortem biopsies, while the SV40 and HMC3 cell lines did not support HIV infection. Altogether, based on transcriptional similarities to uncultured pMG and susceptibility to HIV infection, MDMi may serve as a first screening tool, whereas oMG, cultured pMG, and iPSC-MG provide more representative microglial culture models for HIV research. The use of current human microglial cell lines (SV40, HMC3) is not recommended.


Asunto(s)
Infecciones por VIH , VIH-1 , Células Cultivadas , Infecciones por VIH/patología , VIH-1/genética , Humanos , Microglía/patología , Monocitos , Replicación Viral
3.
J Virol ; 94(24)2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-32999024

RESUMEN

The induction of broadly neutralizing antibodies (bNAbs) is a major goal in vaccine research. HIV-1-infected individuals that develop exceptionally strong bNAb responses, termed elite neutralizers, can inform vaccine design by providing blueprints for the induction of similar bNAb responses. We describe a new recombinant native-like envelope glycoprotein (Env) SOSIP trimer, termed AMC009, based on the viral founder sequences of an elite neutralizer. The subtype B AMC009 SOSIP protein formed stable native-like trimers that displayed multiple bNAb epitopes. Overall, its structure at 4.3-Å resolution was similar to that of BG505 SOSIP.664. The AMC009 trimer resembled one from a second elite neutralizer, AMC011, in having a dense and complete glycan shield. When tested as immunogens in rabbits, the AMC009 trimers did not induce autologous neutralizing antibody (NAb) responses efficiently while the AMC011 trimers did so very weakly, outcomes that may reflect the completeness of their glycan shields. The AMC011 trimer induced antibodies that occasionally cross-neutralized heterologous tier 2 viruses, sometimes at high titer. Cross-neutralizing antibodies were more frequently elicited by a trivalent combination of AMC008, AMC009, and AMC011 trimers, all derived from subtype B viruses. Each of these three individual trimers could deplete the NAb activity from the rabbit sera. Mapping the polyclonal sera by electron microscopy revealed that antibodies of multiple specificities could bind to sites on both autologous and heterologous trimers. These results advance our understanding of how to use Env trimers in multivalent vaccination regimens and the immunogenicity of trimers derived from elite neutralizers.IMPORTANCE Elite neutralizers, i.e., individuals who developed unusually broad and potent neutralizing antibody responses, might serve as blueprints for HIV-1 vaccine design. Here, we studied the immunogenicity of native-like recombinant envelope glycoprotein (Env) trimers based on viral sequences from elite neutralizers. While immunization with single trimers from elite neutralization did not recapitulate the breadth and potency of neutralization observed in these infected individuals, a combination of three subtype B Env trimers from elite neutralizers resulted in some neutralization breadth within subtype B viruses. These results should guide future efforts to design vaccines to induce broadly neutralizing antibodies.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Antígenos Virales/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Vacunas contra el SIDA/inmunología , Animales , Anticuerpos Neutralizantes/química , Antígenos Virales/química , Microscopía por Crioelectrón , Epítopos/inmunología , Glicoproteínas , Infecciones por VIH/virología , Inmunización , Conejos , Proteínas Recombinantes/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
4.
Viruses ; 14(4)2022 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-35458559

RESUMEN

The achievement of an HIV cure is dependent on the eradication or permanent silencing of HIV-latent viral reservoirs, including the understudied central nervous system (CNS) reservoir. This requires a deep understanding of the molecular mechanisms of HIV's entry into the CNS, latency establishment, persistence, and reversal. Therefore, representative CNS culture models that reflect the intercellular dynamics and pathophysiology of the human brain are urgently needed in order to study the CNS viral reservoir and HIV-induced neuropathogenesis. In this study, we characterized a human cerebral organoid model in which microglia grow intrinsically as a CNS culture model to study HIV infection in the CNS. We demonstrated that both cerebral organoids and isolated organoid-derived microglia (oMG), infected with replication-competent HIVbal reporter viruses, support productive HIV infection via the CCR5 co-receptor. Productive HIV infection was only observed in microglial cells. Fluorescence analysis revealed microglia as the only HIV target cell. Susceptibility to HIV infection was dependent on the co-expression of microglia-specific markers and the CD4 and CCR5 HIV receptors. Altogether, this model will be a valuable tool within the HIV research community to study HIV-CNS interactions, the underlying mechanisms of HIV-associated neurological disorders (HAND), and the efficacy of new therapeutic and curative strategies on the CNS viral reservoir.


Asunto(s)
Nefropatía Asociada a SIDA , Infecciones por VIH , VIH-1 , Microglía , Nefropatía Asociada a SIDA/patología , VIH-1/fisiología , Humanos , Organoides/virología , Receptores del VIH
5.
J Leukoc Biol ; 112(5): 1297-1315, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36148896

RESUMEN

The most studied HIV eradication approach is the "shock and kill" strategy, which aims to reactivate the latent reservoir by latency reversing agents (LRAs) and allowing elimination of these cells by immune-mediated clearance or viral cytopathic effects. The CNS is an anatomic compartment in which (persistent) HIV plays an important role in HIV-associated neurocognitive disorder. Restriction of the CNS by the blood-brain barrier is important for maintenance of homeostasis of the CNS microenvironment, which includes CNS-specific cell types, expression of transcription factors, and altered immune surveillance. Within the CNS predominantly myeloid cells such as microglia and perivascular macrophages are thought to be a reservoir of persistent HIV infection. Nevertheless, infection of T cells and astrocytes might also impact HIV infection in the CNS. Genetic adaptation to this microenvironment results in genetically distinct, compartmentalized viral populations with differences in transcription profiles. Because of these differences in transcription profiles, LRAs might have different effects within the CNS as compared with the periphery. Moreover, reactivation of HIV in the brain and elimination of cells within the CNS might be complex and could have detrimental consequences. Finally, independent of activity on latent HIV, LRAs themselves can have adverse neurologic effects. We provide an extensive overview of the current knowledge on compartmentalized (persistent) HIV infection in the CNS and on the "shock and kill" strategy. Subsequently, we reflect on the impact and promise of the "shock and kill" strategy on the elimination of persistent HIV in the CNS.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Latencia del Virus , Astrocitos , Factores de Transcripción/metabolismo , Linfocitos T CD4-Positivos , Activación Viral
6.
Viruses ; 14(9)2022 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-36146874

RESUMEN

Allo-HSCT with CCR5Δ32/Δ32 donor cells is the only curative HIV-1 intervention. We investigated the impact of allo-HSCT on the viral reservoir in PBMCs and post-mortem tissue in two patients. IciS-05 and IciS-11 both received a CCR5Δ32/Δ32 allo-HSCT. Before allo-HSCT, ultrasensitive HIV-1 RNA quantification; HIV-1-DNA quantification; co-receptor tropism analysis; deep-sequencing and viral characterization in PBMCs and bone marrow; and post-allo-HSCT, ultrasensitive RNA and HIV-1-DNA quantification were performed. Proviral quantification, deep sequencing, and viral characterization were done in post-mortem tissue samples. Both patients harbored subtype B CCR5-tropic HIV-1 as determined genotypically and functionally by virus culture. Pre-allo-HSCT, HIV-1-DNA could be detected in both patients in bone marrow, PBMCs, and T-cell subsets. Chimerism correlated with detectable HIV-1-DNA LTR copies in cells and tissues. Post-mortem analysis of IciS-05 revealed proviral DNA in all tissue biopsies, but not in PBMCs. In patient IciS-11, who was transplanted twice, no HIV-1-DNA could be detected in PBMCs at the time of death, whereas HIV-1-DNA was detectable in the lymph node. In conclusion, shortly after CCR5Δ32/Δ32, allo-HSCT HIV-1-DNA became undetectable in PBMCs. However, HIV-1-DNA variants identical to those present before transplantation persisted in post-mortem-obtained tissues, indicating that these tissues play an important role as viral reservoirs.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Trasplante de Células Madre Hematopoyéticas , Autopsia , VIH-1/genética , Humanos , ARN
7.
Nat Microbiol ; 2: 16199, 2016 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-27841852

RESUMEN

The induction by vaccination of broadly neutralizing antibodies (bNAbs) capable of neutralizing various HIV-1 viral strains is challenging, but understanding how a subset of HIV-infected individuals develops bNAbs may guide immunization strategies. Here, we describe the isolation and characterization of the bNAb ACS202 from an elite neutralizer that recognizes a new, trimer-specific and cleavage-dependent epitope at the gp120-gp41 interface of the envelope glycoprotein (Env), involving the glycan N88 and the gp41 fusion peptide. In addition, an Env trimer, AMC011 SOSIP.v4.2, based on early virus isolates from the same elite neutralizer, was constructed, and its structure by cryo-electron microscopy at 6.2 Šresolution reveals a closed, pre-fusion conformation similar to that of the BG505 SOSIP.664 trimer. The availability of a native-like Env trimer and a bNAb from the same elite neutralizer provides the opportunity to design vaccination strategies aimed at generating similar bNAbs against a key functional site on HIV-1.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , Sobrevivientes de VIH a Largo Plazo , Anticuerpos Neutralizantes/aislamiento & purificación , Microscopía por Crioelectrón , Epítopos de Linfocito B/inmunología , Anticuerpos Anti-VIH/aislamiento & purificación , Proteínas gp160 de Envoltorio del VIH/inmunología , Proteínas gp160 de Envoltorio del VIH/ultraestructura , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA