Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ther ; 32(3): 722-733, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38311852

RESUMEN

Oncolytic viruses are a promising treatment for patients with high-grade gliomas, but neutralizing antibodies can limit their efficacy in patients with prior virus exposure or upon repeated virus injections. Data from a previous clinical trial using the oncolytic adenovirus Delta-24-RGD showed that generation of anti-viral neutralizing antibodies may affect the long-term survival of glioma patients. Past studies have examined the effects of neutralizing antibodies during systemic virus injections, but largely overlooked their impact during local virus injections into the brain. We found that immunoglobulins colocalized with viral proteins upon local oncolytic virotherapy of brain tumors, warranting a strategy to prevent virus neutralization and maximize oncolysis. Thus, we generated a chimeric virus, Delta-24-RGD-H43m, by replacing the capsid protein HVRs from the serotype 5-based Delta-24-RGD with those from the rare serotype 43. Delta-24-RGD-H43m evaded neutralizing anti-Ad5 antibodies and conferred a higher rate of long-term survival than Delta-24-RGD in glioma-bearing mice. Importantly, Delta-24-RGD-H43m activity was significantly more resistant to neutralizing antibodies present in sera of glioma patients treated with Delta-24-RGD during a phase 1 clinical trial. These findings provide a framework for a novel treatment of glioma patients that have developed immunity against Delta-24-RGD.


Asunto(s)
Neoplasias Encefálicas , Glioma , Viroterapia Oncolítica , Virus Oncolíticos , Humanos , Animales , Ratones , Adenoviridae/genética , Anticuerpos Neutralizantes , Glioma/terapia , Glioma/patología , Neoplasias Encefálicas/patología , Virus Oncolíticos/genética , Anticuerpos Antivirales , Oligopéptidos/uso terapéutico
2.
Genes Dev ; 25(24): 2594-609, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22190458

RESUMEN

Recent molecular classification of glioblastoma (GBM) has shown that patients with a mesenchymal (MES) gene expression signature exhibit poor overall survival and treatment resistance. Using regulatory network analysis of available expression microarray data sets of GBM, including The Cancer Genome Atlas (TCGA), we identified the transcriptional coactivator with PDZ-binding motif (TAZ), to be highly associated with the MES network. TAZ expression was lower in proneural (PN) GBMs and lower-grade gliomas, which correlated with CpG island hypermethylation of the TAZ promoter compared with MES GBMs. Silencing of TAZ in MES glioma stem cells (GSCs) decreased expression of MES markers, invasion, self-renewal, and tumor formation. Conversely, overexpression of TAZ in PN GSCs as well as murine neural stem cells (NSCs) induced MES marker expression and aberrant osteoblastic and chondrocytic differentiation in a TEAD-dependent fashion. Using chromatin immunoprecipitation (ChIP), we show that TAZ is directly recruited to a majority of MES gene promoters in a complex with TEAD2. The coexpression of TAZ, but not a mutated form of TAZ that lacks TEAD binding, with platelet-derived growth factor-B (PDGF-B) resulted in high-grade tumors with MES features in a murine model of glioma. Our studies uncover a direct role for TAZ and TEAD in driving the MES differentiation of malignant glioma.


Asunto(s)
Neoplasias Encefálicas/fisiopatología , Glioma/fisiopatología , Células Madre Mesenquimatosas/citología , Células Madre Neoplásicas/citología , Factores de Transcripción/metabolismo , Aciltransferasas , Animales , Línea Celular Tumoral , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Epigenómica , Regulación Neoplásica de la Expresión Génica , Humanos , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Factores de Transcripción de Dominio TEA , Factores de Transcripción/genética , Células Tumorales Cultivadas
3.
Nanotechnology ; 29(16): 165101, 2018 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-29438105

RESUMEN

OBJECTIVE: To evaluate the feasibility of visualizing bone marrow-derived human mesenchymal stem cells (MSCs) labeled with a gold-coated magnetic resonance (MR)-active multifunctional nanoparticle and injected via the carotid artery for assessing the extent of MSC homing in glioma-bearing mice. MATERIALS AND METHODS: Nanoparticles containing superparamagnetic iron oxide coated with gold (SPIO@Au) with a diameter of ∼82 nm and maximum absorbance in the near infrared region were synthesized. Bone marrow-derived MSCs conjugated with green fluorescent protein (GFP) were successfully labeled with SPIO@Au at 4 µg ml-1 and injected via the internal carotid artery in six mice bearing orthotopic U87 tumors. Unlabeled MSCs were used as a control. The ability of SPIO@Au-loaded MSCs to be imaged using MR and photoacoustic (PA) imaging at t = 0 h, 2 h, 24 h, and 72 h was assessed using a 7 T Bruker Biospec experimental MR scanner and a Vevo LAZR PA imaging system with a 5 ns laser as the excitation source. Histological analysis of the brain tissue was performed 72 h after MSC injection using GFP fluorescence, Prussian blue staining, and hematoxylin-and-eosin staining. RESULTS: MSCs labeled with SPIO@Au at 4 µg ml-1 did not exhibit cell death or any adverse effects on differentiation or migration. The PA signal in tumors injected with SPIO@Au-loaded MSCs was clearly more enhanced post-injection, as compared with the tumors injected with unlabeled MSCs at t = 72 h. Using the same mice, T2-weighted MR imaging results taken before injection and at t = 2 h, 24 h, and 72 h were consistent with the PA imaging results, showing significant hypointensity of the tumor in the presence of SPIO@Au-loaded MSCs. Histological analysis also showed co-localization of GFP fluorescence and iron, thereby confirming that SPIO@Au-labeled MSCs continue to carry their nanoparticle payloads even at 72 h after injection. CONCLUSIONS: Our results demonstrated the feasibility of tracking carotid artery-injected SPIO@Au-labeled MSCs in vivo via MR and PA imaging.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Glioma/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita/administración & dosificación , Técnicas Fotoacústicas/métodos , Animales , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Supervivencia Celular , Medios de Contraste/administración & dosificación , Modelos Animales de Enfermedad , Glioma/patología , Oro/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Inyecciones Intraarteriales , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestructura , Masculino , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/química , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Desnudos , Tamaño de la Partícula , Coloración y Etiquetado
4.
J Neurosci ; 35(45): 15097-112, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26558781

RESUMEN

Glioblastoma (GBM) is the most aggressive human brain tumor. Although several molecular subtypes of GBM are recognized, a robust molecular prognostic marker has yet to be identified. Here, we report that the stemness regulator Sox2 is a new, clinically important target of microRNA-21 (miR-21) in GBM, with implications for prognosis. Using the MiR-21-Sox2 regulatory axis, approximately half of all GBM tumors present in the Cancer Genome Atlas (TCGA) and in-house patient databases can be mathematically classified into high miR-21/low Sox2 (Class A) or low miR-21/high Sox2 (Class B) subtypes. This classification reflects phenotypically and molecularly distinct characteristics and is not captured by existing classifications. Supporting the distinct nature of the subtypes, gene set enrichment analysis of the TCGA dataset predicted that Class A and Class B tumors were significantly involved in immune/inflammatory response and in chromosome organization and nervous system development, respectively. Patients with Class B tumors had longer overall survival than those with Class A tumors. Analysis of both databases indicated that the Class A/Class B classification is a better predictor of patient survival than currently used parameters. Further, manipulation of MiR-21-Sox2 levels in orthotopic mouse models supported the longer survival of the Class B subtype. The MiR-21-Sox2 association was also found in mouse neural stem cells and in the mouse brain at different developmental stages, suggesting a role in normal development. Therefore, this mechanism-based classification suggests the presence of two distinct populations of GBM patients with distinguishable phenotypic characteristics and clinical outcomes. SIGNIFICANCE STATEMENT: Molecular profiling-based classification of glioblastoma (GBM) into four subtypes has substantially increased our understanding of the biology of the disease and has pointed to the heterogeneous nature of GBM. However, this classification is not mechanism based and its prognostic value is limited. Here, we identify a new mechanism in GBM (the miR-21-Sox2 axis) that can classify ∼50% of patients into two subtypes with distinct molecular, radiological, and pathological characteristics. Importantly, this classification can predict patient survival better than the currently used parameters. Further, analysis of the miR-21-Sox2 relationship in mouse neural stem cells and in the mouse brain at different developmental stages indicates that miR-21 and Sox2 are predominantly expressed in mutually exclusive patterns, suggesting a role in normal neural development.


Asunto(s)
Neoplasias Encefálicas/clasificación , Neoplasias Encefálicas/metabolismo , Glioblastoma/clasificación , Glioblastoma/metabolismo , MicroARNs/biosíntesis , Factores de Transcripción SOXB1/biosíntesis , Animales , Biomarcadores de Tumor/biosíntesis , Neoplasias Encefálicas/diagnóstico , Células Cultivadas , Glioblastoma/diagnóstico , Humanos , Masculino , Ratones , Ratones Desnudos , Pronóstico , Estudios Retrospectivos , Tasa de Supervivencia/tendencias
5.
Stem Cells ; 33(8): 2400-15, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25966666

RESUMEN

Although mesenchymal stem cells (MSCs) have been implicated as stromal components of several cancers, their ultimate contribution to tumorigenesis and their potential to drive cancer stem cells, particularly in the unique microenvironment of human brain tumors, remain largely undefined. Consequently, using established criteria, we isolated glioma-associated-human MSCs (GA-hMSCs) from fresh human glioma surgical specimens for the first time. We show that these GA-hMSCs are nontumorigenic stromal cells that are phenotypically similar to prototypical bone marrow-MSCs. Low-passage genomic sequencing analyses comparing GA-hMSCs with matched tumor-initiating glioma stem cells (GSCs) suggest that most GA-hMSCs (60%) are normal cells recruited to the tumor (group 1 GA-hMSCs), although, rarely (10%), GA-hMSCs may differentiate directly from GSCs (group 2 GA-hMSCs) or display genetic patterns intermediate between these groups (group 3 GA-hMSCs). Importantly, GA-hMSCs increase proliferation and self-renewal of GSCs in vitro and enhance GSC tumorigenicity and mesenchymal features in vivo, confirming their functional significance within the GSC niche. These effects are mediated by GA-hMSC-secreted interleukin-6, which activates STAT3 in GSCs. Our results establish GA-hMSCs as a potentially new stromal component of gliomas that drives the aggressiveness of GSCs, and point to GA-hMSCs as a novel therapeutic target within gliomas.


Asunto(s)
Proliferación Celular , Receptor gp130 de Citocinas/metabolismo , Glioma/metabolismo , Interleucina-6/metabolismo , Células Madre Mesenquimatosas/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Femenino , Glioma/patología , Humanos , Masculino , Células Madre Mesenquimatosas/patología
6.
J Proteome Res ; 14(6): 2511-9, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-25880480

RESUMEN

Glioblastoma (GBM) is the most common adult primary brain tumor. Despite aggressive multimodal therapy, the survival of patients with GBM remains dismal. However, recent evidence has demonstrated the promise of bone marrow-derived mesenchymal stem cells (BM-hMSCs) as a therapeutic delivery vehicle for anti-glioma agents due to their ability to migrate or home to human gliomas. While several studies have demonstrated the feasibility of harnessing the homing capacity of BM-hMSCs for targeted delivery of cancer therapeutics, it is now also evident, based on clinically relevant glioma stem cell (GSC) models of GBMs, that BM-hMSCs demonstrate variable tropism toward these tumors. In this study, we compared the lipid environment of GSC xenografts that attract BM-hMSCs (N = 9) with those that do not attract (N = 9) to identify lipid modalities that are conducive to homing of BM-hMSC to GBMs. We identified lipids directly from tissue by matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) and electrospray ionization-tandem mass spectrometry (ESI-MS/MS) of lipid extracts. Several species of signaling lipids, including phosphatidic acid (PA 36:2, PA 40:5, PA 42:5, and PA 42:7) and diacylglycerol (DAG 34:0, DAG 34:1, DAG 36:1, DAG 38:4, DAG 38:6, and DAG 40:6), were lower in attracting xenografts. Molecular lipid images showed that PA (36:2), DAG (40:6), and docosahexaenoic acid (DHA) were decreased within tumor regions of attracting xenografts. Our results provide the first evidence for lipid signaling pathways and lipid-mediated tumor inflammatory responses in the homing of BM-hMSCs to GSC xenografts. Our studies provide new fundamental knowledge on the molecular correlates of the differential homing capacity of BM-hMSCs toward GSC xenografts.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Diglicéridos/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Glioma/metabolismo , Espectrometría de Masas/métodos , Células Madre Neoplásicas/metabolismo , Ácidos Fosfatidicos/metabolismo , Animales , Neoplasias Encefálicas/patología , Glioma/patología , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Desnudos , Células Madre Neoplásicas/patología
7.
J Proteome Res ; 14(9): 3932-9, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26185906

RESUMEN

Bone marrow-derived human mesenchymal stem cells (BM-hMSCs) have the innate ability to migrate or home toward and engraft in tumors such as glioblastoma (GBM). Because of this unique property of BM-hMSCs, we have explored their use for cell-mediated therapeutic delivery for the advancement of GBM treatment. Extravasation, the process by which blood-borne cells­such as BM-hMSCs­enter the tissue, is a highly complex process but is heavily dependent upon glycosylation for glycan-glycan and glycan-protein adhesion between the cell and endothelium. However, in a translationally significant preclinical glioma stem cell xenograft (GSCX) model of GBM, BM-hMSCs demonstrate unequal tropism toward these tumors. We hypothesized that there may be differences in the glycan compositions between the GSCXs that elicit homing ("attractors") and those that do not ("non-attractors") that facilitate or impede the engraftment of BM-hMSCs in the tumor. In this study, glycotranscriptomic analysis revealed significant heterogeneity within the attractor phenotype and the enrichment of high mannose type N-glycan biosynthesis in the non-attractor phenotype. Orthogonal validation with topical PNGase F deglycosylation on the tumor regions of xenograft tissue, followed by nLC-ESI-MS, confirmed the presence of increased high mannose type N-glycans in the non-attractors. Additional evidence provided by our glycomic study revealed the prevalence of terminal sialic acid-containing N-glycans in non-attractors and terminal galactose and N-acetyl-glucosamine N-glycans in attractors. Our results provide the first evidence for differential glycomic profiles in attractor and non-attractor GSCXs and extend the scope of molecular determinates in BM-hMSC homing to glioma.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Glioma/metabolismo , Glicómica/métodos , Células Madre Mesenquimatosas/metabolismo , Polisacáridos/metabolismo , Animales , Glicosilación , Xenoinjertos , Humanos , Masculino , Manosa/metabolismo , Ratones , Ratones Desnudos , Polisacáridos/análisis , Polisacáridos/química
8.
J Vis Exp ; (205)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38557500

RESUMEN

Given recent advances in the delivery of novel antitumor therapeutics using endovascular selective intraarterial delivery methods in neuro-oncology, there is an urgent need to develop methods for intracarotid injections in mouse models, including methods to repair the carotid artery in mice after injection to allow for subsequent injections. We developed a method of intracarotid injection in a mouse model to deliver therapeutics into the internal carotid artery (ICA) with two alternative procedures. During injection, the needle is inserted into the common carotid artery (CCA) after tying a suture around the external carotid artery (ECA) and injected therapeutics are delivered into the ICA. Following injection, the common carotid artery (CCA) can be ligated, which limits the number of intracarotid injections to one. The alternative procedure described in this article includes a modification where intracarotid artery injection is followed by injection site repair of the CCA, which restores blood flow within the CCA and avoids the complication of cerebral ischemia seen in some mouse models. We also compared the delivery of bone marrow-derived human mesenchymal stem cells (BM-hMSCs) to intracranial tumors when delivered through intracarotid injection with and without injection site repair following the injection. Delivery of BM-hMSCs does not differ significantly between the methods. Our results demonstrate that injection site repair of the CCA allows for repeat injections through the same artery and does not impair the delivery and distribution of injected material, thus providing a model with greater flexibility that more closely emulates intracarotid injection in humans.


Asunto(s)
Isquemia Encefálica , Neoplasias Encefálicas , Humanos , Ratones , Animales , Arteria Carótida Interna/cirugía , Arteria Carótida Común , Arterias Carótidas , Arteria Carótida Externa
9.
Neuro Oncol ; 26(2): 236-250, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-37847405

RESUMEN

BACKGROUND: Glioblastoma (GBM) has poor prognosis due to ineffective agents and poor delivery methods. MicroRNAs (miRs) have been explored as novel therapeutics for GBM, but the optimal miRs and the ideal delivery strategy remain unresolved. In this study, we sought to identify the most effective pan-subtype anti-GBM miRs and to develop an improved delivery system for these miRs. METHODS: We conducted an unbiased screen of over 600 miRs against 7 glioma stem cell (GSC) lines representing all GBM subtypes to identify a set of pan-subtype-specific anti-GBM miRs and then used available TCGA GBM patient outcomes and miR expression data to hone in on miRs that were most likely to be clinically effective. To enhance delivery and expression of the miRs, we generated a polycistronic plasmid encoding 3 miRs (pPolymiR) and used HEK293T cells as biofactories to package pPolymiR into engineered exosomes (eExos) that incorporate viral proteins (Gag/VSVg) in their structure (eExos+pPolymiR) to enhance function. RESULTS: Our stepwise screen identified miR-124-2, miR-135a-2, and let-7i as the most effective miRs across all GBM subtypes with clinical relevance. Delivery of eExos+pPolymiR resulted in high expression of all 3 miRs in GSCs, and significantly decreased GSC proliferation in vitro. eExos+pPolymiR prolonged survival of GSC-bearing mice in vivo when compared with eExos carrying each of the miRs individually or as a cocktail. CONCLUSION: eExos+pPolymiR, which includes a pan-subtype anti-glioma-specific miR combination encoded in a polycistronic plasmid and a novel exosome delivery platform, represents a new and potentially powerful anti-GBM therapeutic.


Asunto(s)
Neoplasias Encefálicas , Exosomas , Glioblastoma , Glioma , MicroARNs , Humanos , Animales , Ratones , MicroARNs/genética , Glioblastoma/genética , Glioblastoma/terapia , Glioblastoma/metabolismo , Exosomas/genética , Exosomas/metabolismo , Células HEK293 , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Glioma/genética , Regulación Neoplásica de la Expresión Génica
10.
Neuro Oncol ; 26(1): 127-136, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-37603323

RESUMEN

BACKGROUND: Endovascular selective intra-arterial (ESIA) infusion of cellular oncotherapeutics is a rapidly evolving strategy for treating glioblastoma. Evaluation of ESIA infusion requires a unique animal model. Our goal was to create a rabbit human GBM model to test IA infusions of cellular therapies and to test its usefulness by employing clinical-grade microcatheters and infusion methods to deliver mesenchymal stem cells loaded with an oncolytic adenovirus, Delta-24-RGD (MSC-D24). METHODS: Rabbits were immunosuppressed with mycophenolate mofetil, dexamethasone, and tacrolimus. They underwent stereotactic xenoimplantation of human GBM cell lines (U87, MDA-GSC-17, and MDA-GSC-8-11) into the right frontal lobe. Tumor formation was confirmed on magnetic resonance imaging, histologic, and immunohistochemistry analysis. Selective microcatheter infusion of MSC-D24 was performed via the ipsilateral internal carotid artery to assess model utility and the efficacy and safety of this approach. RESULTS: Twenty-five rabbits were implanted (18 with U87, 2 MDA-GSC-17, and 5 MDA-GSC-8-11). Tumors formed in 68% of rabbits (77.8% for U87, 50.0% for MDA-GSC-17, and 40.0% for MDA-GSC-8-11). On MRI, the tumors were hyperintense on T2-weighted image with variable enhancement (evidence of blood brain barrier breakdown). Histologically, tumors showed phenotypic traits of human GBM including varying levels of vascularity. ESIA infusion into the distal internal carotid artery of 2 ml of MSCs-D24 (107 cells) was safe in the model. Examination of post infusion specimens documented that MSCs-D24 homed to the implanted tumor at 24 hours. CONCLUSIONS: The intracranial immunosuppressed rabbit human GBM model allows testing of ESIA infusion of novel therapeutics (eg, MSC-D24) in a clinically relevant fashion.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Humanos , Conejos , Glioblastoma/patología , Infusiones Intraarteriales , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Células Madre/patología
11.
Neuro Oncol ; 26(5): 826-839, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38237157

RESUMEN

BACKGROUND: Glioblastomas (GBMs) are central nervous system tumors that resist standard-of-care interventions and even immune checkpoint blockade. Myeloid cells in the tumor microenvironment can contribute to GBM progression; therefore, emerging immunotherapeutic approaches include reprogramming these cells to achieve desirable antitumor activity. Triggering receptor expressed on myeloid cells 2 (TREM2) is a myeloid signaling regulator that has been implicated in a variety of cancers and neurological diseases with contrasting functions, but its role in GBM immunopathology and progression is still under investigation. METHODS: Our reverse translational investigations leveraged single-cell RNA sequencing and cytometry of human gliomas to characterize TREM2 expression across myeloid subpopulations. Using 2 distinct murine glioma models, we examined the role of Trem2 on tumor progression and immune modulation of myeloid cells. Furthermore, we designed a method of tracking phagocytosis of glioma cells in vivo and employed in vitro assays to mechanistically understand the influence of TREM2 signaling on tumor uptake. RESULTS: We discovered that TREM2 expression does not correlate with immunosuppressive pathways, but rather showed strong a positive association with the canonical phagocytosis markers lysozyme (LYZ) and macrophage scavenger receptor (CD163) in gliomas. While Trem2 deficiency was found to be dispensable for gliomagenesis, Trem2+ myeloid cells display enhanced tumor uptake compared to Trem2- cells. Mechanistically, we demonstrate that TREM2 mediates phagocytosis via Syk signaling. CONCLUSIONS: These results indicate that TREM2 is not associated with immunosuppression in gliomas. Instead, TREM2 is an important regulator of phagocytosis that may be exploited as a potential therapeutic strategy for brain tumors.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glicoproteínas de Membrana , Fagocitosis , Receptores Inmunológicos , Animales , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Ratones , Humanos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Microambiente Tumoral , Células Mieloides/metabolismo , Ratones Endogámicos C57BL , Células Tumorales Cultivadas , Transducción de Señal
12.
Stem Cells ; 30(3): 405-14, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22228704

RESUMEN

Glioblastoma multiforme (GBM) tumors are the most common malignant primary brain tumors in adults. Although many GBM tumors are believed to be caused by self-renewing, glioblastoma-derived stem-like cells (GSCs), the mechanisms that regulate self-renewal and other oncogenic properties of GSCs are only now being unraveled. Here we showed that GSCs derived from GBM patient specimens express varying levels of the transcriptional repressor repressor element 1 silencing transcription factor (REST), suggesting heterogeneity across different GSC lines. Loss- and gain-of-function experiments indicated that REST maintains self-renewal of GSCs. High REST-expressing GSCs (HR-GSCs) produced tumors histopathologically distinct from those generated by low REST-expressing GSCs (LR-GSCs) in orthotopic mouse brain tumor models. Knockdown of REST in HR-GSCs resulted in increased survival in GSC-transplanted mice and produced tumors with higher apoptotic and lower invasive properties. Conversely, forced expression of exogenous REST in LR-GSCs produced decreased survival in mice and produced tumors with lower apoptotic and higher invasive properties, similar to HR-GSCs. Thus, based on our results, we propose that a novel function of REST is to maintain self-renewal and other oncogenic properties of GSCs and that REST can play a major role in mediating tumorigenicity in GBM.


Asunto(s)
Glioblastoma/patología , Células Madre Neoplásicas/metabolismo , Proteínas Represoras/fisiología , Adipoquinas/metabolismo , Animales , Apoptosis , Movimiento Celular , Proliferación Celular , Proteína 1 Similar a Quitinasa-3 , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glioblastoma/metabolismo , Lectinas/metabolismo , Masculino , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Interferencia de ARN , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción SOXB1/metabolismo , Esferoides Celulares/metabolismo , Células Tumorales Cultivadas
13.
Cancer Res Commun ; 3(6): 1118-1131, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37379361

RESUMEN

Cancer cell heterogeneity and immunosuppressive tumor microenvironment (TME) pose a challenge in treating solid tumors with adoptive cell therapies targeting limited tumor-associated antigens (TAA), such as chimeric antigen receptor T-cell therapy. We hypothesize that oncolytic adenovirus Delta-24-RGDOX activates the TME and promote antigen spread to potentiate the abscopal effect of adoptive TAA-targeting T cells in localized intratumoral treatment. Herein, we used C57BL/6 mouse models with disseminated tumors derived from B16 melanoma cell lines to assess therapeutic effects and antitumor immunity. gp100-specific pmel-1 or ovalbumin (OVA)-specific OT-I T cells were injected into the first subcutaneous tumor, followed by three injections of Delta-24-RGDOX. We found TAA-targeting T cells injected into one subcutaneous tumor showed tumor tropism. Delta-24-RGDOX sustained the systemic tumor regression mediated by the T cells, leading to improved survival rate. Further analysis revealed that, in mice with disseminated B16-OVA tumors, Delta-24-RGDOX increased CD8+ leukocyte density within treated and untreated tumors. Importantly, Delta-24-RGDOX significantly reduced the immunosuppression of endogenous OVA-specific CTLs while increasing that of CD8+ leukocytes and, to a lesser extent, adoptive pmel-1 T cells. Consequently, Delta-24-RGDOX drastically increased the density of the OVA-specific CTLs in both tumors, and the combination synergistically enhanced the effect. Consistently, the splenocytes from the combination group showed a significantly stronger response against other TAAs (OVA and TRP2) than gp100, resulted in higher activity against tumor cells. Therefore, our data demonstrate that, as an adjuvant therapy followed TAA-targeting T cells in localized treatment, Delta-24-RGDOX activates TME and promotes antigen spread, leading to efficacious systemic antitumor immunity to overcome tumor relapse. Significance: Adjuvant therapy with oncolytic viruses promotes antigen spread to potentiate localized intratumoral adoptive T-cell therapy with limited TAA targets, leading to sustainable systemic antitumor immunity to overcome tumor relapse.


Asunto(s)
Infecciones por Adenoviridae , Adenoviridae , Ratones , Animales , Adenoviridae/genética , Línea Celular Tumoral , Ratones Endogámicos C57BL , Recurrencia Local de Neoplasia , Linfocitos T Citotóxicos , Antígenos de Neoplasias , Microambiente Tumoral
14.
Cancers (Basel) ; 15(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36831427

RESUMEN

BACKGROUND: Chimeric antigen receptor (CAR) T cells have recently been demonstrated to extract and express cognate tumor antigens through trogocytosis. This process may contribute to tumor antigen escape, T cell exhaustion, and fratricide, which plays a central role in CAR dysfunction. We sought to evaluate the importance of this effect in epidermal growth factor receptor variant III (EGFRvIII) specific CAR T cells targeting glioma. METHODS: EGFRvIII-specific CAR T cells were generated from various donors and analyzed for cytotoxicity, trogocytosis, and in vivo therapeutic activity against intracranial glioma. Tumor autophagy resulting from CAR T cell activity was evaluated in combination with an autophagy inducer (verteporfin) or inhibitor (bafilomycin A1). RESULTS: CAR T cell products derived from different donors induced markedly divergent levels of trogocytosis of tumor antigen as well as PD-L1 upon engaging target tumor cells correlating with variability in efficacy in mice. Pharmacological facilitation of CAR induced-autophagy with verteporfin inhibits trogocytic expression of tumor antigen on CARs and increases CAR persistence and efficacy in mice. CONCLUSION: These data propose CAR-induced autophagy as a mechanism counteracting CAR-induced trogocytosis and provide a new strategy to innovate high-performance CARs through pharmacological facilitation of T cell-induced tumor death.

15.
Front Neurol ; 14: 1112207, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37082446

RESUMEN

Introduction: Improved therapies for glioblastoma (GBM) are desperately needed and require preclinical evaluation in models that capture tumor heterogeneity and intrinsic resistance seen in patients. Epigenetic alterations have been well documented in GBM and lysine-specific demethylase 1 (LSD1/KDM1A) is amongst the chromatin modifiers implicated in stem cell maintenance, growth and differentiation. Pharmacological inhibition of LSD1 is clinically relevant, with numerous compounds in various phases of preclinical and clinical development, but an evaluation and comparison of LSD1 inhibitors in patient-derived GBM models is lacking. Methods: To assess concordance between knockdown of LSD1 and inhibition of LSD1 using a prototype inhibitor in GBM, we performed RNA-seq to identify genes and biological processes associated with inhibition. Efficacy of various LSD1 inhibitors was assessed in nine patient-derived glioblastoma stem cell (GSC) lines and an orthotopic xenograft mouse model. Results: LSD1 inhibitors had cytotoxic and selective effects regardless of GSC radiosensitivity or molecular subtype. In vivo, LSD1 inhibition via GSK-LSD1 led to a delayed reduction in tumor burden; however, tumor regrowth occurred. Comparison of GBM lines by RNA-seq was used to identify genes that may predict resistance to LSD1 inhibitors. We identified five genes that correlate with resistance to LSD1 inhibition in treatment resistant GSCs, in GSK-LSD1 treated mice, and in GBM patients with low LSD1 expression. Conclusion: Collectively, the growth inhibitory effects of LSD1 inhibition across a panel of GSC models and identification of genes that may predict resistance has potential to guide future combination therapies.

16.
Sci Adv ; 9(31): eadf3984, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37540752

RESUMEN

The glioblastoma (GBM) stem cell-like cells (GSCs) are critical for tumorigenesis/therapeutic resistance of GBM. Mounting evidence supports tumor-promoting function of long noncoding RNAs (lncRNAs), but their role in GSCs remains poorly understood. By combining CRISPRi screen with orthogonal multiomics approaches, we identified a lncRNA DARS1-AS1-controlled posttranscriptional circuitry that promoted the malignant properties of GBM cells/GSCs. Depleting DARS1-AS1 inhibited the proliferation of GBM cells/GSCs and self-renewal of GSCs, prolonging survival in orthotopic GBM models. DARS1-AS1 depletion also impaired the homologous recombination (HR)-mediated double-strand break (DSB) repair and enhanced the radiosensitivity of GBM cells/GSCs. Mechanistically, DARS1-AS1 interacted with YBX1 to promote target mRNA binding and stabilization, forming a mixed transcriptional/posttranscriptional feed-forward loop to up-regulate expression of the key regulators of G1-S transition, including E2F1 and CCND1. DARS1-AS1/YBX1 also stabilized the mRNA of FOXM1, a master transcription factor regulating GSC self-renewal and DSB repair. Our findings suggest DARS1-AS1/YBX1 axis as a potential therapeutic target for sensitizing GBM to radiation/HR deficiency-targeted therapy.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , ARN Largo no Codificante , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Transformación Celular Neoplásica/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/metabolismo , Multiómica , ARN Largo no Codificante/genética , Proteína 1 de Unión a la Caja Y/genética , Proteína 1 de Unión a la Caja Y/metabolismo
17.
J Neurosurg ; 136(3): 757-767, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34450587

RESUMEN

OBJECTIVE: Delta-24-RGD is an oncolytic adenovirus that is capable of replicating in and killing human glioma cells. Although intratumoral delivery of Delta-24-RGD can be effective, systemic delivery would improve its clinical application. Bone marrow-derived human mesenchymal stem cells (BM-hMSCs) obtained from healthy donors have been investigated as virus carriers. However, it is unclear whether BM-hMSCs can be derived from glioma patients previously treated with marrow-toxic chemotherapy or whether such BM-hMSCs can deliver oncolytic viruses effectively. Herein, the authors undertook a prospective clinical trial to determine the feasibility of obtaining BM-hMSCs from patients with recurrent malignant glioma who were previously exposed to marrow-toxic chemotherapy. METHODS: The authors enrolled 5 consecutive patients who had been treated with radiation therapy and chemotherapy. BM aspirates were obtained from the iliac crest and were cultured to obtain BM-hMSCs. RESULTS: The patient-derived BM-hMSCs (PD-BM-hMSCs) had a morphology similar to that of healthy donor-derived BM-hMSCs (HD-BM-hMSCs). Flow cytometry revealed that all 5 cell lines expressed canonical MSC surface markers. Importantly, these cultures could be made to differentiate into osteocytes, adipocytes, and chondrocytes. In all cases, the PD-BM-hMSCs homed to intracranial glioma xenografts in mice after intracarotid delivery as effectively as HD-BM-hMSCs. The PD-BM-hMSCs loaded with Delta-24-RGD (PD-BM-MSC-D24) effectively eradicated human gliomas in vitro. In in vivo studies, intravascular administration of PD-BM-MSC-D24 increased the survival of mice harboring U87MG gliomas. CONCLUSIONS: The authors conclude that BM-hMSCs can be acquired from patients previously treated with marrow-toxic chemotherapy and that these PD-BM-hMSCs are effective carriers for oncolytic viruses.


Asunto(s)
Glioblastoma , Glioma , Células Madre Mesenquimatosas , Virus Oncolíticos , Animales , Médula Ósea , Glioblastoma/patología , Glioblastoma/terapia , Glioma/patología , Humanos , Células Madre Mesenquimatosas/patología , Ratones , Recurrencia Local de Neoplasia/patología , Oligopéptidos , Estudios Prospectivos
18.
J Immunother Cancer ; 10(7)2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35902132

RESUMEN

BACKGROUND: Oncolytic viruses are considered part of immunotherapy and have shown promise in preclinical experiments and clinical trials. Results from these studies have suggested that tumor microenvironment remodeling is required to achieve an effective response in solid tumors. Here, we assess the extent to which targeting specific mechanisms underlying the immunosuppressive tumor microenvironment optimizes viroimmunotherapy. METHODS: We used RNA-seq analyses to analyze the transcriptome, and validated the results using Q-PCR, flow cytometry, and immunofluorescence. Viral activity was analyzed by replication assays and viral titration. Kyn and Trp metabolite levels were quantified using liquid chromatography-mass spectrometry. Aryl hydrocarbon receptor (AhR) activation was analyzed by examination of promoter activity. Therapeutic efficacy was assessed by tumor histopathology and survival in syngeneic murine models of gliomas, including Indoleamine 2,3-dioxygenase (IDO)-/- mice. Flow cytometry was used for immunophenotyping and quantification of cell populations. Immune activation was examined in co-cultures of immune and cancer cells. T-cell depletion was used to identify the role played by specific cell populations. Rechallenge experiments were performed to identify the development of anti-tumor memory. RESULTS: Bulk RNA-seq analyses showed the activation of the immunosuppressive IDO-kynurenine-AhR circuitry in response to Delta-24-RGDOX infection of tumors. To overcome the effect of this pivotal pathway, we combined Delta-24-RGDOX with clinically relevant IDO inhibitors. The combination therapy increased the frequency of CD8+ T cells and decreased the rate of myeloid-derived suppressor cell and immunosupressive Treg tumor populations in animal models of solid tumors. Functional studies demonstrated that IDO-blockade-dependent activation of immune cells against tumor antigens could be reversed by the oncometabolite kynurenine. The concurrent targeting of the effectors and suppressors of the tumor immune landscape significantly prolonged the survival in animal models of orthotopic gliomas. CONCLUSIONS: Our data identified for the first time the in vivo role of IDO-dependent immunosuppressive pathways in the resistance of solid tumors to oncolytic adenoviruses. Specifically, the IDO-Kyn-AhR activity was responsible for the resurface of local immunosuppression and resistance to therapy, which was ablated through IDO inhibition. Our data indicate that combined molecular and immune therapy may improve outcomes in human gliomas and other cancers treated with virotherapy.


Asunto(s)
Glioma , Virus Oncolíticos , Animales , Linfocitos T CD8-positivos/metabolismo , Glioma/terapia , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa , Quinurenina/metabolismo , Ratones , Virus Oncolíticos/genética , Virus Oncolíticos/metabolismo , Sinapsis/metabolismo , Microambiente Tumoral
19.
Front Oncol ; 12: 941657, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36059614

RESUMEN

Treatment-resistant glioma stem cells are thought to propagate and drive growth of malignant gliomas, but their markers and our ability to target them specifically are not well understood. We demonstrate that podoplanin (PDPN) expression is an independent prognostic marker in gliomas across multiple independent patient cohorts comprising both high- and low-grade gliomas. Knockdown of PDPN radiosensitized glioma cell lines and glioma-stem-like cells (GSCs). Clonogenic assays and xenograft experiments revealed that PDPN expression was associated with radiotherapy resistance and tumor aggressiveness. We further demonstrate that knockdown of PDPN in GSCs in vivo is sufficient to improve overall survival in an intracranial xenograft mouse model. PDPN therefore identifies a subset of aggressive, treatment-resistant glioma cells responsible for radiation resistance and may serve as a novel therapeutic target.

20.
Cells ; 10(10)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34685601

RESUMEN

Rapid diagnosis and therapeutic monitoring of aggressive diseases such as glioblastoma can improve patient survival by providing physicians the time to optimally deliver treatment. This research tested whether metabolic imaging with hyperpolarized MRI could detect changes in tumor progression faster than conventional anatomic MRI in patient-derived glioblastoma murine models. To capture the dynamic nature of cancer metabolism, hyperpolarized MRI, NMR spectroscopy, and immunohistochemistry were performed at several time-points during tumor development, regression, and recurrence. Hyperpolarized MRI detected significant changes of metabolism throughout tumor progression whereas conventional MRI was less sensitive. This was accompanied by aberrations in amino acid and phospholipid lipid metabolism and MCT1 expression. Hyperpolarized MRI can help address clinical challenges such as identifying malignant disease prior to aggressive growth, differentiating pseudoprogression from true progression, and predicting relapse. The individual evolution of these metabolic assays as well as their correlations with one another provides context for further academic research.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Glioblastoma/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Animales , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Desnudos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA