Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
IEEE Trans Med Imaging ; 39(12): 4262-4273, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32780699

RESUMEN

Fully convolutional networks (FCNs) are widely used for instance segmentation. One important challenge is to sufficiently train these networks to yield good generalizations for hard-to-learn pixels, correct prediction of which may greatly affect the success. A typical group of such hard-to-learn pixels are boundaries between instances. Many studies have developed strategies to pay more attention to learning these boundary pixels. They include designing multi-task networks with an additional task of boundary prediction and increasing the weights of boundary pixels' predictions in the loss function. Such strategies require defining what to attend beforehand and incorporating this defined attention to the learning model. However, there may exist other groups of hard-to-learn pixels and manually defining and incorporating the appropriate attention for each group may not be feasible. In order to provide an adaptable solution to learn different groups of hard-to-learn pixels, this article proposes AttentionBoost, which is a new multi-attention learning model based on adaptive boosting, for the task of gland instance segmentation in histopathological images. AttentionBoost designs a multi-stage network and introduces a new loss adjustment mechanism for an FCN to adaptively learn what to attend at each stage directly on image data without necessitating any prior definition. This mechanism modulates the attention of each stage to correct the mistakes of previous stages, by adjusting the loss weight of each pixel prediction separately with respect to how accurate the previous stages are on this pixel. Working on histopathological images of colon tissues, our experiments demonstrate that the proposed AttentionBoost model improves the results of gland segmentation compared to its counterparts.

2.
Med Image Anal ; 63: 101720, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32438298

RESUMEN

This paper presents a new deep regression model, which we call DeepDistance, for cell detection in images acquired with inverted microscopy. This model considers cell detection as a task of finding most probable locations that suggest cell centers in an image. It represents this main task with a regression task of learning an inner distance metric. However, different than the previously reported regression based methods, the DeepDistance model proposes to approach its learning as a multi-task regression problem where multiple tasks are learned by using shared feature representations. To this end, it defines a secondary metric, normalized outer distance, to represent a different aspect of the problem and proposes to define its learning as complementary to the main cell detection task. In order to learn these two complementary tasks more effectively, the DeepDistance model designs a fully convolutional network (FCN) with a shared encoder path and end-to-end trains this FCN to concurrently learn the tasks in parallel. For further performance improvement on the main task, this paper also presents an extended version of the DeepDistance model that includes an auxiliary classification task and learns it in parallel to the two regression tasks by also sharing feature representations with them. DeepDistance uses the inner distances estimated by these FCNs in a detection algorithm to locate individual cells in a given image. In addition to this detection algorithm, this paper also suggests a cell segmentation algorithm that employs the estimated maps to find cell boundaries. Our experiments on three different human cell lines reveal that the proposed multi-task learning models, the DeepDistance model and its extended version, successfully identify the locations of cell as well as delineate their boundaries, even for the cell line that was not used in training, and improve the results of its counterparts.


Asunto(s)
Microscopía , Redes Neurales de la Computación , Algoritmos , Humanos , Probabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA