Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Genome ; 67(3): 64-77, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37922519

RESUMEN

Discrimination of chromosome is essential for chromosome manipulation or visual chromosome characterization. Oligonucleotide probes can be employed to simplify the procedures of chromosome identification in molecular cytogenetics due to its simplicity, fastness, cost-effectiveness, and high efficiency. So far, however, visual identification of cotton chromosomes remains unsolved. Here, we developed 16 oligonucleotide probes for rapid and accurate identification of chromosomes in Gossypium hirsutum: 9 probes, of which each is able to distinguish individually one pair of chromosomes, and seven probes, of which each distinguishes multiple pairs of chromosomes. Besides the identification of Chrs. A09 and D09, we first find Chr. D08, which carries both 45S and 5S rDNA sequences. Interestingly, we also find Chr. A07 has a small 45S rDNA size, suggesting that the size of this site on Chr. A07 may have reduced during evolution. By the combination of 45S and 5S rDNA sequences and oligonucleotide probes developed, 10 chromosomes (Chrs. 3-7, and 9-13) in A subgenome and 7 (Chrs. 1-2, 4-5, and 7-9) in D subgenome of cotton are able to be recognized. This study establishes cotton oligonucleotide fluorescence in situ hybridization technology for discrimination of chromosomes, which supports and guides for sequence assembling, particularly, for tandem repeat sequences in cotton.


Asunto(s)
Cromosomas de las Plantas , Gossypium , Hibridación Fluorescente in Situ , Gossypium/genética , Sondas de Oligonucleótidos/genética , Cromosomas de las Plantas/genética , ADN Ribosómico/genética
2.
Front Pharmacol ; 11: 569575, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33584256

RESUMEN

It is known that liver diseases have several characteristics of massive lipid accumulation and lipid metabolic disorder, and are divided into liver inflammation, liver fibrosis, liver cirrhosis (LC), and hepatocellular carcinoma (HCC) in patients. Interleukin (IL)-35, a new-discovered cytokine, can protect the liver from the environmental attack by increasing the ratio of Tregs (T regulatory cells) which can increase the anti-inflammatory cytokines and inhibit the proliferation of immune cellular. Interestingly, two opposite mechanisms (pro-inflammatory and anti-inflammatory) have connection with the ultimate formation of liver diseases, which suggest that IL-35 may play crucial function in the process of liver diseases through immunosuppressive regulation. Besides, some obvious advantages also imply that IL-35 can be considered as a new therapeutic target to control the progression of liver diseases, while its mechanism of function still needs further research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA