Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 35(7): 2570-2591, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37040621

RESUMEN

SALT OVERLY SENSITIVE1 (SOS1) is a key component of plant salt tolerance. However, how SOS1 transcription is dynamically regulated in plant response to different salinity conditions remains elusive. Here, we report that C-type Cyclin1;1 (CycC1;1) negatively regulates salt tolerance by interfering with WRKY75-mediated transcriptional activation of SOS1 in Arabidopsis (Arabidopsis thaliana). Disruption of CycC1;1 promotes SOS1 expression and salt tolerance in Arabidopsis because CycC1;1 interferes with RNA polymerase II recruitment by occupying the SOS1 promoter. Enhanced salt tolerance of the cycc1;1 mutant was completely compromised by an SOS1 mutation. Moreover, CycC1;1 physically interacts with the transcription factor WRKY75, which can bind to the SOS1 promoter and activate SOS1 expression. In contrast to the cycc1;1 mutant, the wrky75 mutant has attenuated SOS1 expression and salt tolerance, whereas overexpression of SOS1 rescues the salt sensitivity of wrky75. Intriguingly, CycC1;1 inhibits WRKY75-mediated transcriptional activation of SOS1 via their interaction. Thus, increased SOS1 expression and salt tolerance in cycc1;1 were abolished by WRKY75 mutation. Our findings demonstrate that CycC1;1 forms a complex with WRKY75 to inactivate SOS1 transcription under low salinity conditions. By contrast, under high salinity conditions, SOS1 transcription and plant salt tolerance are activated at least partially by increased WRKY75 expression but decreased CycC1;1 expression.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Tolerancia a la Sal/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo
2.
Int J Colorectal Dis ; 39(1): 99, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926205

RESUMEN

PURPOSE: Achieving a pathologic complete response (pCR) after neoadjuvant chemoradiotherapy (NCRT) remains a challenge for most patients with rectal cancer. Exploring the potential of combining NCRT with immunotherapy or targeted therapy for those achieving a partial response (PR) offers a promising avenue to enhance treatment efficacy. This study investigated the impact of NCRT on the tumor microenvironment in locally advanced rectal cancer (LARC) patients who exhibited a PR. METHODS: This was a retrospective, observational study. Five patients demonstrating a PR after neoadjuvant treatment for LARC were enrolled in the study. Biopsy samples before treatment and resected specimens after treatment were stained with a panel of 26 antibodies targeting various immune and tumor-related markers, each labeled with distinct metal tags. The labeled samples were then analyzed using the Hyperion imaging system. RESULTS: Heterogeneity within the tumor microenvironment was observed both before and after NCRT. Notably, tumor-associated macrophages, CD4 + T cells, CD8 + T cells, CD56 + natural killer cells, tumor-associated neutrophils, cytokeratin, and E-cadherin exhibited slight increase in abundance within the tumor microenvironment following treatment (change ratios = 0.78, 0.2, 0.27, 0.32, 0.17, 0.46, 0.32, respectively). Conversely, the number of CD14 + monocytes, CD19 + B cells, CD45 + CD4 + T cells, collagen I, α-smooth muscle actin, vimentin, and ß-catenin proteins displayed significant decreases post-treatment (change ratios = 1.73, 1.92, 1.52, 1.25, 1.52, 1.12, 2.66, respectively). Meanwhile, Foxp3 + regulatory cells demonstrated no significant change (change ratio = 0.001). CONCLUSIONS: NCRT has diverse effects on various components of the tumor microenvironment in LARC patients who achieve a PR after treatment. Leveraging combination therapies may optimize treatment outcomes in this patient population.


Asunto(s)
Terapia Neoadyuvante , Neoplasias del Recto , Microambiente Tumoral , Humanos , Neoplasias del Recto/terapia , Neoplasias del Recto/patología , Neoplasias del Recto/tratamiento farmacológico , Masculino , Femenino , Persona de Mediana Edad , Anciano , Quimioradioterapia , Resultado del Tratamiento , Estudios Retrospectivos
3.
Plant J ; 111(1): 269-281, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35506310

RESUMEN

Low phosphate (LP) in soil is a common nutrient stress that severely restricts agricultural production, but the role, if any, of the major stress phytohormone abscisic acid (ABA) in plant phosphate (Pi) starvation responses remains elusive. Here, we report that LP-induced ABA accumulation promotes Pi uptake in an ABA INSENSITIVE5 (ABI5)-dependent manner in Arabidopsis thaliana. LP significantly activated plant ABA biosynthesis, metabolism, and stress responses, suggesting a role of ABA in the plant response to Pi availability. LP-induced ABA accumulation and expression of two major high-affinity phosphate transporter genes PHOSPHATE TRANSPORTER1;1/1;4 (PHT1;1/1;4) were severely impaired in a mutant lacking BETA-GLUCOSIDASE1 (BG1), which converts conjugated ABA to active ABA, and the mutant had shorter roots and less Pi content than wild-type plants under LP conditions. Moreover, a mutant of ABI5, which encodes a central transcription factor in ABA signaling, also exhibited suppressed root elongation and had reduced Pi content under LP conditions. ABI5 facilitated Pi acquisition by activating the expression of PHT1;1 by directly binding to its promoter, while overexpression of PHT1;1 completely rescued its Pi content under LP conditions. Together, our findings illustrate a molecular mechanism by which ABA positively modulates phosphate acquisition through ABI5 in the Arabidopsis response to phosphate deficiency.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Fosfatos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Small ; 19(8): e2207089, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36507549

RESUMEN

Mechanoluminescence (ML) materials present widespread applications. Empirically, modulation for a given ML material is achieved by application of programmed mechanical actuation with different amplitude, repetition velocity and frequency. However, to date modulation on the ML is very limited within several to a few hundred hertz low-frequency actuation range, due to the paucity of high-frequency mechanical excitation apparatus. The universality of temporal behavior and frequency response is an important aspect of ML phenomena, and serves as the impetus for much of its applications. Here, we push the study on ML into high-frequency range (∼250 kHz) by combining with piezoelectric actuators. Two representative ML ZnS:Mn and ZnS:Cu, Al phosphors were chosen as the research objects. Time-resolved ML of ZnS:Mn and ZnS:Cu, Al shows unrevealed frequency-dependent saturation and quenching, which is associated with the dynamic processes of traps. From the point of applications, this study sets the cut-off frequency for ML sensing. Moreover, by in-situ tuning the strain frequency, ZnS:Mn exhibits reversible frequency-induced broad red-shift into near-infrared range. These findings offer keen insight into the photophysics nature of ML and also broaden the physical modulation of ML by locally adjusting the excitation frequency.

5.
Plant Physiol ; 190(4): 2812-2827, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36173345

RESUMEN

Regulation of seed germination is important for plant survival and propagation. ABSCISIC ACID (ABA) INSENSITIVE5 (ABI5), the central transcription factor in the ABA signaling pathway, plays a fundamental role in the regulation of ABA-responsive gene expression during seed germination; however, how ABI5 transcriptional activation activity is regulated remains to be elucidated. Here, we report that C-type Cyclin1;1 (CycC1;1) is an ABI5-interacting partner affecting the ABA response and seed germination in Arabidopsis (Arabidopsis thaliana). The CycC1;1 loss-of-function mutant is hypersensitive to ABA, and this phenotype was rescued by mutation of ABI5. Moreover, CycC1;1 suppresses ABI5 transcriptional activation activity for ABI5-targeted genes including ABI5 itself by occupying their promoters and disrupting RNA polymerase II recruitment; thus the cycc1;1 mutant shows increased expression of ABI5 and genes downstream of ABI5. Furthermore, ABA reduces the interaction between CycC1;1 and ABI5, while phospho-mimic but not phospho-dead mutation of serine-42 in ABI5 abolishes CycC1;1 interaction with ABI5 and relieves CycC1;1 inhibition of ABI5-mediated transcriptional activation of downstream target genes. Together, our study illustrates that CycC1;1 negatively modulates the ABA response by interacting with and inhibiting ABI5, while ABA relieves the CycC1;1 interaction with and inhibition of ABI5 to activate ABI5 activity for the ABA response, thereby inhibiting seed germination.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Germinación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Semillas/metabolismo , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo
6.
Opt Lett ; 48(9): 2429-2432, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37126290

RESUMEN

We describe a Si-integrated photochromic photomemory based on lanthanide-doped ferroelectric Na0.5Bi2.5Nb2O9:Er3+ (NBN:Er) thin films. We show that upconversion emission can be effectively modulated by up to 78% through the photochromic reaction. The coupling between lanthanide upconversion emission and the photochromic effect ensures rewritable and nondestructive readout characteristics. Moreover, integrating photochromic thin films with Si would benefit from its compatibility with the mature complementary metal-oxide semiconductor (CMOS) technique. These results demonstrate the opportunity to develop more compact photochromic photomemories and related photonic devices.

7.
Cancer Cell Int ; 23(1): 278, 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980521

RESUMEN

BACKGROUND: RPLP2, an integral part of ribosomal stalk, plays an important role in the tumorigenesis of various cancers. However, its specific effect on HCC remains elusive. METHODS: TCGA, GTEx, HCCDB, HPA, UALCAN, MethSurv, TISIDB, K-M plotter, FerrDb, RNAactDrug, STRING, Cytoscape and R studio were conducted for bioinformatics analysis. RPLP2 expression level in HCC was verified by IHC and western blot. IHC was used to demonstrate the immune cell infiltration. Functional experiments including CCK8, transwell and colony formation assays, and nude mice xenograft model were performed for in vitro and in vivo validation. Western blot, IHC, CCK8 assay and detection of GSH and lipid ROS were adopted to determine the effect of RPLP2 on the ferroptosis of HCC cells. RESULTS: Here, we demonstrate that elevated level of RPLP2 is strongly associated with advanced clinicopathologic features, and predicts poor prognosis of HCC patients. Additionally, DNA methylation level of RPLP2 decreases in HCC, and significantly correlates with patients outcome. Moreover, high RPLP2 expression level is linked closely to the unfavorable immune infiltration. Most importantly, RPLP2 positively associates with ferroptosis suppressor GPX4, and inhibition of RPLP2 could lead to the acceleration of ferroptosis to suppress tumor progression of HCC. Last, drug sensitivity analysis predicts many drugs that potentially target RPLP2. CONCLUSION: Together, our study reveals previous unrecognized role of RPLP2 in HCC, and provides new regulatory mechanism of ferroptosis, indicating RPLP2 may be a novel therapeutic target for HCC.

8.
World J Surg Oncol ; 21(1): 339, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37880729

RESUMEN

BACKGROUND: To determine the efficacy of adjuvant radiotherapy for stage II-III biliary tract carcinoma. METHODS: We retrospectively analyzed the data of 37 patients who underwent radical resection of biliary tract carcinomas at the Affiliated Hospital of Inner Mongolia Medical University between 2016 and 2020. We analyzed survival differences between patients who did (n = 17) and did not (n = 20) receive postoperative adjuvant radiotherapy by using Kaplan-Meier analysis. The log-rank test and Cox univariate analysis were used. The Cox proportional risk regression model was used for the multifactorial analysis of factors influencing prognosis. RESULTS: The median survival time (28.9 vs. 14.5 months) and the 1-year (82.40% vs. 55.0%) and 2-year survival rates (58.8% vs. 25.0%) were significantly higher among patients who received adjuvant radiotherapy than among those who did not (χ2 = 6.381, p = 0.012). Multifactorial analysis showed that pathological tumor type (p = 0.004), disease stage (p = 0.021), and adjuvant radiotherapy (p = 0.001) were independent prognostic factors in biliary tract carcinoma. Subgroup analyses showed that compared to no radiotherapy, adjuvant radiotherapy significantly improved median survival time in patients with stage III disease (21.6 vs. 12.7 months; p = 0.017), positive margins (28.9 vs. 10.5 months; p = 0.012), and T3 or T4 tumors (26.8 vs. 16.8 months; p = 0.037). CONCLUSION: Adjuvant radiotherapy significantly improved the survival of patients with biliary tract carcinoma, and is recommended especially for patients with stage III disease, positive surgical margins, or ≥ T3.


Asunto(s)
Sistema Biliar , Carcinoma , Neoplasias Gastrointestinales , Humanos , Radioterapia Adyuvante/efectos adversos , Estudios Retrospectivos , Pronóstico , Estadificación de Neoplasias
9.
Sensors (Basel) ; 23(22)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38005422

RESUMEN

The mining environment of thin coal seam working faces is generally harsh, the labor intensity is high, and the production efficiency is low. Previous studies have shown that thin coal seam mining finds it difficult to follow machines, does not have complete sets of equipment, has a low degree of automation, and has difficult system co-control, which easily causes production safety accidents. In order to effectively solve the problems existing in thin coal seam mining, Binhu Coal Mine has established intelligent fully mechanized mining and actively explored automatic coal cutting, automatic support following, and intelligent control. The combination of an SAC electro-hydraulic control system and SAP pumping station control system has been applied in 16,108 intelligent fully mechanized coal mining faces, which realizes the automatic following of underground support and the control of adjacent support, partition support, and group operation; the automatic coal cutting of the shearer is realized by editing the automatic coal-cutting state of the shearer and adjusting the automatic parameters. A centralized control center is set up, which realizes the remote control and one-button start-stop of working face equipment. Through a comparative analysis of 16,108 intelligent fully mechanized mining faces and traditional fully mechanized mining faces, it is found that intelligent fully mechanized mining faces have obvious advantages in terms of equipment maintenance, equipment operation mode, and working face efficiency, which improve the equipment and technical mining level of thin coal seam. The application of intelligent mining in Binhu Coal Mine has a great and far-reaching impact on the development of thin coal seam mining technology in China.

10.
J Exp Bot ; 73(17): 5961-5973, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34922349

RESUMEN

Phytomelatonin is a universal signal molecule that regulates plant growth and stress responses; however, only one receptor that can directly bind with and perceive melatonin signaling has been identified so far, namely AtPMTR1/CAND2 in Arabidopsis. Whether other plants contain a similar receptor and, if so, how it functions is still unknown. In this study, we identified a new phytomelatonin receptor in the monocot maize (Zea mays), and investigated its role in plant responses to osmotic and drought stress. Using homology searching, we identified a plasma membrane-localized protein, Zm00001eb214610/ZmPMTR1, with strong binding activity to melatonin as a potential phytomelatonin receptor in maize. Overexpressing ZmPMTR1 in Arabidopsis Col-0 promoted osmotic stress tolerance, and rescued osmotic stress sensitivity of the Arabidopsis cand2-1 mutant. Furthermore, ZmPMTR1 also largely rescued defects in melatonin-induced stomatal closure in the cand2-1 mutant, thereby reducing water loss rate and increasing tolerance to drought stress. In addition, we identified a maize mutant of ZmPMTR1, EMS4-06e2fl, with a point-mutation causing premature termination of protein translation, and found that this mutant had lower leaf temperatures, increased rate of water loss, and enhanced drought stress sensitivity. Thus, we present ZmPMTR1 as the first phytomelatonin receptor to be identified and examined in a monocot plant, and our results indicate that it plays an important function in the response of maize to drought stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Melatonina , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Melatonina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Estrés Fisiológico/genética , Agua/metabolismo , Zea mays/metabolismo
11.
Phys Chem Chem Phys ; 23(18): 11004-11014, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33942039

RESUMEN

From first-principles calculations, the transition-metal (TM) atom (Fe, Co and Ni) adsorbed Janus MoSSe monolayer, toxic gas molecules (CO, NH3 and H2S) adsorbed on the Ni-MoSSe monolayer and CO catalytic oxidation on the Fe-MoSSe monolayer are systematically investigated. An increasing order (Fe-MoSSe < Co-MoSSe < Ni-MoSSe) is found for the stability and band gap of the TM atom adsorbed Janus MoSSe monolayer. These toxic gas molecules are found to be weakly physisorbed and strongly chemisorbed on the pristine and Ni-MoSSe monolayers, respectively. The electronic structure and gas molecular adsorption properties of the Janus MoSSe monolayer can be modulated by adsorbing different TM atoms and gas molecules. Particularly, the CO catalytic oxidation can be realized on the Fe-MoSSe monolayer in light of the more preferable Eley-Rideal (ER) mechanism with the two-step route (CO + O2 → OOCO → CO2 + Oads, CO + Oads → CO2) with highly exothermic processes in each step. The adsorption of TM atoms which may greatly enhance gas sensing performance and catalytic performance of CO oxidation based on the Janus MoSSe monolayer is further discussed.

12.
Int J Mol Sci ; 22(8)2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33924609

RESUMEN

Osmotic stress severely inhibits plant growth and development, causing huge loss of crop quality and quantity worldwide. Melatonin is an important signaling molecule that generally confers plant increased tolerance to various environmental stresses, however, whether and how melatonin participates in plant osmotic stress response remain elusive. Here, we report that melatonin enhances plant osmotic stress tolerance through increasing ROS-scavenging ability, and melatonin receptor CAND2 plays a key role in melatonin-mediated plant response to osmotic stress. Upon osmotic stress treatment, the expression of melatonin biosynthetic genes including SNAT1, COMT1, and ASMT1 and the accumulation of melatonin are increased in the wild-type plants. The snat1 mutant is defective in osmotic stress-induced melatonin accumulation and thus sensitive to osmotic stress, while exogenous melatonin enhances the tolerance of the wild-type plant and rescues the sensitivity of the snat1 mutant to osmotic stress by upregulating the expression and activity of catalase and superoxide dismutase to repress H2O2 accumulation. Further study showed that the melatonin receptor mutant cand2 exhibits reduced osmotic stress tolerance with increased ROS accumulation, but exogenous melatonin cannot revert its osmotic stress phenotype. Together, our study reveals that CADN2 functions necessarily in melatonin-conferred osmotic stress tolerance by activating ROS-scavenging ability in Arabidopsis.


Asunto(s)
Adaptación Fisiológica , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Melatonina/farmacología , Presión Osmótica , Receptores Acoplados a Proteínas G/metabolismo , Estrés Fisiológico , Adaptación Fisiológica/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Catalasa/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Homeostasis/efectos de los fármacos , Mutación/genética , Especies Reactivas de Oxígeno/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo , Estrés Fisiológico/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
13.
Arch Insect Biochem Physiol ; 104(3): e21691, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32410326

RESUMEN

In the present study, diel pattern in gut microbial communities in insects were evaluated. Lymantria dispar asiatica fourth instar larvae (72 ± 2 hr after molting) at noon (LdD) and midnight (LdN) were used for a comparative analysis of the gut microbial community. Ten bacterial operational taxonomic units (OTUs) were shared between LdD and LdN samples. One bacterial OTU was specific to LdD. The dominant gut microbes were OTU72 in LdD and OTU75 in LdN. A linear discriminant analysis effect size cladogram suggested that ten bacterial OTUs maintain significant differences in relative abundances between LdD and LdN. These results agreed with the discrete ellipses between LdD and LdN in principal coordinates analysis plots. Additionally, using phylogenetic investigation of communities by reconstruction of unobserved states, the gut microbial community was assigned to 23 functional terms, among which 22 exhibited significant differences between LdD and LdN. To conclude, the present study documented a diel pattern in the gut microbial community of L. dispar asiatica larvae.


Asunto(s)
Ritmo Circadiano , Microbioma Gastrointestinal/fisiología , Mariposas Nocturnas/microbiología , Animales , Bacterias/clasificación , Larva/microbiología , Mariposas Nocturnas/crecimiento & desarrollo , Filogenia
14.
Arch Insect Biochem Physiol ; 103(4): e21654, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31916310

RESUMEN

To study dietary pH effects on Lymantria dispar asiatica larvae and provide a theoretical basis for its control in different forests, phosphate buffers (PBs) of pH 6, 7, and 8 were used to prepare experimental diets. The diet prepared with pH 6 PB was named as DPB6, with pH 8 PB as DPB8, and with pH 7 PB as DPB7 (control). The dietary pH was 5.00 in DPB6, 6.05 in control, and 6.50 in DPB8. After feeding on the diets with different pH values for 84 hr, fourth-instar caterpillars were randomly collected. Growth and various physiological traits were determined and 16S recombinant DNA sequencing was performed using the intestinal microflora of surviving larvae. Results showed that the mortality was 30% in DPB6, and 10% in DPB8, while no mortality was observed in control. The partial least squares discriminant analyses suggested that diets prepared with PB of different pH resulted in different food intake, amount of produced feces, weight gain, digestive enzyme activities, and antioxidant enzyme activities in larvae. Interestingly, both the highest weight gain and the lowest total antioxidant capacities were seen in control larvae. Results also showed that the larval gut microbiota community structure was significantly affected by dietary pH. Moreover, linear discriminant analysis effect size suggested that the family Acetobacteraceae in control, genus Prevotella in DPB8, and genus Lactococcus, family Flavobacteriaceae, family Mitochondria, and family Burkholderiaceae in DPB6 contributed to the diversity of the larval gut microbial community.


Asunto(s)
Alimentación Animal/análisis , Microbioma Gastrointestinal/efectos de los fármacos , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/microbiología , Animales , Dieta , Concentración de Iones de Hidrógeno , Larva/crecimiento & desarrollo , Larva/microbiología
15.
Pestic Biochem Physiol ; 164: 196-202, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32284127

RESUMEN

Lymantria dispar asiatica is a globally distributed herbivorous pest. Avermectin is a highly effective, broad-spectrum insecticide. In this study, fourth instar L. dispar asiatica larvae were exposed to a LC30 dose of avermectin. The structure and function of larval gut microbial community was analyzed to examine how gut microbiota in L. dispar asiatica larvae responded to avermectin stress. Results showed that the structure and function of gut microbial community in L. dispar asiatica larvae were varied by avermectin stress. To be precise, more than half quantity of the observed Optical Taxonomic Units (OTUs) showed significantly different abundances under avermectin stress. Linear discriminant analysis effect size (LEfSe) suggested nine bacterial genera and 12 fungal genera contributed to the different gut microbial community structure in L. dispar asiatica larvae. Gut microbial function classification (PICRUSt and FUNGuild) suggested that three bacterial function categories and a fungal function guild were significantly increased, and two fungal function guilds were significantly decreased by avermectin stress. This study furthers our understanding of the physiology of L. dispar asiatica larvae under avermectin stress, and is an essential step towards future development of potential pesticide targets.


Asunto(s)
Insecticidas , Lepidópteros , Mariposas Nocturnas , Animales , Ivermectina/análogos & derivados , Larva
16.
Arch Insect Biochem Physiol ; 102(2): e21597, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31328829

RESUMEN

To understand how ambient temperature affect the gypsy moth larvae, and provide a theoretical basis for pest control in different environments. Fourth instar gypsy moth larvae were incubating for 3 hr at 15℃, 20℃, 25℃, 30℃, 35℃, and 40℃, respectively. Afterward, digestive and antioxidant enzyme activities, total antioxidant capacity, and intestinal microflora community were analyzed to reveal how the caterpillars respond to ambient temperature stress. Results showed that both digestive and antioxidant enzymes were regulated by the ambient temperature. The optimum incubation temperatures of protease, amylase, trehalase, and lipase in gypsy moth larvae were 30℃, 25℃, and 20℃, respectively. When the incubation temperature was deviated optimum temperatures, digestive enzyme activities would be downregulated depending on the extent of temperature stress. In addition, glutathione S-transferase, peroxidase, catalase, and polyphenol oxidase would be activated under a sufferable temperature stress, but superoxide dismutase and carboxylesterase (CarE) would be inhibited. In addition, results showed that the top two abundant phyla were Proteobacteria and Firmicutes. The phylum Firmicutes abundance was decreased and phylum Proteobacteria abundance was increased by ambient temperature stress. Moreover, it suggested that gypsy moth caterpillars at different ambient temperature mainly differed from each other by Escherichia-Shigella and Bifidobacterium in control, Acinetobacter in T15, and Lactobacillus in T40, respectively.

17.
RSC Adv ; 14(3): 1686-1696, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38187452

RESUMEN

In addressing the environmental challenges posed by the accumulation of fly ash (FA), efforts have been geared towards its high-value utilization. By the use of high-iron FA as a raw material, a high-iron fly-ash-based Na-X molecular sieve was successfully synthesized by hydrothermal method. We combined pretreatment methods such as high-temperature calcination, acid leaching and alkali fusion activation. The as-synthesized product was used for the adsorption of a low concentration of CO2, and the adsorption data were fitted by a physical model. The changes in iron content in pretreatment and molecular sieve synthesis were revealed by SEM-mapping, UV-Raman and UV-Vis. The results showed that the pretreatment process reduces the iron content from 32.3% to 13.3%, and converts the inactive phases to active phases, with n (SiO2/Al2O3) = 4.94. The activated product was transformed further to a Na-X molecular sieve using a hydrothermal method. The product has a single crystal phase and octahedral crystal structure. Its specific surface area was 646.634 m2 g-1, and micropores were distributed between 0.46 nm and 0.71 nm, with a mesoporous phase of 4.6 nm. When used to adsorb a low concentration of CO2, the Na-X molecular sieve has a high adsorption capacity of 3.70 mmol g-1, which reaches 95.11% that of the commercial Na-X molecular sieve. The adsorption breakthrough time and adsorption capacity decreased with an increase in temperature. The adsorption kinetics were consistent with the Bangham model for surface pore adsorption and Weber-Morris model for internal diffusion. During the synthesis process, iron was converted from highly dispersed iron oxide to four-coordinated framework iron. Thus, this paper paves a path for the high-quality transformation and utilization of high-iron fly-ash.

18.
Front Endocrinol (Lausanne) ; 15: 1347021, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464966

RESUMEN

Objective: The main active components and mechanism of Danggui Sini decoction (DSD) in treating diabetic foot (DF) were studied and verified by network pharmacology and molecular docking. Evidence-based medicine was used to prove its efficacy. Methods: The TCMSP systematic pharmacology platform screened out DSD's practical components and targets-screening disease targets in GeneCards database, using Cytoscape 3.7.2 to draw DSD-active ingredient-target network diagram, and drawing the protein interaction network diagram through STRING database. The Metascape platform was used to analyze the GO function enrichment and KEGG signal pathway. The molecular docking experiment was carried out by using Auto Dock vina 4.2. The related literature on DSD in treating DF in China Zhiwang, Wanfang, Weipu, and China Biomedical Literature Database was searched. The literature was screened, data was extracted, and quality was evaluated according to the inclusion and exclusion criteria. Then, a meta-analysis was performed using RevMan 5.3 software. Results: A total of 256 targets of all effective components of DSD were obtained. Among 1,272 disease targets, there are 113 common targets. The GO analysis received 6,179 entries, and the KEGG pathway enrichment analysis found 251 related pathways. The molecular docking results of the main targets of diabetic foot and the active substances of DSD all showed a high docking activity. The meta-analysis included six literature, all of which were randomized controlled experiments. The quality grade of the literature was C, and the results showed that the total effective rate of clinical efficacy in the experimental group was significantly higher than that in the control group. Conclusions: DSD may treat DF by participating in biological processes such as cell proliferation regulation, inflammatory reaction, oxidative stress reaction, and promotion of angiogenesis. DSD treats DF through AKT1, TP53, IL6, TNF, VEGFA, and other targets. DSD plays a role in treating DF mainly through the AGE-RAGE signaling pathway and PI3K-AKT signaling pathway. The molecular docking results of AKT1, TP53, IL-6, TNF, and VEGFA with the active substances of DSD show that they all have a high docking activity; among them, VEGFA has a higher docking activity. Compared with conventional treatment, DSD has a high effective rate, short wound healing time, large wound healing area, and high ABI index.


Asunto(s)
Diabetes Mellitus , Pie Diabético , Medicamentos Herbarios Chinos , Humanos , Simulación del Acoplamiento Molecular , Pie Diabético/tratamiento farmacológico , Farmacología en Red , Fosfatidilinositol 3-Quinasas
19.
Sci Rep ; 13(1): 8972, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268697

RESUMEN

Posttranslational modifications (PTM) such as acetylation, deubiquitination, and phosphorylation of proteins, play important roles in various kinds of cancer progression. Ubiquitin-specific proteinase 5 (USP5), a unique member of deubiquitinating enzymes (DUBs) which recognizes unanchored polyubiquitin specifically, could regulate the stability of many tumorigenesis-associated proteins to influence cancer initiation and progression. However, the diverse biological significance of USP5 in pan-cancer has not been systematically and comprehensively studied. Here, we explored the role of USP5 in pan-cancer using The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) database, and we also acquired and analyzed data via various software and web platforms such as R, GEPIA2.0, HPA, TISIDB, cBioPortal, UALCAN, TIMER 2.0, CancerSEA and BioGRID. USP5 expression was high in most cancers and differed significantly in different molecular and immune subtypes of cancers. In addition, USP5 had certain diagnostic value in multiple cancers, and high expression of USP5 generally predicted poor prognosis for cancer patients. We also found that the most frequent genetic alterations type of USP5 was mutation, and the DNA methylation level of USP5 decreased in various cancers. Furthermore, USP5 expression correlated with cancer-associated fibroblasts (CAFs), endothelial cells (EC) and genetic markers of immunodulators in cancers. Moreover, the result from single cell sequencing showed that USP5 could regulate several tumor biological behaviors such as apoptosis, DNA damage and metastasis. Gene enrichment analysis indicated "spliceosome" and "RNA splicing" may be the critical mechanism for USP5 to involve in cancer. Taken together, our study elucidates the biological significance of USP5 in the diagnosis, prognosis and immune in human pan-cancer.


Asunto(s)
Neoplasias , Péptido Hidrolasas , Humanos , Ubiquitina , Células Endoteliales , Endopeptidasas/genética , Neoplasias/genética
20.
Sci Rep ; 13(1): 13036, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563356

RESUMEN

In this study, a series of true triaxial loading tests were carried out on coal-measure sandstone after high temperature treatment by using a self-developed true triaxial test system combined with acoustic emission (AE) monitoring, and the mass loss, deformation characteristics and loss failure mode of sandstone before and after heat treatment were systematically studied. It is found that the true triaxial mechanical properties of sandstone after high temperature treatment are closely related to temperature, and the peak strength, maximum principal strain, volume strain, minimum fracture angle and elastic modulus, which all showed bimodal changes, and 800 °C is the threshold temperature of the first four parameters. The transition temperature of the elastic modulus is 400 °C. It is found that the test results of true triaxial high temperature sandstone are in good agreement with the existing true triaxial theory and test results. The failure forms of the samples at different temperatures show inverted "Y" or inverted "N" shapes. Shear failure occurs when the temperature is below 400 °C, and shear-tension failure occurs when the temperature is above 600 °C. At the same time, it is found that the AE signal has four periods, namely the quiet period, growth period, explosion period and decline period. The number of AE events corresponds to the deviatoric stress interval well. Experimental study of the mechanical properties of sandstone under the coupling effect of high temperature and true triaxial stress has guiding significance for the parameter selection and safety evaluation of roof sandstone in underground coal gasification.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA