Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(12): 8198-8205, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38478884

RESUMEN

Dion-Jacobson (DJ) phase 2D perovskites with various aromatic diammonium cations, potentially possessing high stability, have been developed for optoelectronics. However, their stability does not meet initial expectations, and some of them even easily degrade into lower-dimensional structures. Underlying the stability mechanism and dimensional reduction of these DJ 2D perovskites remains elusive. Herein, we report that π-π stacking intensity between aromatic cations determines structural stability and dimensional variation of DJ 2D perovskites by investigating nine benzene diammoniums (BDAs)-derived low-dimensional perovskites. The BDAs without intermolecular π-π stacking form stable DJ 2D perovskites, while those showing strong π-π stacking tend to generate 1D and 0D architectures. Furthermore, the π-π stacking intensity highly relies on molecular symmetry and electrostatic potential of BDAs; namely, asymmetry and small dipole moment facilitate alleviating the π-π stacking, leading to the formation of DJ 2D perovskites and vice versa. Our findings establish the relationship of aromatic diammonium structure-π-π stacking interaction-perovskite dimensionality, which can guide the design of stable DJ 2D perovskites and the manipulation of perovskite dimensionality for various optoelectronic applications.

2.
ACS Omega ; 4(12): 15097-15100, 2019 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-31552353

RESUMEN

The semi-transparent solar cells are promising to be applied in building integrated photovoltaic (BIPV) and tandem solar cells. In this study, we fabricate semi-transparent and stable solar cells for BIPV by utilizing a poly (ethylene oxide) electrolyte and controlling the size of TiO2 nanoparticles and the thickness of the TiO2 film. The power conversion efficiency of the semi-transparent (over 50% transmittance at 620-750 nm) and quasi-solid solar cells is 5.78% under standard AM1.5G, 100 mW cm-2. The higher conductivity and smaller diffusion resistance of the quasi-solid electrolyte inside the mesoporous TiO2 film indicate the confinement effects of the polymer electrolyte inside a mesoporous TiO2 film. The unsealed semi-transparent and quasi-solid solar cell retains its initial efficiency during 1000 h irradiation in humid air.

3.
ChemSusChem ; 12(4): 795-800, 2019 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-30628203

RESUMEN

Two-dimensional tungsten sulfide is widely applied in electrocatalysis. However, WS2 possesses catalytic active sites located at the layer edge and an inert surface for catalysis. Therefore, increasing the exposure of active sites at the edge and effectively activating the inert sites on the surface is an important challenge. Here, an edge/defect-rich and oxygen-heteroatom-doped WS2 (ED-O-WS2 ) superstructure was synthesized. The power-conversion efficiency (PCE) of dye-sensitized solar cells (DSCs) based on an ED-O-WS2 counter electrode reached 10.36 % (under 1 sun, AM 1.5, 100 mW cm-2 ) and 11.19 % (under 40 mW cm-2 ). These values are, to our knowledge, the highest reported efficiency for DSCs based on Pt-free counter electrodes in I3 - /I- electrolytes. Analysis of the micro/nano structure and the electrocatalytic mechanism indicate that ED-O-WS2 exhibits metallic properties in the electrolyte, and that abundant edges and defects as well as oxygen doping in ED-O-WS2 play an important role in improving the catalytic activity of WS2 . Moreover, ED-O-WS2 displays better catalytic reversibility for I3 - /I- electrolytes than Pt.

4.
RSC Adv ; 8(36): 19958-19963, 2018 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35541684

RESUMEN

Organic-inorganic hybrid-based lead perovskites show inherent and unavoidable problems such as structural instability and toxicity. Therefore, developing low-cost and environment-friendly organic-inorganic hybrid materials is extremely urgent. In this study, we prepared earth-abundant and environment-friendly organic-inorganic hybrid tetrachloroferrate salt CH3NH3FeCl4 (MAFeCl4) for optoelectronic applications. The single crystal diffraction data are assigned to the orthorhombic MAFeCl4 (Pnma space group), with parameters a = 11.453 (5) Å, b = 7.332 (3) Å, c = 10.107 (5) Å, α = 90.000, ß = 90.000, and γ = 90.000. The band gap of MAFeCl4 is approximately 2.15 eV. Moreover, three-emission luminescence (398, 432 and 664 nm) was observed. To the best of our knowledge, this is the first study involving the investigation of the structure, adsorption properties and photoelectric behavior of MAFeCl4. A low cost photodetector based on the MAFeCl4 thin film is efficient under different monochromatic light from 330 nm to 410 nm with different chopping frequencies (1.33 Hz to 40 Hz). The photoelectric conversion efficiency based on FTO/TiO2/MAFeCl4/carbon electrode device reaches 0.054% (V oc = 319 mV, J sc = 0.375 mA cm-2, and fill factor = 0.45) under AM1.5, 100 mW cm-2 simulated illumination. Our findings will attract attention from the magnetic, piezoelectric and photoelectronic research fields.

5.
ACS Omega ; 3(9): 11009-11017, 2018 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31459211

RESUMEN

Splitting of water into hydrogen and oxygen has become a strategic research topic. In the two semi-reactions of water splitting, water oxidation is preferred to the four-electron-transfer process with a higher overpotential (η) and is the decisive step in water splitting. Therefore, efficient water oxidation catalysts must be developed. IrO x and RuO x catalysts are currently the most efficient catalysts in water oxidation. However, the limited reserve and high prices of precious metals, such as Ir and Ru, limit future large-scale industrial production of water oxidation catalysts. In this study, we tune inert Ni-foam into highly active NiOOH/FeOOH heterostructures as water oxidation catalysts via three-step strategy (surface acid-treating, electroplating, and electrooxidation). NiOOH/FeOOH heterostructures as water oxidation catalysts only require η of 257 mV to reach a current density of 10 mA cm-2, which is superior to that of IrO2/Ni-foam (280 mV). The high electrochemically active surface area (72.50 cm2) and roughness factor demonstrate abundant interfaces in NiOOH/FeOOH heterostructures, thus accelerating water oxidation activity. The small value (4.8 Ω cm2) of charge transfer resistance (R ct) indicate that fast electronic exchange occurs between NiOOH/FeOOH heterostructures catalyst and reaction of water oxidation. Hydrogen-to-oxygen volume ratios (approximately 2:1) indicate an almost overall water splitting by the double-electrode system. Faraday efficiency of H2 or O2 is close to 90% at 2:1 hydrogen-to-oxygen volume ratio. NiOOH/FeOOH heterostructures exhibit good stability. The results provide significance in fundamental research and practical applications in solar water splitting, artificial photoelectrochemical cells, and electrocatalysts.

6.
R Soc Open Sci ; 4(12): 171409, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29308262

RESUMEN

Three-dimensional (3D) graphene composites have drawn increasing attention in energy storage/conversion applications due to their unique structures and properties. Herein, we synthesized 3D honeycomb-like Ni3S2@graphene oxide composite (3D honeycomb-like Ni3S2@GO) by a one-pot hydrothermal method. We found that positive charges of Ni2+ and negative charges of NO3- in Ni(NO3)2 induced a transformation of graphene oxide with smooth surface into graphene oxide with wrinkled surface (w-GO). The w-GO in the mixing solution of Ni(NO3)2/thioacetamide/H2O evolved into 3D honeycomb-like Ni3S2@GO in solvothermal process. The GO effectively inhibited the aggregation of Ni3S2 nanoparticles. Photoelectrochemical cells based on 3D Ni3S2@GO synthesized at 60 mM l-1 Ni(NO3)2 exhibited the best energy conversion efficiency. 3D Ni3S2@GO had smaller charge transfer resistance and larger exchange current density than pure Ni3S2 for iodine reduction reaction. The cyclic stability of 3D honeycomb-like Ni3S2@GO was good in the iodine electrolyte. Results are of great interest for fundamental research and practical applications of 3D GO and its composites in solar water-splitting, artificial photoelectrochemical cells, electrocatalysts and Li-S or Na-S batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA