Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Development ; 150(4)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36815629

RESUMEN

Interstitial stromal cells play critical roles in muscle development, regeneration and repair and we have previously reported that Hoxa11 and Hoxd11 are expressed in the interstitial cells of muscles attached to the zeugopod, and are crucial for the proper embryonic patterning of these muscles. Hoxa11eGFP expression continues in a subset of muscle interstitial cells through adult stages. The induction of Hoxa11-CreERT2-mediated lineage reporting (Hoxa11iTom) at adult stages in mouse results in lineage induction only in the interstitial cells. However, Hoxa11iTom+ cells progressively contribute to muscle fibers at subsequent stages. The contribution to myofibers exceeds parallel Pax7-CreERT2-mediated lineage labeling. Nuclear-specific lineage labeling demonstrates that Hoxa11-expressing interstitial cells contribute nuclear contents to myofibers. Crucially, at no point after Hoxa11iTom induction are satellite cells lineage labeled. When examined in vitro, isolated Hoxa11iTom+ interstitial cells are not capable of forming myotubes, but Hoxa11iTom+ cells can contribute to differentiating myotubes, supporting Hox-expressing interstitial cells as a new population of muscle progenitors, but not stem cells. This work adds to a small but growing body of evidence that supports a satellite cell-independent source of muscle tissue in vivo.


Asunto(s)
Fibras Musculares Esqueléticas , Células Satélite del Músculo Esquelético , Ratones , Animales , Células Madre , Homeostasis , Células Satélite del Músculo Esquelético/metabolismo , Músculo Esquelético , Diferenciación Celular , Desarrollo de Músculos
2.
Cell Biol Int ; 48(2): 174-189, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37853939

RESUMEN

Geranylgeranyltransferase type I (GGTase-I) significantly affects Rho proteins, such that the malignant progression of several cancers may be induced. Nevertheless, the effect and underlying mechanism of GGTase-I in the malignant progression of salivary adenoid cystic carcinoma (SACC) remain unclear. This study primarily aimed to investigate the role and mechanism of GGTase-I in mediating the malignant progression of SACC. The level of GGTase-I gene in cells was stably knocked down by short hairpin RNA-EGFP-lentivirus. The effects of GGTase-I silencing on the migration, invasion, and spread of cells were examined, the messenger RNA levels of GGTase-I and RhoA genes of SACC cells after GGTase-I knockdown were determined, and the protein levels of RhoA and RhoA membrane of SACC cells were analyzed. Moreover, the potential underlying mechanism of silencing GGTase-I on the above-mentioned aspects in SACC cells was assessed by examining the protein expression of ROCK1, MLC, p-MLC, E-cadherin, Vimentin, MMP2, and MMP9. Furthermore, the underlying mechanism of SACC cells proliferation was investigated through the analysis of the expression of cyclinD1, MYC, E2F1, and p21CIP1/WAF1 . Besides, the change of RhoA level in SACC tissues compared with normal paracancer tissues was demonstrated through quantitative reverse-transcription polymerase chain reaction and western blot experiments. Next, the effect after GGTase-I silencing was assessed through the subcutaneous tumorigenicity assay. As indicated by the result of this study, the silencing of GGTase-I significantly reduced the malignant progression of tumors in vivo while decreasing the migration, invasion, and proliferation of SACC cells and RhoA membrane, Vimentin, ROCK1, p-MLC, MMP2, MMP9, MYC, E2F1, and CyclinD1 expression. However, the protein expression of E-cadherin and p21CIP1/WAF1 was notably upregulated. Subsequently, no significant transform of RhoA and MLC proteins was identified. Furthermore, RhoA expression in SACC tissues was significantly higher than that in paracancerous tissues. As revealed by the results of this study, GGTase-I shows a correlation with the proliferation of SACC through the regulation of cell cycle and may take on vital significance in the migration and invasion of SACC by regulating RhoA/ROCK1/MLC signaling pathway. GGTase-I is expected to serve as a novel exploration site of SACC.


Asunto(s)
Transferasas Alquil y Aril , Carcinoma Adenoide Quístico , Neoplasias de las Glándulas Salivales , Quinasas Asociadas a rho , Humanos , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Vimentina/metabolismo , Carcinoma Adenoide Quístico/genética , Carcinoma Adenoide Quístico/metabolismo , Carcinoma Adenoide Quístico/patología , Neoplasias de las Glándulas Salivales/genética , Neoplasias de las Glándulas Salivales/metabolismo , Neoplasias de las Glándulas Salivales/patología , Invasividad Neoplásica/genética , Puntos de Control del Ciclo Celular , Transducción de Señal , Proliferación Celular , Cadherinas/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica
3.
Environ Res ; 251(Pt 2): 118663, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38460667

RESUMEN

Although less toxic than hexavalent chromium, Cr (Ⅲ) species still pose a threat to human health. The Cr (Ⅵ) should be converted to Cr (0) instead of Cr (Ⅲ), which is still involved in biological detoxification filed. Herein, for the first time, it was found that Cr(Ⅵ) can be reduced into Cr(0) by Bacillus cereus FNXJ1-2-3, a way to completely harmless treatment of Cr(Ⅵ). The bacterial strain exhibited excellent performance in the reduction, sorption, and accumulation of Cr(Ⅵ) and Cr (Ⅲ). XPS etching characterization inferred that the transformation of Cr(Ⅵ) into Cr(0) followed a reduction pathway of Cr(Ⅵ)→Cr (Ⅲ)→metallic Cr(0), in which at least two secretory chromium reductases (ECrⅥ→Ⅲ and ECrⅢ→0) worked. Under the optimum condition, the yield ratio of Cr(0)/Cr (Ⅲ) reached 33.90%. In addition, the interfacial interactions, ion channels, chromium reductases, and external electron donors also contributed to the Cr(Ⅵ)/Cr(0) transformation. Findings of this study indicate that Bacillus cereus FNXJ1-2-3 is a promising bioremediation agent for Cr(Ⅵ) pollution control.


Asunto(s)
Bacillus cereus , Biodegradación Ambiental , Cromo , Bacillus cereus/metabolismo , Cromo/metabolismo , Adsorción , Contaminantes Químicos del Agua/metabolismo
4.
Mol Breed ; 43(9): 71, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37663546

RESUMEN

The phenotypic color of seeds is a complex agronomic trait and has economic and biological significance. The genetic control and molecular regulation mechanisms have been extensively studied. Here, we used a multi-omics strategy to explore the color formation in soybean seeds at a big data scale. We identified 13 large quantitative trait loci (QTL) for color with bulk segregating analysis in recombinant inbreeding lines. GWAS analysis of colors and decomposed attributes in 763 germplasms revealed associated SNP sites perfectly falling in five major QTL, suggesting inherited regulation on color during natural selection. Further transcriptomics analysis before and after color accumulation revealed 182 differentially expression genes (DEGs) in the five QTL, including known genes CHS, MYB, and F3'H involved in pigment accumulation. More DEGs with consistently upregulation or downregulation were identified as shared regulatory genes for two or more color formations while some DEGs were only for a specific color formation. For example, five upregulated DEGs in QTL qSC-3 were in flavonoid biosynthesis responsible for black and brown seed. The DEG (Glyma.08G085400) was identified in the purple seed only, which encodes gibberellin 2-beta-dioxygenase in the metabolism of colorful terpenoids. The candidate genes are involved in flavonoid biosynthesis, transcription factor regulation, gibberellin and terpenoid metabolism, photosynthesis, ascorbate and aldarate metabolism, and lipid metabolism. Seven differentially expressed transcription factors were also speculated that may regulate color formation, including a known MYB. The finds expand QTL and gene candidates for color formation, which could guide to breed better cultivars with designed colors. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01414-z.

5.
Am J Orthod Dentofacial Orthop ; 164(1): 5-13, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36813651

RESUMEN

INTRODUCTION: The objective of this study was to evaluate the relationship between maxillary transverse deficiency (MTD) diagnosed by 3 methods and molar angulation measured in 3-dimensions in patients with skeletal Class III malocclusion, which could give reference to the selection of diagnostic methods in MTD patients. METHODS: Cone-beam computed tomography data of 65 patients with skeletal Class III malocclusion (mean age 17.35 ± 4.45 years) were selected and imported into MIMICS software. Transverse deficiencies were evaluated by 3 methods, and molar angulations were measured after reconstructing 3-dimensional planes. Two examiners performed repeated measurements to assess the intraexaminer and interexaminer reliability. Pearson correlation coefficient analyses and linear regressions were performed to determine the relationship between a transverse deficiency and molar angulations. One-way analysis of variance was used to compare the diagnostic results of 3 methods. RESULTS: The novel molar angulation measurement method and 3 MTD diagnostic methods have the interexaminer and intraexaminer intraclass correlation coefficient values >0.6. The transverse deficiency diagnosed by 3 methods was significantly and positively correlated with the sum of molar angulation. There was a statistically significant difference for the transverse deficiencies diagnosed by the 3 methods. The transverse deficiency was significantly higher in Boston University's analysis than in Yonsei's analysis. CONCLUSIONS: Clinicians ought to choose the diagnostic methods properly, considering the feature of the 3 methods and the individual difference of each patient.


Asunto(s)
Maloclusión de Angle Clase III , Maloclusión , Humanos , Niño , Adolescente , Adulto Joven , Adulto , Reproducibilidad de los Resultados , Mandíbula , Maloclusión de Angle Clase III/diagnóstico por imagen , Diente Molar/diagnóstico por imagen , Maxilar/diagnóstico por imagen , Tomografía Computarizada de Haz Cónico , Cefalometría/métodos
6.
Mol Biol Rep ; 49(4): 2777-2784, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35006515

RESUMEN

BACKGROUND: In orthodontics, mechanical stress plays an important role in the process of bone remodeling. Mechanical stress has an effect on osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). However, the mechanism remains to be studied. The aim of this study is to investigate the effects of demethyltransferase fat mass and obesity-associated (FTO) on osteogenic differentiation of BMSCs under mechanical stress condition. METHODS AND RESULTS: The rat BMSCs were cultured in vitro, followed by flow cytometry to identify the cell surface antigens. Osteogenic differentiation of BMSCs was induced by mechanical stress by using the flexcell tension system for 6 h every day and 3 days in total. BMSCs were transfected by using plasmid for FTO knockdown. The expression level of FTO, hypoxia-inducible factor (HIF)-1α, runt-related transcription factor 2 (RUNX2), bone morphogenetic proteins (BMPs) and alkaline phosphatase (ALP) were measured by real-time qPCR, western blotting. ALP activity were determined by ALP staining assays. The expression of FTO and HIF-1α in BMSCs with mechanical stress were significantly higher than BMSCs without mechanical stress, also, the expression of osteogenic differentiation markers were higher in BMSCs with mechanical stress. Knockdown of FTO decreased expression of osteogenic differentiation marker and ALP activity in stretched BMSCs. In addition, the expression of HIF-1α was decreased after knocking down FTO. CONCLUSIONS: FTO promotes the expression of HIF-1α and osteogenic differentiation under the condition of mechanical stress. This finding may facilitate the clinical application of orthodontics and the mechanism research of mechanical stress-induced osteogenesis.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Animales , Células de la Médula Ósea , Diferenciación Celular/genética , Células Cultivadas , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/genética , Ratas , Estrés Mecánico , Regulación hacia Arriba
7.
Environ Res ; 204(Pt B): 112051, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34529971

RESUMEN

Anammox has been widely used for the treatment of nitrogen wastewater. However, the problem of stable NO2- supplement becomes one of the limiting factors. It is an effective method to obtain NO2- by denitrifying the NO3-, including the by-product of Anammox. In this study, NO2- was reinforced by bio-electrochemical system (BES) through the reaction of partial denitrification in situ in an Anammox reactor. Our results showed that both NO3- and NO2- can be reduced on the cathode with different Coulombic efficiencies. The reduction of NO3- amount increased with an increase in Inf-NO3-, which was greater than that of NO2-. The conversion amount of NO3- was 2.50% ± 17.25% to the theoretical Eff-NO3-, and the maximum reduction amount was 23.24% with the highest Coulombic efficiency of 3.56%. High throughput results showed that denitrifying bacteria, such as Limnobacter, Thauera, Denitratisoma, Nitrosomonas and Nitrospira, were attached to the cathode surface and in Anammox granular sludge. This study showed that NO2- can be supplied by reducing the by-product NO3- with denitrification cathode at Anammox environment in-situ.


Asunto(s)
Nitratos , Nitritos , Oxidación Anaeróbica del Amoníaco , Reactores Biológicos , Desnitrificación , Electrodos , Nitratos/análisis , Nitrógeno , Oxidación-Reducción , Aguas del Alcantarillado , Aguas Residuales
8.
Environ Sci Technol ; 55(24): 16770-16782, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34855387

RESUMEN

A complex dataset with 140 sampling events was generated using triple quadrupole gas chromatography-mass spectrometer to track the occurrence of 95 odorants in raw and finished water from 98 drinking water treatment plants in 31 cities across China. Data analysis identified more than 70 odorants with concentrations ranging from not detected to thousands of ng/L. In raw water, Pearson correlation analysis determined that thioethers, non-oxygen benzene-containing compounds, and pyrazines were classes of chemicals that co-occurred, and geosmin and p(m)-cresol, as well as cyclohexanone and benzaldehyde, also co-occurred, indicating similar natural or industrial sources. Based on classification and regression tree analysis, total dissolved organic carbon and geographical location were identified as major factors affecting the occurrence of thioethers. Indoles, phenols, and thioethers were well-removed through conventional and advanced treatment processes, while some aldehydes could be generated. For other odorants, higher removal was achieved by ozonation-biological activated carbon (39.3%) compared to the conventional treatment process (14.5%). To our knowledge, this is the first study to systematically identify the major odorants in raw water and determine suitable treatment strategies to control their occurrence by applying data analytics and statistical methods to the complex dataset. These provide informative reference for odor control and water quality management in drinking water industry.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Ciencia de los Datos , Materia Orgánica Disuelta , Odorantes/análisis , Contaminantes Químicos del Agua/análisis
9.
Connect Tissue Res ; 60(6): 544-554, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30938209

RESUMEN

Aim: Mechanical strain plays a crucial role in bone formation and remodeling. Hypoxia-inducible factor (HIF)-1α and TWIST are upstream of master regulators of osteogenesis, including runt-related transcription factor 2 (RUNX2) and bone morphogenetic proteins (BMPs). This study investigated the effect of the HIF-1α-TWIST pathway on cyclic mechanical stretch-induced osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs) and the underlying mechanism. Materials and Methods: BMSCs were isolated from bone marrow derived from the femurs and humeri of Sprague-Dawley rats. Osteogenic differentiation of BMSCs was induced by applying cyclic mechanical stretch using the Flexcell Tension System. HIF-1α and TWIST were knocked down using recombinant lentiviral vectors. Osteogenic differentiation was evaluated by real-time qPCR, western blotting, and the alkaline phosphatase (ALP) activity assay. Results: Cyclic mechanical stretch increased ALP activity and expression of HIF-1α and TWIST in BMSCs. Knockdown of HIF-1α decreased TWIST expression in stretched BMSCs. Moreover, knockdown of HIF-1α or TWIST enhanced cyclic mechanical stretch-induced osteogenic differentiation of BMSCs. In addition, knockdown of TWIST increased expression of RUNX2 and BMP2 in stretched BMSCs. Conclusions: The HIF-1α-TWIST signaling pathway inhibits cyclic mechanical stretch-induced osteogenic differentiation of BMSCs. This finding may facilitate cell and tissue engineering for clinical applications.


Asunto(s)
Células de la Médula Ósea/metabolismo , Diferenciación Celular , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Células Madre Mesenquimatosas/metabolismo , Osteogénesis , Estrés Mecánico , Proteína 1 Relacionada con Twist/metabolismo , Animales , Células de la Médula Ósea/citología , Masculino , Células Madre Mesenquimatosas/citología , Ratas , Ratas Sprague-Dawley
10.
J Environ Sci (China) ; 79: 100-110, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30784435

RESUMEN

A wide range of compounds with various structural features can cause taste and odor (T&O) problems in drinking water. It would be desirable to determine all of these compounds using a simple analytical method. In this paper, a sensitive method combining liquid-liquid extraction (LLE) with gas chromatography-triple quadrupole tandem mass spectrometry (GC-MS/MS) was established to simultaneously analyze 51 odor-causing compounds in drinking water, including organic sulfides, aldehydes, benzenes, phenols, ethers, esters, ketones, nitrogenous heterocyclic compounds, 2-methylisoborneol and geosmin. Three deuterated analogs of target analytes, dimethyl disulfide-d6, benzaldehyde-d6 and o-cresol-3,4,5,6-d4, were used to correct the variations in recovery, and five isotope-labeled internal standards (4-chlorotoluene-d4, 1, 4-dichlorobenzene-d4, naphthalene-d8, acenaphthene-d10, phenanthrene-d10 respectively) were used prior to analysis to correct the variations arising from instrument fluctuations and injection errors. The calibration curves of the target compounds showed good linearity (R2 > 0.99, level = 7), and method detection limits (MDLs) below 1/10 of the odor threshold concentrations were achieved for most of the odorants (0.10-20.55 ng/L). The average recoveries of most of the analytes in tap water samples were between 70% and 120%, and the method was reproducible (RSD < 20%, n = 7). Additionally, concentrations of odor-causing compounds in water samples collected from three drinking water treatment plants (DWTPs) were analyzed by this method. According to the results, dimethyl trisulfide, dimethyl disulfide and indole were considered to be the key odorants responsible for the swampy/septic odor. 2-Methylisoborneol and geosmin were detected as the main odor-causing compounds for musty/earthy odor in DWTP B.


Asunto(s)
Agua Potable/análisis , Odorantes/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Masas en Tándem
11.
Appl Opt ; 57(6): 1373-1377, 2018 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-29469836

RESUMEN

To improve the imaging speed of a confocal microscope with virtual structured detection, we have designed an optical system with rigid coordination control of the CCD, galvanometer scanner, and laser diode. In this system, the width of the coherent transfer function expands, which enhances the lateral resolution by a factor of 1.4. Also, the temporal image sequence is transformed to a spatial one so that multiple images can be acquired during a single exposure period of the CCD. This method increases the system imaging speed 25-fold at least, and an even higher speed can be achieved by further increasing the number of spots recorded during a single exposure period.

12.
World J Microbiol Biotechnol ; 34(12): 179, 2018 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-30456633

RESUMEN

Botryosphaeria kuwatsukai is an important fungal pathogen affecting pear fruits. However, infection processes of this fungus are still unclear. This study seeks to develop the fungal transformation of B. kuwatsukai by Agrobacterium tumefaciens-mediated transformation (ATMT), assess the reliability of appropriate vectors and examine the infection processes in vitro using a GFP labeled strain of B. kuwatsukai. To establish a highly effective transformation system in B. kuwatsukai, binary vectors containing various lengths of H3 promoters and TEF promoters fused with GFP and hygromycin B resistance gene cassettes were constructed. These cassettes were integrated into the genomic DNA of B. kuwatsukai with high transformation frequency by the ATMT method. Transformants showed strong expression of GFP and hygromycin B resistance genes in cells. Furthermore, we investigated if native promoters are more suitable to govern marker genes than other general promoters used in other filamentous fungi. The results obtained herein demonstrate that the vectors constructed in this study can be utilized with high transformation rate. Microscopic examinations also reveal that fungal hyphae undergo morphological changes during the infection process resulting in biotrophic stage of infected host cells. Our results provide genetic insights to further explore the infection processes of B. kuwatsukai.


Asunto(s)
Agrobacterium tumefaciens/genética , Ascomicetos/efectos de los fármacos , Ascomicetos/genética , Higromicina B/farmacología , Regiones Promotoras Genéticas/genética , Pyrus/microbiología , Transformación Genética , Agrobacterium tumefaciens/metabolismo , Antibacterianos/farmacología , Ascomicetos/crecimiento & desarrollo , Ascomicetos/patogenicidad , ADN Bacteriano/genética , ADN de Hongos , Farmacorresistencia Bacteriana/genética , Regulación Bacteriana de la Expresión Génica/genética , Marcadores Genéticos , Vectores Genéticos , Enfermedades de las Plantas/prevención & control , Virulencia
13.
Opt Express ; 25(3): 2872-2882, 2017 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-29519004

RESUMEN

Lateral resolution in confocal microscope is limited by the size of pinhole. In this paper, we attempt to introduce a new method to achieve structured detection through using spatial light modulator (SLM) to improve it. SLM modulates the Airy disk amplitude distribution according to the detection function in collection arm. Instead of using CCD to capture spot images and modulate them with numerical analysis in virtual structured detection (VSD), this method uses SLM to accomplish these aims with higher imaging rates. Based on simulation and the experiment results, it can be found that coherent transfer function expands and the resolution is 1.6 times as large as that of conventional confocal microscope.

14.
Mediators Inflamm ; 2015: 215761, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26441483

RESUMEN

Orthodontic force may lead to cell damage, circulatory disturbances, and vascular changes of the dental pulp, which make a hypoxic environment in pulp. In order to maintain the homeostasis of dental pulp, hypoxia will inevitably induce the defensive reaction. However, this is a complex process and is regulated by numerous factors. In this study, we established an experimental animal model of orthodontic tooth movement to investigate the effects of mechanical force on the expression of VEGF and HIF-1α in dental pulp. Histological analysis of dental pulp and expressions of HIF-1α and VEGF proteins in dental pulp were examined. The results showed that inflammation and vascular changes happened in dental pulp tissue in different periods. Additionally, there were significant changes in the expression of HIF-1α and VEGF proteins under orthodontic force. After application of mechanical load, expression of HIF-1α and VEGF was markedly positive in 1, 3, 7 d, and 2 w groups, and then it weakened in 4 w group. These findings suggested that the expression of HIF-1α and VEGF was enhanced by mechanical force. HIF-1α and VEGF may play an important role in retaining the homeostasis of dental pulp during orthodontic tooth movement.


Asunto(s)
Pulpa Dental/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Inmunohistoquímica , Masculino , Ratas , Ratas Wistar , Factor A de Crecimiento Endotelial Vascular/genética
15.
Environ Technol ; 45(10): 1908-1918, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36484541

RESUMEN

Wastewater with residual streptomycin sulphate usually contains high content of ammonia-nitrogen. However, the biological removal process of ammonia-nitrogen under streptomycin sulphate circumstance was unclear. In this study, short-term and long-term effects of streptomycin sulphate on biological nitrification systems, including AOB, NOB, SAOR, SNOR and SNPR, were evaluated comprehensively. The results indicated IC50 for AOB and NOB were 7.5 and 6.6 mg/L. SAOR and SNPR could be decreased to 3.43 ± 0.52 mg N/(g MLSS·h) and 0.24 ± 0.03 mg N/(g MLSS·h) while the addition of streptomycin sulphate was 10 mg/L. When streptomycin sulphate addition was stopped, nitrification ability recovered slightly, SAOR and SNPR increased to 9.37 ± 0.36 mg N/(g MLSS·h) and 1.66 ± 0.49 mg N/(g MLSS·h), respectively. The protein of EPS increased gradually during the acclimatization process, and the maximal protein value was 68.24 mg/g MLSS on the 100th day, however, no significant change of polysaccharose was observed during the acclimatization process. High abundance of ARGs and intI1 was detected in effluent and sludge of the biological treatment system. The maximal relative abundance of aadA1 in the sludge appeared on the 140th day, and increased by 0.99 orders of magnitude. Biological diversity decreased significantly during the acclimatization process, relative abundance of nitrosomonas was changed from 9.07% to 38.68% on the 61st day, while relative abundance of nitrobacter was changed from 1.30% to 0.64%. It should be noted that relative abundances of nitrosomonas and nitrobacter were reduced to 16.17% and 0.25% on the 140th day. This study would be helpful for nitrogen removal in wastewater with antibiotic.


Asunto(s)
Microbiota , Aguas del Alcantarillado , Aguas Residuales , Antibacterianos , Estreptomicina/farmacología , Estreptomicina/metabolismo , Nitrificación , Amoníaco/metabolismo , Nitritos/metabolismo , Reactores Biológicos , Farmacorresistencia Microbiana , Nitrobacter/metabolismo , Nitrógeno/metabolismo , Oxidación-Reducción
16.
PLoS One ; 19(4): e0302361, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38687802

RESUMEN

Growing evidence has increasingly suggested a potential linkage between the oral microbiome and various diseases, including pancreatic ductal adenocarcinoma (PDAC). However, the utilization of gene-level information derived from the oral microbiome for diagnosing PDAC remains unexplored. In this study, we sought to investigate the novel potential of leveraging genomic signatures associated with antibiotic resistance genes (ARGs) within the oral microbiome for the diagnosis of PDAC. By conducting an analysis of oral microbiome samples obtained from PDAC patients, we successfully identified specific ARGs that displayed distinct sequence abundance profiles correlated with the presence of PDAC. In the healthy group, three ARGs were found to be enriched, whereas 21 ARGs were enriched in PDAC patients. Remarkably, these ARGs from oral microbiome exhibited promising diagnostic capabilities for PDAC (AUROC = 0.79), providing a non-invasive and early detection method. Our findings not only provide novel modal data for diagnosing PDAC but also shed light on the intricate interplay between the oral microbiome and PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Microbiota , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/microbiología , Neoplasias Pancreáticas/diagnóstico , Microbiota/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/microbiología , Carcinoma Ductal Pancreático/diagnóstico , Femenino , Masculino , Boca/microbiología , Persona de Mediana Edad , Farmacorresistencia Microbiana/genética , Anciano , Genómica/métodos
17.
Chemosphere ; 350: 141043, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154675

RESUMEN

Fishy odor, as an offensive and unpleasant odor, could occur in drinking water source with poor nutrition, it is usually considered to be associated with odor-producing microalgae. However, the specific relations among fishy odor, fishy odorants and responsible microalgae were not elucidated comprehensively. In this paper, the odor-causing compounds generated from six microalgae with fishy odor characteristic, isolated in drinking water source Tongyu River, were identified simultaneously. The sensory evaluation result indicated that Tongyu River was principally related to fishy odor (odor intensity 6.5-7.6). Correspondingly, seven, nine, seven, six, seven and seven olfactory detection peaks (ODP) were screened by combining data of GC/O/MS and GC/GC/TOFMS in Cyclotella, Cryptomonas ovate, Melosira, Dinobryon sp., Synedra and Ochromonas sp., which were isolated in Tongyu River and cultured in laboratory. Totally twenty odor-causing compounds, including hexanal, 2-hexenal, 3-hexen-1-ol, heptanal, 1-octen-3-one, 2,4-heptadienal, 2-tetradecanone, 3,5-octadien-2-one, octanal, 1-octen-3-ol, 2-octenal, nonanal, 2,4-octadienal, 2-nonenal, decanal, 2,6-nonadienal, 2-decenal, undecanal, 2,4-decadienal and dodecanal, were screened and identified in all isolated microalgae. Additionally, fishy odor intensity for all identified microalgae increased obviously as microalgae cell number increased and microalgae cell ruptured in cultivation cycles through pearson and spearman correlation analysis. For the first time, twenty odor-causing compounds associating with fishy odor were recognized from six isolated microalgae, which would provide more scientific basis and theoretical support for preventing and treating fishy odor episode of drinking water source.


Asunto(s)
Diatomeas , Agua Potable , Microalgas , Compuestos Orgánicos Volátiles , Odorantes/análisis , Agua Potable/análisis , Olfato , Cromatografía de Gases y Espectrometría de Masas , Compuestos Orgánicos Volátiles/análisis
18.
Sci Rep ; 14(1): 15023, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951593

RESUMEN

Proline 4-hydroxylase 2 (P4HA2) is known for its hydroxylase activity, primarily involved in hydroxylating collagen precursors and promoting collagen cross-linking under physiological conditions. Although its overexpression influences a wide variety of malignant tumors' occurrence and development, its specific effects and mechanisms in oral squamous cell carcinoma (OSCC) remain unclear. This study focused on investigating the expression patterns, carcinogenic functions, and underlying mechanisms of P4HA2 in OSCC cells. Various databases, including TCGA, TIMER, UALCAN, GEPIA, and K-M plotter, along with paraffin-embedded samples, were used to ascertain P4HA2 expression in cancer and its correlation with clinicopathological features. P4HA2 knockdown and overexpression cell models were developed to assess its oncogenic roles and mechanisms. The results indicated that P4HA2 was overexpressed in OSCC and inversely correlated with patient survival. Knockdown of P4HA2 suppressed invasion, migration, and proliferation of OSCC cells both in vitro and in vivo, whereas overexpression of P4HA2 had the opposite effects. Mechanistically, the phosphorylation levels of the PI3K/AKT pathway were reduced following P4HA2 silencing. The study reveals that P4HA2 acts as a promising biomarker for predicting prognosis in OSCC and significantly affects metastasis, invasion, and proliferation of OSCC cells through the regulation of the PI3K/AKT signaling pathway.


Asunto(s)
Carcinoma de Células Escamosas , Movimiento Celular , Proliferación Celular , Neoplasias de la Boca , Invasividad Neoplásica , Fosfatidilinositol 3-Quinasas , Procolágeno-Prolina Dioxigenasa , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Procolágeno-Prolina Dioxigenasa/metabolismo , Procolágeno-Prolina Dioxigenasa/genética , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Regulación Neoplásica de la Expresión Génica , Animales , Ratones , Femenino , Masculino , Metástasis de la Neoplasia , Persona de Mediana Edad , Ratones Desnudos
19.
Sci Total Environ ; 905: 166998, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37716685

RESUMEN

In this study, odor characteristics and phytoplankton composition were systematically investigated in two winter periods in a reservoir with fishy odor in north China. Ten potential fishy odor-producing algae were isolated and odorant-producing potentials were evaluated. Olfactometry profile and odorant composition of water samples were analyzed using GC-Olfactometry combined with GC × GC-TOFMS. The results showed that 2,4-heptadienal and hexanal were major fishy odor contributors. The abundance of Uroglena sp., Synura sp. and Peridinium sp. was negatively correlated with total dissolved organic carbon, ammonia nitrogen, and nitrate, illustrating nutrient level might be major drivers for the succession of fishy odor-producing algae. Dinobryon sp. and Uroglena sp. made the greatest contribution to fishy odor, followed by Peridinium sp., Synura sp., and Ochromonas sp. Fishy odor in 2016 winter and the early of 2017 winter was mainly caused by Dinobryon sp., while Uroglena sp. contributes mostly in March in 2017 winter. This study demonstrates the main odorants and algae causing fishy odor in reservoir, which will provide a scientific basis for the management of seasonal fishy odor problems in water source.


Asunto(s)
Ochromonas , Odorantes , Agua , Temperatura , Olfatometría/métodos
20.
Microbiol Spectr ; 11(1): e0039022, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36625645

RESUMEN

Wheat dwarf bunt leads to the replacement of seeds with fungal galls containing millions of teliospores of the pathogen Tilletia controversa Kühn. As one of the most devastating internationally quarantined wheat diseases, wheat dwarf bunt spreads to cause distant outbreaks by seeds containing teliospores. In this study, based on a combination of amplicon sequencing and isolation approaches, we analyzed the seed microbiome signatures of endophytes between resistant and susceptible cultivars after infection with T. controversa. Among 310 bacterial species obtained only by amplicon sequencing and 51 species obtained only by isolation, we found 14 overlapping species by both methods; we detected 128 fungal species only by amplicon sequencing, 56 only by isolation, and 5 species by both methods. The results indicated that resistant uninfected cultivars hosted endophytic communities that were much more stable and beneficial to plant health than those in susceptible infected cultivars. The susceptible group showed higher diversity than the resistant group, the infected group showed more diversity than the uninfected group, and the microbial communities in seeds were related to infection or resistance to the pathogen. Some antagonistic microbes significantly suppressed the germination rate of the pathogen's teliospores, providing clues for future studies aimed at developing strategies against wheat dwarf bunt. Collectively, this research advances the understanding of the microbial assembly of wheat seeds upon exposure to fungal pathogen (T. controversa) infection. IMPORTANCE This is the first study on the microbiome signature of endophytes in wheat seed response to wheat dwarf bunt caused by Tilletia controversa Kühn. Some antagonistic microbes suppressed the germination of teliospores of the pathogen significantly, which will provide clues for future studies against wheat dwarf bunt. Collectively, this research first advances the understanding of the microbial assembly of wheat seed upon exposure to the fungal pathogen (T. controversa) infection.


Asunto(s)
Basidiomycota , Triticum , Triticum/microbiología , Endófitos/genética , Basidiomycota/genética , Semillas , Enfermedades de las Plantas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA