Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Entropy (Basel) ; 26(4)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38667846

RESUMEN

This paper concentrates on the finite-time H∞ control problem for a type of stochastic discrete-time Markovian jump systems, characterized by time-delay and partly unknown transition probabilities. Initially, a stochastic finite-time (SFT) H∞ state feedback controller and an SFT H∞ observer-based state feedback controller are constructed to realize the closed-loop control of systems. Then, based on the Lyapunov-Krasovskii functional (LKF) method, some sufficient conditions are established to guarantee that closed-loop systems (CLSs) satisfy SFT boundedness and SFT H∞ boundedness. Furthermore, the controller gains are obtained with the use of the linear matrix inequality (LMI) approach. In the end, numerical examples reveal the reasonableness and effectiveness of the proposed designing schemes.

2.
BMC Public Health ; 23(1): 2371, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38031053

RESUMEN

BACKGROUND: An increasing number of systematic reviews (SRs) in the environmental field have been published in recent years as a result of the global concern about the health impacts of air pollution and temperature. However, no study has assessed and compared the methodological and reporting quality of SRs on the health effects of air pollutants and extreme temperatures. This study aims to assess and compare the methodological and reporting quality of SRs on the health effects of ambient air pollutants and extreme temperatures. METHODS: PubMed, Embase, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), Cochrane Library, Web of Science, and Epistemonikos databases were searched. Two researchers screened the literature and extracted information independently. The methodological quality of the SRs was assessed through A Measurement Tool to Assess Systematic Reviews 2 (AMSTAR 2). The reporting quality was assessed through Preferred Reporting Items of Systematic reviews and Meta-Analyses (PRISMA). RESULTS: We identified 405 SRs (286 for air pollution, 108 for temperature, and 11 for the synergistic effects). The methodological and reporting quality of the included SRs were suboptimal, with major deficiencies in protocol registration. The methodological quality of SRs of air pollutants was better than that of temperature, especially in terms of satisfactory explanations for any heterogeneity (69.6% v. 45.4%). The reporting quality of SRs of air pollution was better than temperature, however, adherence to the reporting of the assessment results of risk of bias in all SRs (53.5% v. 34.3%) was inadequate. CONCLUSIONS: Methodological and reporting quality of SRs on the health effect of air pollutants were higher than those of temperatures. However, deficiencies in protocol registration and the assessment of risk of bias remain an issue for both pollutants and temperatures. In addition, developing a risk-of-bias assessment tool applicable to the temperature field may improve the quality of SRs.


Asunto(s)
Contaminantes Atmosféricos , Revisiones Sistemáticas como Asunto , Humanos , Contaminantes Atmosféricos/efectos adversos , Calor , Proyectos de Investigación , Informe de Investigación , Temperatura
3.
Entropy (Basel) ; 25(3)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36981291

RESUMEN

This paper deals with the problems of finite-time boundedness (FTB) and H∞ FTB for time-delay Markovian jump systems with a partially unknown transition rate. First of all, sufficient conditions are provided, ensuring the FTB and H∞ FTB of systems given by linear matrix inequalities (LMIs). A new type of partially delay-dependent controller (PDDC) is designed so that the resulting closed-loop systems are finite-time bounded and satisfy a given H∞ disturbance attenuation level. The PDDC contains both non-time-delay and time-delay states, though not happening at the same time, which is related to the probability distribution of the Bernoulli variable. Furthermore, the PDDC is extended to two other cases; one does not contain the Bernoulli variable, and the other experiences a disordering phenomenon. Finally, three numerical examples are used to show the effectiveness of the proposed approaches.

4.
Environ Sci Pollut Res Int ; 30(38): 88272-88280, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37440140

RESUMEN

Air pollution and global temperature change are expected to affect infectious diseases. Air pollution usually causes inflammatory response and disrupts immune defense system, while temperature mainly exacerbates the effect of vectors on humans. Yet to date overview of systematic reviews assessing the exposure risk of air pollutants and temperature on infectious diseases is unavailable. This article aims to fill this research gap. PubMed, Embase, the Cochrane Library, Web of Science, and the Cumulative Index to Nursing and Allied Health Literature were searched. Systematic reviews and meta-analyses investigated the exposure risk of pollutants or temperature on infectious diseases were included. Two investigators screened literature, extracted data and performed the risk of bias assessments independently. A total of 23 articles met the inclusion criteria, which 3 (13%) were "low" quality and 20 (87%) were "critically low" quality. COVID-19 morbidity was associated with long-term exposure PM2.5 (RR = 1.056 per 1 [Formula: see text], 95% CI: 1.039-1.072) and NO2 (RR = 1.042 per 1 [Formula: see text], 95% CI: 1.017-1.068). In addition, for each 1 °C increase in temperature, the morbidity risk of dengue increased 13% (RR = 1.130 per 1 °C, 95% CI: 1.120-1.150), infectious diarrhea increased 8% (RR = 1.080 per 1 °C, 95% CI: 1.050-1.200), and hand, foot and mouth disease (HFMD) increased 5% (RR = 1.050 per 1 °C, 95% CI: 1.020-1.080). In conclusion, PM2.5 and NO2 increased the risk of COVID-19 and temperatures were associated with dengue, infectious diarrhoea and HFMD morbidity. Moreover, the exposure risk of temperature on COVID-19 was recommended to be further explored.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Enfermedades Transmisibles , Dengue , Humanos , Temperatura , Dióxido de Nitrógeno/análisis , Biodiversidad , Exposición a Riesgos Ambientales/análisis , COVID-19/epidemiología , Revisiones Sistemáticas como Asunto , Contaminación del Aire/análisis , Contaminantes Atmosféricos/análisis , Medición de Riesgo , Material Particulado/análisis , Enfermedades Transmisibles/epidemiología
5.
Water Environ Res ; 92(10): 1811-1817, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33463864

RESUMEN

The present work provides a review focusing on contaminants of emerging concern (CECs) in aquatic environment, with an emphasis on their occurrence, monitoring, fate, and risk assessment in the research published in the scientific literature in 2019. Several studies revealed that these organic contaminants were detected in many water bodies and suspect, nontarget, and target screening provided an efficient detection for the co-existing organic substances with complex components. Wastewater resource recovery facilities were concurrently considered as a central source, and several specific chemicals have been found to be used as chemical markers to track the source of CECs in some urban watersheds. Reliable monitoring, reliable fate/toxicity assessment, and effective removal that consider CECs as a heterogeneous group rather than single substances will be the challenges for the research community in the future.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , Medición de Riesgo , Aguas Residuales , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA