Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Sci Food Agric ; 104(7): 4058-4069, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38270478

RESUMEN

BACKGROUND: Intestinal development and function are critical to maintaining sustained broiler growth. The present study aimed to evaluate the effects of coated sodium butyrate (CSB) and vitamin D3 (VD3) on the intestinal immunity, barrier, oxidative stress and microflora in early-stage broilers. In total, 192 one-day-old broilers were assigned to a 2 × 2 factorial design including two dietary supplements at two different levels, in which the main effects were VD3 (3000 or 5000 IU kg-1) and CSB (0 or 1 g kg-1). RESULTS: The results showed that CSB supplementation increased ileal goblet cells (GCs) numbers, villus height and decreased crypt depth in broilers. CSB increased ileal proliferating cell nuclear antigen expression and high-level VD3 decreased cluster of differentiation 3 expression. CSB reduced serum d-lactate, endotoxin (ET), adrenocorticotropic hormone, corticosterone and malondialdehyde (MDA) concentrations and increased total antioxidant capacity (T-AOC) level. Meanwhile, high-level VD3 decreased serum ET concentration. Furthermore, CSB increased ileal T-AOC, lysozyme (LYZ) and transforming growth factor (TGF)-ß and decreased MDA, whereas high-level VD3 decreased ileal MDA and increased secretory immunoglobulin A. CSB up-regulated ileal claudin1, superoxide dismutase 1, TGF-ß and LYZ mRNA expression and down-regulated interleukin-1ß mRNA expression. CSB combined with high-level VD3 increased ileal Faecalibaculum abundance. Spearman correlation analysis showed that Faecalibaculum was related to the immune and barrier function. CONCLUSION: Dietary supplementation with CSB and high-level VD3 improved early gut health in broilers by promoting intestinal development, enhancing antioxidant capacity, strengthening barrier function and enhancing the favorable composition of the gut bacterial flora. © 2024 Society of Chemical Industry.


Asunto(s)
Antioxidantes , Dieta , Animales , Dieta/veterinaria , Antioxidantes/metabolismo , Pollos/metabolismo , Ácido Butírico/metabolismo , Colecalciferol/farmacología , Suplementos Dietéticos/análisis , ARN Mensajero/metabolismo , Alimentación Animal/análisis
2.
Anesth Analg ; 136(6): 1206-1216, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36947459

RESUMEN

BACKGROUND: The anesthetic isoflurane can cause neurotoxicity in fetuses and offspring of rats, affecting their neurodevelopment. However, the underlying mechanisms and therapeutic targets of isoflurane-induced neurotoxicity remain to be identified. Alfaxalone (ALF) is a steroid anesthetic. Steroids have been reported to have neuroprotective effects. This study aimed to investigate whether ALF could alleviate the isoflurane-induced neurotoxicity in fetuses and offspring of rats. METHODS: On gestation day 15 (G15), the pregnant SD rats were randomly assigned to 4 groups: control 1 (CTL1) + control 2 (CTL2), isoflurane (ISO) + CTL2, CTL1 + ALF, and ISO + ALF. To analyze the changes in the expression levels of inflammatory cytokines, apoptotic factors, and synaptophysin, the brain tissues from the G15 fetuses and offspring at postnatal day 7 (P7), postnatal day 14 (P14), and postnatal day 31 (P31) were collected. The newborn neurons in the rats' offspring at P7, P14, and P31 were counted using immunofluorescence techniques. The Morris water maze (MWM) test was performed to assess the learning and memory abilities of P31 offspring rats. RESULTS: ALF significantly alleviated the isoflurane-induced increase in the expression levels of inflammatory cytokines and apoptotic factors, such as interleukin (IL)-6 (ISO + CTL2 versus ISO + ALF: 5.133 ± 0.739 versus 1.093 ± 0.213, P < .001) and Caspase-3 (6.457 ± 0.6 versus 1.062 ± 0.1, P < .001) in the G15 fetuses. In P31 offspring rats, the expression levels of synaptophysin (0.719 ± 0.04 versus 1.068 ± 0.072, P < .001) and the number of newborn neurons in the dentate gyrus of the hippocampus were significantly lower in the ISO + CTL2 group as compared to those in the ISO + ALF group (118 ± 6 versus 140 ± 7, P < .001). These changes also occurred in the rat offspring at P7 and P14. In the MWM test, the escape latency of CTL1 + ALF group rats was significantly lower than that of ISO + ALF group rats (41 ± 6 versus 31 ± 7, P < .001) at P31. CONCLUSIONS: Based on these findings, this study suggested that isoflurane exposure during pregnancy in rats could cause neuroinflammation and death of embryos as well as impairment of cognitive function in the offspring rats. ALF can be used to counteract the negative effects of isoflurane.


Asunto(s)
Anestesia , Anestésicos por Inhalación , Disfunción Cognitiva , Isoflurano , Embarazo , Femenino , Ratas , Animales , Isoflurano/efectos adversos , Sinaptofisina/metabolismo , Anestésicos por Inhalación/efectos adversos , Ratas Sprague-Dawley , Aprendizaje por Laberinto , Hipocampo , Disfunción Cognitiva/inducido químicamente , Citocinas/metabolismo
3.
Int J Nanomedicine ; 19: 1667-1681, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38406604

RESUMEN

Introduction: Hydroxylapatite (HAp) is a biodegradable bone graft material with high biocompatibility. However, the clinical application of HAp has been limited due to the poor absorption rate in vivo. Methods: In this study, carbonated hydroxylapatite (CHAp) with a chemical composition similar to natural bone was synthesized. HAp and CHAp scaffolds were fabricated by 3D printing. Each material was designed by two types of scaffold model with a maximum width of 8 mm and a thickness of 2 mm, ie, structure I (round shape) and structure II (grid shape). Then, the HAp scaffolds were loaded with lutein. These scaffolds were implanted into the 8 mm bone defect on the top of the rabbit skull within 3 hours in the morning. The curative effects of the scaffolds were assessed two months after implantation. Results: The 3D printed scaffolds did not cause severe inflammation or rejection after implantation. It showed that the porous structures allow bone cells to enter into the scaffolds. Furthermore, CHAp scaffolds were more biocompatible than HAp scaffolds, and showed a higher level of degradation and new bone formation after implantation. Structure II scaffolds with a smaller mineral content degraded faster than structure I, while structure I had better osteoconductive properties than structure II. Besides, the addition of lutein significantly enhanced the rate of new bone formation. Discussion: The uniqueness of this study lies in the synthesis of 3D printed CHAp scaffolds and the implantation of CHAp in rabbit bone defects. The incorporation of suitable carbonate and lutein into HAp can enhance the osteoinductivity of the graft, and CHAp has a faster degradation rate in vivo, all of which provide a new reference for the research and application of apatite-based composites.


Asunto(s)
Materiales Biocompatibles , Durapatita , Animales , Conejos , Durapatita/química , Materiales Biocompatibles/química , Andamios del Tejido/química , Luteína , Regeneración Ósea , Cráneo/cirugía , Impresión Tridimensional , Osteogénesis , Ingeniería de Tejidos/métodos , Porosidad
4.
Front Vet Sci ; 10: 1254998, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026614

RESUMEN

Objective: Larger diameter sutures can provide sufficient tensile strength to surgical incisions but may exacerbate the inflammatory response caused by the amount of implanted foreign material. This experiment aims to investigate the differences in biomechanical stability and tissue reactivity after suturing canine midline abdominal incisions with different suture sizes. Method: Assessing the biomechanical differences between USP 2-0, 3-0, and 4-0 PGA sutures using uniaxial tensile testing on ex vivo canine midline skin and fascial muscle tissues using either a simple continuous or simple interrupted technique. mRNA and protein expression levels of inflammatory factors were measured through RT-PCR and ELISA. Tissue reactivity was evaluated using a semi-quantitative scoring system. Result: For strains below 30% in skin and below 50% in muscle, there were no significant differences among groups. The results of skin biomechanical testing showed that the USP 4-0 PGA suture group demonstrated significantly lower maximum tensile strength compared to the USP 2-0 PGA or USP 3-0 PGA suture groups. However, it remained capable of providing at least 56.3 N (1.03 MPa) tensile strength for canine skin incisions, matching the tensile strength requirements of general canine abdominal wall surgical incisions. In addition, there were no statistically significant differences observed in the maximum tensile strength among different size of sutures according to the data of biomechanical testing in muscle. Larger diameter sutures led to increased levels of inflammatory factors (IL-1ß, IL-6, TNF-ɑ) and tissue reactivity. Simple interrupted sutures caused higher levels of inflammatory factors in muscular tissue compared to simple continuous sutures. Conclusion: USP 4-0 PGA sutures provide sufficient biomechanical stability for suturing canine abdominal skin and linea alba. Suture size significantly influences tissue reactivity after suturing, with smaller gauge sutures reducing early tissue inflammatory response. Thus, USP 4-0 PGA suture has more advantages to suturing canine abdominal surgical incisions.

5.
Res Vet Sci ; 156: 88-94, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36796240

RESUMEN

OBJECTIVE: Proper assessment of intraoperative abdominal incisional tension helps to select the appropriate sutures and suture method. Wound tension is usually thought to be associated with wound size, but few relevant articles have been reported. The aim of this study was to investigate the core factors influencing abdominal incisional tension and construct regression equations to judge incisional tension in clinical surgery. METHODS: Medical records were collected from clinical surgical cases at the Teaching Animal Hospital of Nanjing Agricultural University from March 2022 to June 2022. The data collected mainly included the body weight, and the incisional length, margin, and tension. The core factors affecting abdominal wall incisional tension were screened by correlation analysis, random forest analysis, and multiple linear regression analysis. RESULTS: Although correlation analysis showed that multiple same and deep layer abdominal incision parameters and body weight were significantly correlated with abdominal incisional tension. However, the same layer of abdominal incisional margin had the largest correlation coefficient. In random forest models, the abdominal incisional margin had the main contribution to the prediction of the same layer's abdominal incisional tension. In the multiple linear regression model, all incisional tension could be predicted by the same layer of abdominal incisional margin as the only independent variable, except for canine muscle and subcutaneous. The canine muscle and subcutaneous incisional tension were binary regressions with the same layer's abdominal incision margin and body weight. CONCLUSION: The same layer's abdominal incisional margin is the core factor positively related to the abdominal incisional tension intraoperatively.


Asunto(s)
Pared Abdominal , Enfermedades de los Gatos , Enfermedades de los Perros , Perros , Gatos , Animales , Pared Abdominal/cirugía , Enfermedades de los Perros/cirugía , Peso Corporal , Técnicas de Sutura/veterinaria
6.
Front Microbiol ; 13: 992034, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532441

RESUMEN

Hydrothermal vent (HTV) systems are important habitats for understanding the biological processes of extremophiles on Earth and their relative contributions to material and energy cycles in the ocean. Current understanding on hydrothermal systems have been primarily focused on deep-sea HTVs, and little is known about the functions and metabolisms of microorganisms in shallow-water HTVs (SW-HTVs), which are distinguished from deep-sea HTVs by a depth limit of 200 m. In this study, we analyzed metagenomes of sulfur-rich sediment samples collected from a SW-HTV of Kueishan Island, located in a marginal sea of the western Pacific Ocean. Comparing with a previously published report of pelagic samples from the nearby sampling site, microbial communities in the SW-HTV sediments enriching with genes of both aerobic and anaerobic respiration inferred variable environments in the tested sediments. Abundant genes of energy metabolism encoding sulfur oxidation, H2 oxidation, and carbon fixation were detected from the sediment samples. Sixty-eight metagenome-assembled-genomes (MAGs) were reconstructed to further understand the metabolism and potential interactions between different microbial taxa in the SW-HTVs sediment. MAGs with the highest abundant were chemolithotrophic sulfur-oxidization bacteria, including Sulfurovum represented Campylobacteria involved sox multienzyme, sulfide oxidation genes and rTCA cycle, and Gammaproteobacteria involved dsr gene and CBB cycle. In addition, Desulfobacterota with the potential to participate in sulfur-disproportionating processes also had higher abundance than the sample's overall mean value. The interaction of these bacterial groups allows the microbial communities to efficiently metabolize a large variety of sulfur compounds. In addition, the potential to use simple organic carbon, such as acetate, was found in chemolithotrophic Campylobacterial MAGs. Collectively, our results revealed the complexity of environmental conditions of the vent sediment and highlight the interactive relationships of the dominant microbial populations in driving sulfur cycles in the SW-HTV sediments off Kueishan Island.

7.
Nanomaterials (Basel) ; 13(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36616089

RESUMEN

Electronic skin (e-skin) has attracted tremendous interest due to its diverse potential applications, including in physiological signal detection, health monitoring, and artificial throats. However, the major drawbacks of traditional e-skin are the weak adhesion of substrates, incompatibility between sensitivity and stretchability, and its single function. These shortcomings limit the application of e-skin and increase the complexity of its multifunctional integration. Herein, the synergistic network of crosslinked SWCNTs within and between multilayered graphene layers was directly drip coated onto the PU thin film with self-adhesion to fabricate versatile e-skin. The excellent mechanical properties of prepared e-skin arise from the sufficient conductive paths guaranteed by SWCNTs in small and large deformation under various strains. The prepared e-skin exhibits a low detection limit, as small as 0.5% strain, and compatibility between sensitivity and stretchability with a gauge factor (GF) of 964 at a strain of 0-30%, and 2743 at a strain of 30-60%. In physiological signals detection application, the e-skin demonstrates the detection of subtle motions, such as artery pulse and blinking, as well as large body motions, such as knee joint bending, elbow movement, and neck movement. In artificial throat application, the e-skin integrates sound recognition and sound emitting and shows clear and distinct responses between different throat muscle movements and different words for sound signal acquisition and recognition, in conjunction with superior sound emission performance with a sound spectrum response of 71 dB (f = 12.5 kHz). Overall, the presented comprehensive study of novel materials, structures, properties, and mechanisms offers promising potential in physiological signals detection and artificial throat applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA