Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(5): e17335, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38771086

RESUMEN

Global climate change has altered the timing of seasonal events (i.e., phenology) for a diverse range of biota. Within and among species, however, the degree to which alterations in phenology match climate variability differ substantially. To better understand factors driving these differences, we evaluated variation in timing of nesting of eight Arctic-breeding shorebird species at 18 sites over a 23-year period. We used the Normalized Difference Vegetation Index as a proxy to determine the start of spring (SOS) growing season and quantified relationships between SOS and nest initiation dates as a measure of phenological responsiveness. Among species, we tested four life history traits (migration distance, seasonal timing of breeding, female body mass, expected female reproductive effort) as species-level predictors of responsiveness. For one species (Semipalmated Sandpiper), we also evaluated whether responsiveness varied across sites. Although no species in our study completely tracked annual variation in SOS, phenological responses were strongest for Western Sandpipers, Pectoral Sandpipers, and Red Phalaropes. Migration distance was the strongest additional predictor of responsiveness, with longer-distance migrant species generally tracking variation in SOS more closely than species that migrate shorter distances. Semipalmated Sandpipers are a widely distributed species, but adjustments in timing of nesting relative to variability in SOS did not vary across sites, suggesting that different breeding populations of this species were equally responsive to climate cues despite differing migration strategies. Our results unexpectedly show that long-distance migrants are more sensitive to local environmental conditions, which may help them to adapt to ongoing changes in climate.


Asunto(s)
Migración Animal , Cambio Climático , Comportamiento de Nidificación , Estaciones del Año , Animales , Regiones Árticas , Migración Animal/fisiología , Femenino , Charadriiformes/fisiología , Reproducción
2.
Glob Chang Biol ; 30(6): e17356, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38853470

RESUMEN

Seasonally abundant arthropods are a crucial food source for many migratory birds that breed in the Arctic. In cold environments, the growth and emergence of arthropods are particularly tied to temperature. Thus, the phenology of arthropods is anticipated to undergo a rapid change in response to a warming climate, potentially leading to a trophic mismatch between migratory insectivorous birds and their prey. Using data from 19 sites spanning a wide temperature gradient from the Subarctic to the High Arctic, we investigated the effects of temperature on the phenology and biomass of arthropods available to shorebirds during their short breeding season at high latitudes. We hypothesized that prolonged exposure to warmer summer temperatures would generate earlier peaks in arthropod biomass, as well as higher peak and seasonal biomass. Across the temperature gradient encompassed by our study sites (>10°C in average summer temperatures), we found a 3-day shift in average peak date for every increment of 80 cumulative thawing degree-days. Interestingly, we found a linear relationship between temperature and arthropod biomass only below temperature thresholds. Higher temperatures were associated with higher peak and seasonal biomass below 106 and 177 cumulative thawing degree-days, respectively, between June 5 and July 15. Beyond these thresholds, no relationship was observed between temperature and arthropod biomass. Our results suggest that prolonged exposure to elevated temperatures can positively influence prey availability for some arctic birds. This positive effect could, in part, stem from changes in arthropod assemblages and may reduce the risk of trophic mismatch.


Asunto(s)
Artrópodos , Biomasa , Estaciones del Año , Temperatura , Animales , Regiones Árticas , Artrópodos/fisiología , Cambio Climático , Cadena Alimentaria , Charadriiformes/fisiología , Migración Animal
3.
PLoS One ; 19(6): e0304495, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38875228

RESUMEN

Discerning assimilated diets of wild animals using stable isotopes is well established where potential dietary items in food webs are isotopically distinct. With the advent of mixing models, and Bayesian extensions of such models (Bayesian Stable Isotope Mixing Models, BSIMMs), statistical techniques available for these efforts have been rapidly increasing. The accuracy with which BSIMMs quantify diet, however, depends on several factors including uncertainty in tissue discrimination factors (TDFs; Δ) and identification of appropriate error structures. Whereas performance of BSIMMs has mostly been evaluated with simulations, here we test the efficacy of BSIMMs by raising domestic broiler chicks (Gallus gallus domesticus) on four isotopically distinct diets under controlled environmental conditions, ideal for evaluating factors that affect TDFs and testing how BSIMMs allocate individual birds to diets that vary in isotopic similarity. For both liver and feather tissues, δ13C and δ 15N values differed among dietary groups. Δ13C of liver, but not feather, was negatively related to the rate at which individuals gained body mass. For Δ15N, we identified effects of dietary group, sex, and tissue type, as well as an interaction between sex and tissue type, with females having higher liver Δ15N relative to males. For both tissues, BSIMMs allocated most chicks to correct dietary groups, especially for models using combined TDFs rather than diet-specific TDFs, and those applying a multiplicative error structure. These findings provide new information on how biological processes affect TDFs and confirm that adequately accounting for variability in consumer isotopes is necessary to optimize performance of BSIMMs. Moreover, results demonstrate experimentally that these models reliably characterize consumed diets when appropriately parameterized.


Asunto(s)
Teorema de Bayes , Isótopos de Carbono , Pollos , Isótopos de Nitrógeno , Animales , Pollos/crecimiento & desarrollo , Femenino , Isótopos de Carbono/análisis , Masculino , Isótopos de Nitrógeno/análisis , Dieta/veterinaria , Hígado/metabolismo , Plumas/química , Plumas/metabolismo , Cadena Alimentaria , Modelos Biológicos
4.
Environ Pollut ; 351: 123962, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38614424

RESUMEN

Polycyclic aromatic compounds (PACs) - a large group of organic chemicals naturally present in petroleum deposits (i.e., petrogenic) or released into the environment by incomplete combustion of organic materials (i.e., pyrogenic) - represent a potential risk to the health of aquatic ecosystems. In high latitude freshwater ecosystems, concentrations of PACs may be increasing, yet there are limited studies in such systems to assess change and to understand threats. Using 10 years of contemporary data from passive samplers deployed across five regions (n = 43 sites) in the Mackenzie River Basin, we (i) describe baseline levels of PACs, (ii) assess spatiotemporal patterns, and (iii) evaluate the extent to which environmental factors (fire, snowmelt, and proximity to oil infrastructure) influence concentrations in this system. Measured concentrations were low, relative to those in more southern systems, with mixtures primarily being dominated by non-alkylated, low molecular weight compounds. Concentrations were spatially consistent, except for two sites near Norman Wells (an area of active oil extraction) with increased levels. Similarly, observed annual variation was minimal, with 2014 having generally higher levels of PACs. We did not detect effects of fire, snowmelt, or oil infrastructure on concentrations. Taken together, our findings suggest that PACs in the Mackenzie River are currently at low levels and are primarily petrogenic in origin. They further indicate that ongoing monitoring and testing of environmental drivers (especially at finer spatial scales) are needed to better predict how ecosystem change will influence PAC levels in the basin and in other northern systems.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis , Ríos/química , Agua Dulce/química
5.
mBio ; 15(8): e0320323, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39012149

RESUMEN

Following the detection of novel highly pathogenic avian influenza virus (HPAIV) H5N1 clade 2.3.4.4b in Newfoundland, Canada, in late 2021, avian influenza virus (AIV) surveillance in wild birds was scaled up across Canada. Herein, we present the results of Canada's Interagency Surveillance Program for Avian Influenza in Wild Birds during the first year (November 2021-November 2022) following the incursions of HPAIV from Eurasia. The key objectives of the surveillance program were to (i) identify the presence, distribution, and spread of HPAIV and other AIVs; (ii) identify wild bird morbidity and mortality associated with HPAIV; (iii) identify the range of wild bird species infected by HPAIV; and (iv) genetically characterize detected AIV. A total of 6,246 sick and dead wild birds were tested, of which 27.4% were HPAIV positive across 12 taxonomic orders and 80 species. Geographically, HPAIV detections occurred in all Canadian provinces and territories, with the highest numbers in the Atlantic and Central Flyways. Temporally, peak detections differed across flyways, though the national peak occurred in April 2022. In an additional 11,295 asymptomatic harvested or live-captured wild birds, 5.2% were HPAIV positive across 3 taxonomic orders and 19 species. Whole-genome sequencing identified HPAIV of Eurasian origin as most prevalent in the Atlantic Flyway, along with multiple reassortants of mixed Eurasian and North American origins distributed across Canada, with moderate structuring at the flyway scale. Wild birds were victims and reservoirs of HPAIV H5N1 2.3.4.4b, underscoring the importance of surveillance encompassing samples from sick and dead, as well as live and harvested birds, to provide insights into the dynamics and potential impacts of the HPAIV H5N1 outbreak. This dramatic shift in the presence and distribution of HPAIV in wild birds in Canada highlights a need for sustained investment in wild bird surveillance and collaboration across interagency partners. IMPORTANCE: We present the results of Canada's Interagency Surveillance Program for Avian Influenza in Wild Birds in the year following the first detection of highly pathogenic avian influenza virus (HPAIV) H5N1 on the continent. The surveillance program tested over 17,000 wild birds, both sick and apparently healthy, which revealed spatiotemporal and taxonomic patterns in HPAIV prevalence and mortality across Canada. The significant shift in the presence and distribution of HPAIV in Canada's wild birds underscores the need for sustained investment in wild bird surveillance and collaboration across One Health partners.


Asunto(s)
Animales Salvajes , Aves , Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Animales , Gripe Aviar/epidemiología , Gripe Aviar/virología , Canadá/epidemiología , Aves/virología , Animales Salvajes/virología , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Filogenia , Europa (Continente)/epidemiología , Monitoreo Epidemiológico , Asia/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA