Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nanoscale ; 16(22): 10737-10744, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38721645

RESUMEN

Achieving high velocities of magnetic domain walls is a crucial factor for their use as information carriers in modern nanoelectronic applications. In nanomagnetism and spintronics, these velocities are often limited either by internal domain wall instabilities, known as the Walker breakdown phenomenon, or by spin wave emission, known as the magnonic regime. In the rigid domain wall model, the maximum magnon velocity acts as an effective "speed of light", providing a relativistic analogy for the domain wall speed limitation. Cylindrical magnetic nanowires are an example of systems without the Walker breakdown phenomenon. Here we demonstrate that the magnonic limit could be outstandingly surpassed in cylindrical nanowires with high magnetization, such as iron. Our numerical modeling shows the Bloch point domain wall velocities as high as 14 km s-1, well above the magnonic limit estimated in the interval 1.7-2.0 km s-1. The key ingredient is the three-dimensional conical shape of the domain wall, which elongates and breaks during the dynamics, expelling backwards pairs of Bloch points. This leads to domain wall acceleration, the effect, which resembles the "jet propulsion". This effect will be very important for three-dimensional networks based on cylindrical magnetic nanowires.

2.
J Nanosci Nanotechnol ; 10(7): 4246-51, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21128407

RESUMEN

Co(10)Cu(90) nanopowder alloys have been prepared by the sonochemical wet method. In this way, Cu/Co bimetallic nanocrystallites with average diameter of 10-20 nm, presenting a homogeneous metastable solid solution of Co in Cu, were produced. Their structural characterization by X-ray diffraction, transmission electron microscopy and inductive coupled plasma-atomic emission spectrometry techniques has been used. Temperature dependences of the sample magnetization show two characteristic (blocking) temperatures associated to the typical deviation of the zero-field cooling and field-cooling magnetization curves at T1 approximately 15 and T2 approximately 310 K, respectively. This effect can be attributed to the fact that the samples consist of either superparamagnetic and/or ferromagnetic nanoparticles of different sizes. The samples were annealed at 300 degrees C and 450 degrees C and the observed evolution of their magnetic properties was explained in relation to decomposition of the metastable Co/Cu solid solution.

3.
Nanoscale ; 12(41): 21207-21217, 2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33057527

RESUMEN

The increasing demand for nanoscale magnetic devices requires development of 3D magnetic nanostructures. In this regard, focused electron beam induced deposition (FEBID) is a technique of choice for direct-writing of complex nano-architectures with applications in nanomagnetism, magnon spintronics, and superconducting electronics. However, intrinsic properties of nanomagnets are often poorly known and can hardly be assessed by local optical probe techniques. Here, an original spatially resolved approach is demonstrated for spin-wave spectroscopy of individual circular magnetic elements with sample volumes down to about 10-3 µm3. The key component of the setup is a coplanar waveguide whose microsized central part is placed over a movable substrate with well-separated CoFe-FEBID nanodisks which exhibit standing spin-wave resonances. The circular symmetry of the disks allows for the deduction of the saturation magnetization and the exchange stiffness of the material using an analytical theory. A good correspondence between the results of analytical calculations and micromagnetic simulations is revealed, indicating a validity of the used analytical model going beyond the initial thin-disk approximation used in the theoretical derivation. The presented approach is especially valuable for the characterization of direct-write magnetic elements opening new horizons for 3D nanomagnetism and magnonics.

4.
Materials (Basel) ; 11(11)2018 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-30423873

RESUMEN

The stability and sizes of chiral skyrmions in ultrathin magnetic films are calculated accounting for the isotropic exchange, Dzyaloshinskii⁻Moriya exchange interaction (DMI), and out-of-plane magnetic anisotropy within micromagnetic approach. Bloch skyrmions in ultrathin magnetic films with B20 cubic crystal structure (MnSi, FeGe) and Neel skyrmions in ultrathin films and multilayers Co/X (X = Ir, Pd, Pt) are considered. The generalized DeBonte ansatz is used to describe the inhomogeneous skyrmion magnetization. The single skyrmion metastability/instability area, skyrmion radius, and skyrmion width are found analytically as a function of DMI strength d . It is shown that the single chiral skyrmions are metastable in infinite magnetic films below a critical value of DMI d c , and do not exist at d > d c . The calculated skyrmion radius increases as d increases and diverges at d → d c - 0 , whereas the skyrmion width increases monotonically as d increases up to d c without any singularities. The calculated skyrmion width is essentially smaller than the one calculated within the generalized domain wall model.

5.
Sci Rep ; 7(1): 5597, 2017 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-28717147

RESUMEN

Low dissipation data processing with spins is one of the promising directions for future information and communication technologies. Despite a significant progress, the available magnonic devices are not broadband yet and have restricted capabilities to redirect spin waves. Here we propose a breakthrough approach to spin wave manipulation in patterned magnetic nanostructures with unmatched characteristics, which exploits a spin wave analogue to edge waves propagating along a water-wall boundary. Using theory, micromagnetic simulations and experiment we investigate spin waves propagating along the edges in magnetic structures, under an in-plane DC magnetic field inclined with respect to the edge. The proposed edge spin waves overcome important challenges faced by previous technologies such as the manipulation of the spin wave propagation direction, and they substantially improve the capability of transmitting information at frequencies exceeding 10 GHz. The concept of the edge spin waves allows to design a broad of logic devices such as splitters, interferometers, or edge spin wave transistors with unprecedented characteristics and a potentially strong impact on information technologies.

6.
Nanoscale Res Lett ; 9(1): 386, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25147490

RESUMEN

We investigate analytically and numerically nonlinear vortex spin torque oscillator dynamics in a circular magnetic nanodot induced by a spin-polarized current perpendicular to the dot plane. We use a generalized nonlinear Thiele equation including spin-torque term by Slonczewski for describing the nanosize vortex core transient and steady orbit motions and analyze nonlinear contributions to all forces in this equation. Blue shift of the nano-oscillator frequency increasing the current is explained by a combination of the exchange, magnetostatic, and Zeeman energy contributions to the frequency nonlinear coefficient. Applicability and limitations of the standard nonlinear nano-oscillator model are discussed.

7.
Sci Rep ; 4: 4796, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24762659

RESUMEN

Magnetic vortex that consists of an in-plane curling magnetization configuration and a needle-like core region with out-of-plane magnetization is known to be the ground state of geometrically confined submicron soft magnetic elements. Here magnetodynamics of relatively thick (50-100 nm) circular Ni80Fe20 dots were probed by broadband ferromagnetic resonance in the absence of external magnetic field. Spin excitation modes related to the thickness dependent vortex core gyrotropic dynamics were detected experimentally in the gigahertz frequency range. Both analytical theory and micromagnetic simulations revealed that these exchange dominated modes are flexure oscillations of the vortex core string with n = 0,1,2 nodes along the dot thickness. The intensity of the mode with n = 1 depends significantly on both dot thickness and diameter and in some cases is higher than the one of the uniform mode with n = 0. This opens promising perspectives in the area of spin transfer torque oscillators.

8.
Phys Rev Lett ; 101(24): 247203, 2008 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-19113660

RESUMEN

A spin-wave theory explaining experimentally observed frequency splitting of dynamical spin excitations with azimuthal symmetry of a magnetic dot in a vortex ground state is developed. It is shown that this splitting is a result of the dipolar hybridization of three spin-wave modes of a dot having azimuthal indices |m|=1: two high-frequency azimuthal dipolar modes of the in-plane part of the vortex with indices m = +/-1 and a low-frequency (Goldstone-like) gyrotropic mode, describing translational motion of the vortex core and having index m = +1. The analytically calculated magnitude of the frequency splitting is proportional to the ratio of the dot thickness to its radius and quantitatively agrees with the results of time-resolved Kerr experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA