RESUMEN
Yeast telomeres comprise irregular TG1â3 DNA repeats bound by the general transcription factor Rap1. Rif1 and Rif2, along with Rap1, form the telosome, a protective cap that inhibits telomerase, counteracts SIR-mediated transcriptional silencing, and prevents inadvertent recognition of telomeres as DNA double-strand breaks. We provide a molecular, biochemical, and functional dissection of the protein backbone at the core of the yeast telosome. The X-ray structures of Rif1 and Rif2 bound to the Rap1 C-terminal domain and that of the Rif1 C terminus are presented. Both Rif1 and Rif2 have separable and independent Rap1-binding epitopes, allowing Rap1 binding over large distances (42-110 Å). We identify tetramerization (Rif1) and polymerization (Rif2) modules that, in conjunction with the long-range binding, give rise to a higher-order architecture that interlinks Rap1 units. This molecular Velcro relies on Rif1 and Rif2 to recruit and stabilize Rap1 on telomeric arrays and is required for telomere homeostasis in vivo.
Asunto(s)
Cromosomas Fúngicos/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Mapas de Interacción de Proteínas , Alineación de Secuencia , Complejo ShelterinaRESUMEN
The DDB1-CUL4-RBX1 (CRL4) ubiquitin ligase family regulates a diverse set of cellular pathways through dedicated substrate receptors (DCAFs). The DCAF DDB2 detects UV-induced pyrimidine dimers in the genome and facilitates nucleotide excision repair. We provide the molecular basis for DDB2 receptor-mediated cyclobutane pyrimidine dimer recognition in chromatin. The structures of the fully assembled DDB1-DDB2-CUL4A/B-RBX1 (CRL4(DDB2)) ligases reveal that the mobility of the ligase arm creates a defined ubiquitination zone around the damage, which precludes direct ligase activation by DNA lesions. Instead, the COP9 signalosome (CSN) mediates the CRL4(DDB2) inhibition in a CSN5 independent, nonenzymatic, fashion. In turn, CSN inhibition is relieved upon DNA damage binding to the DDB2 module within CSN-CRL4(DDB2). The Cockayne syndrome A DCAF complex crystal structure shows that CRL4(DCAF(WD40)) ligases share common architectural features. Our data support a general mechanism of ligase activation, which is induced by CSN displacement from CRL4(DCAF) on substrate binding to the DCAF.
Asunto(s)
Ubiquitina-Proteína Ligasas/química , Animales , Cristalografía por Rayos X , Proteínas Cullin/química , Daño del ADN , Proteínas de Unión al ADN/química , Activación Enzimática , Humanos , Modelos Moleculares , Ubiquitina-Proteína Ligasas/metabolismo , Proteína de la Xerodermia Pigmentosa del Grupo A/químicaRESUMEN
Mec1-Ddc2 (ATR-ATRIP) is a key DNA-damage-sensing kinase that is recruited through the single-stranded (ss) DNA-binding replication protein A (RPA) to initiate the DNA damage checkpoint response. Activation of ATR-ATRIP in the absence of DNA damage is lethal. Therefore, it is important that damage-specific recruitment precedes kinase activation, which is achieved at least in part by Mec1-Ddc2 homodimerization. Here, we report a structural, biochemical, and functional characterization of the yeast Mec1-Ddc2-RPA assembly. High-resolution co-crystal structures of Ddc2-Rfa1 and Ddc2-Rfa1-t11 (K45E mutant) N termini and of the Ddc2 coiled-coil domain (CCD) provide insight into Mec1-Ddc2 homodimerization and damage-site targeting. Based on our structural and functional findings, we present a Mec1-Ddc2-RPA-ssDNA composite structural model. By way of validation, we show that RPA-dependent recruitment of Mec1-Ddc2 is crucial for maintaining its homodimeric state at ssDNA and that Ddc2's recruitment domain and CCD are important for Mec1-dependent survival of UV-light-induced DNA damage.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas de Ciclo Celular/química , ADN de Hongos/química , ADN de Cadena Simple/química , Péptidos y Proteínas de Señalización Intracelular/química , Modelos Moleculares , Proteínas Serina-Treonina Quinasas/química , Proteína de Replicación A/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sustitución de Aminoácidos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cristalografía por Rayos X , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutación Missense , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
The Mre11-Rad50-Xrs2 (MRX) complex is related to SMC complexes that form rings capable of holding two distinct DNA strands together. MRX functions at stalled replication forks and double-strand breaks (DSBs). A mutation in the N-terminal OB fold of the 70 kDa subunit of yeast replication protein A, rfa1-t11, abrogates MRX recruitment to both types of DNA damage. The rfa1 mutation is functionally epistatic with loss of any of the MRX subunits for survival of replication fork stress or DSB recovery, although it does not compromise end-resection. High-resolution imaging shows that either the rfa1-t11 or the rad50Δ mutation lets stalled replication forks collapse and allows the separation not only of opposing ends but of sister chromatids at breaks. Given that cohesin loss does not provoke visible sister separation as long as the RPA-MRX contacts are intact, we conclude that MRX also serves as a structural linchpin holding sister chromatids together at breaks.
Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Complejos Multiproteicos/metabolismo , Animales , Replicación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas , Epistasis Genética , Exodesoxirribonucleasas , Proteína de Replicación A , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiaeRESUMEN
In Saccharomyces cerevisiae, the silent information regulator (SIR) proteins Sir2/3/4 form a complex that suppresses transcription in subtelomeric regions and at the homothallic mating-type (HM) loci. Here, we identify a non-canonical BRCA1 C-terminal domain (H-BRCT) in Sir4, which is responsible for tethering telomeres to the nuclear periphery. We show that Sir4 H-BRCT and the closely related Dbf4 H-BRCT serve as selective phospho-epitope recognition domains that bind to a variety of phosphorylated target peptides. We present detailed structural information about the binding mode of established Sir4 interactors (Esc1, Ty5, Ubp10) and identify several novel interactors of Sir4 H-BRCT, including the E3 ubiquitin ligase Tom1. Based on these findings, we propose a phospho-peptide consensus motif for interaction with Sir4 H-BRCT and Dbf4 H-BRCT. Ablation of the Sir4 H-BRCT phospho-peptide interaction disrupts SIR-mediated repression and perinuclear localization. In conclusion, the Sir4 H-BRCT domain serves as a hub for recruitment of phosphorylated target proteins to heterochromatin to properly regulate silencing and nuclear order.
Asunto(s)
Silenciador del Gen , Heterocromatina/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Regulación Fúngica de la Expresión Génica , Heterocromatina/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Conformación Proteica , Dominios Proteicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/química , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Telómero , Ubiquitina Tiolesterasa/genética , Ubiquitina-Proteína Ligasas/genéticaRESUMEN
The IMP family of RNA binding proteins, also named as insulin-like growth factor 2 (IGF2) mRNA-binding proteins (IGF2BPs), are highly conserved RNA regulators that are involved in many RNA processing stages, including mRNA stability, localization, and translation. There are three paralogs in the IMP family, IMP1-3, in mammals that all adopt the same domain arrangement with two RNA recognition motifs (RRM) in the N terminus and four KH domains in the C terminus. Here, we report the structure and biochemical characterization of IMP3 RRM12 and its complex with two short RNAs. These structures show that both RRM domains of IMP3 adopt the canonical RRM topology with two α-helices packed on an anti-parallel four stranded ß-sheet. The spatial orientation of RRM1 to RRM2 is unique compared with other known tandem RRM structures. In the IMP3 RRM12 complex with RNA, only RRM1 is involved in RNA binding and recognizes a dinucleotide sequence.
Asunto(s)
Motivo de Reconocimiento de ARN/genética , Proteínas de Unión al ARN/química , ARN/química , Secuencia de Aminoácidos/genética , Sitios de Unión , Cristalografía por Rayos X , Humanos , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Unión Proteica , Conformación Proteica , Dominios Proteicos/genética , Estructura Terciaria de Proteína , ARN/genética , Proteínas de Unión al ARN/genéticaRESUMEN
The Polycomb repressive complex 2 (PRC2) confers transcriptional repression through histone H3 lysine 27 trimethylation (H3K27me3). Here, we examined how PRC2 is modulated by histone modifications associated with transcriptionally active chromatin. We provide the molecular basis of histone H3 N terminus recognition by the PRC2 Nurf55-Su(z)12 submodule. Binding of H3 is lost if lysine 4 in H3 is trimethylated. We find that H3K4me3 inhibits PRC2 activity in an allosteric fashion assisted by the Su(z)12 C terminus. In addition to H3K4me3, PRC2 is inhibited by H3K36me2/3 (i.e., both H3K36me2 and H3K36me3). Direct PRC2 inhibition by H3K4me3 and H3K36me2/3 active marks is conserved in humans, mouse, and fly, rendering transcriptionally active chromatin refractory to PRC2 H3K27 trimethylation. While inhibition is present in plant PRC2, it can be modulated through exchange of the Su(z)12 subunit. Inhibition by active chromatin marks, coupled to stimulation by transcriptionally repressive H3K27me3, enables PRC2 to autonomously template repressive H3K27me3 without overwriting active chromatin domains.
Asunto(s)
Cromatina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Animales , Western Blotting , Línea Celular , Cromatina/genética , Cristalografía por Rayos X , Drosophila , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/química , Humanos , Lisina/química , Metilación , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Complejo Represivo Polycomb 2 , Proteínas del Grupo Polycomb , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Represoras/química , Proteínas Represoras/genética , Proteína 4 de Unión a Retinoblastoma/química , Proteína 4 de Unión a Retinoblastoma/genética , Proteína 4 de Unión a Retinoblastoma/metabolismo , Transcripción GenéticaRESUMEN
We report crystal structures of zebrafish histone deacetylase 6 (HDAC6) catalytic domains in tandem or as single domains in complex with the (R) and (S) enantiomers of trichostatin A (TSA) or with the HDAC6-specific inhibitor nexturastat A. The tandem domains formed, together with the inter-domain linker, an ellipsoid-shaped complex with pseudo-twofold symmetry. We identified important active site differences between both catalytic domains and revealed the binding mode of HDAC6 selective inhibitors. HDAC inhibition assays with (R)- and (S)-TSA showed that (R)-TSA was a broad-range inhibitor, whereas (S)-TSA had moderate selectivity for HDAC6. We identified a uniquely positioned α-helix and a flexible tryptophan residue in the loop joining α-helices H20 to H21 as critical for deacetylation of the physiologic substrate tubulin. Using single-molecule measurements and biochemical assays we demonstrated that HDAC6 catalytic domain 2 deacetylated α-tubulin lysine 40 in the lumen of microtubules, but that its preferred substrate was unpolymerized tubulin.
Asunto(s)
Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Ácidos Hidroxámicos/farmacología , Tubulina (Proteína)/metabolismo , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/metabolismo , Acetilación/efectos de los fármacos , Animales , Biocatálisis , Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas/química , Histona Desacetilasas/química , Humanos , Ácidos Hidroxámicos/química , Modelos Moleculares , Relación Estructura-Actividad , Tubulina (Proteína)/química , Pez Cebra , Proteínas de Pez Cebra/químicaRESUMEN
Gene silencing in budding yeast relies on the binding of the Silent Information Regulator (Sir) complex to chromatin, which is mediated by extensive interactions between the Sir proteins and nucleosomes. Sir3, a divergent member of the AAA+ ATPase-like family, contacts both the histone H4 tail and the nucleosome core. Here, we present the structure and function of the conserved C-terminal domain of Sir3, comprising 138 amino acids. This module adopts a variant winged helix-turn-helix (wH) architecture that exists as a stable homodimer in solution. Mutagenesis shows that the self-association mediated by this domain is essential for holo-Sir3 dimerization. Its loss impairs Sir3 loading onto nucleosomes in vitro and eliminates silencing at telomeres and HM loci in vivo. Replacing the Sir3 wH domain with an unrelated bacterial dimerization motif restores both HM and telomeric repression in sir3Δ cells. In contrast, related wH domains of archaeal and human members of the Orc1/Sir3 family are monomeric and have DNA binding activity. We speculate that a dimerization function for the wH evolved with Sir3's ability to facilitate heterochromatin formation.
Asunto(s)
Silenciador del Gen/fisiología , Heterocromatina/fisiología , Modelos Moleculares , Conformación Proteica , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Cristalización , Cartilla de ADN/genética , Dimerización , Evolución Molecular , Prueba de Complementación Genética , Heterocromatina/genética , Inmunoprecipitación , Datos de Secuencia Molecular , Mutagénesis , Nucleosomas/metabolismo , Reacción en Cadena de la Polimerasa , Saccharomyces cerevisiae , Alineación de Secuencia , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/química , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genéticaRESUMEN
The mechanisms controlling cell fate determination and reprogramming are fundamental for development. A profound reprogramming, allowing the production of pluripotent cells in early embryos, takes place during the oocyte-to-embryo transition. To understand how the oocyte reprogramming potential is controlled, we sought Caenorhabditis elegans mutants in which embryonic transcription is initiated precociously in germ cells. This screen identified LIN-41, a TRIM-NHL protein and a component of the somatic heterochronic pathway, as a temporal regulator of pluripotency in the germline. We found that LIN-41 is expressed in the cytoplasm of developing oocytes, which, in lin-41 mutants, acquire pluripotent characteristics of embryonic cells and form teratomas. To understand LIN-41 function in the germline, we conducted structure-function studies. In contrast to other TRIM-NHL proteins, we found that LIN-41 is unlikely to function as an E3 ubiquitin ligase. Similar to other TRIM-NHL proteins, the somatic function of LIN-41 is thought to involve mRNA regulation. Surprisingly, we found that mutations predicted to disrupt the association of LIN-41 with mRNA, which otherwise compromise LIN-41 function in the heterochronic pathway in the soma, have only minor effects in the germline. Similarly, LIN-41-mediated repression of a key somatic mRNA target is dispensable for the germline function. Thus, LIN-41 appears to function in the germline and the soma via different molecular mechanisms. These studies provide the first insight into the mechanism inhibiting the onset of embryonic differentiation in developing oocytes, which is required to ensure a successful transition between generations.
Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Desarrollo Embrionario/genética , Oocitos/crecimiento & desarrollo , Factores de Transcripción/genética , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciación Celular/genética , Reprogramación Celular/genética , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/metabolismo , Mutación , Oocitos/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
Protein O-fucosylation is a post-translational modification found on serine/threonine residues of thrombospondin type 1 repeats (TSR). The fucose transfer is catalysed by the protein O-fucosyltransferase 2 (POFUT2) and >40 human proteins contain the TSR consensus sequence for POFUT2-dependent fucosylation. To better understand O-fucosylation on TSR, we carried out a structural and functional analysis of human POFUT2 and its TSR substrate. Crystal structures of POFUT2 reveal a variation of the classical GT-B fold and identify sugar donor and TSR acceptor binding sites. Structural findings are correlated with steady-state kinetic measurements of wild-type and mutant POFUT2 and TSR and give insight into the catalytic mechanism and substrate specificity. By using an artificial mini-TSR substrate, we show that specificity is not primarily encoded in the TSR protein sequence but rather in the unusual 3D structure of a small part of the TSR. Our findings uncover that recognition of distinct conserved 3D fold motifs can be used as a mechanism to achieve substrate specificity by enzymes modifying completely folded proteins of very wide sequence diversity and biological function.
Asunto(s)
Fucosiltransferasas/química , Pliegue de Proteína , Cristalografía por Rayos X , Fucosa/química , Fucosa/genética , Fucosa/metabolismo , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Glicosilación , Humanos , Estructura Terciaria de Proteína , Secuencias Repetitivas de Aminoácido , Relación Estructura-ActividadRESUMEN
Amyotrophic lateral sclerosis (ALS) is an adult onset progressive motor neuron disease with no cure. Transgenic mice overexpressing familial ALS associated human mutant SOD1 are a commonly used model for examining disease mechanisms. Presently, it is well accepted that alterations in motor neuron excitability and spinal circuits are pathological hallmarks of ALS, but the underlying molecular mechanisms remain unresolved. Here, we sought to understand whether the expression of mutant SOD1 protein could contribute to altering processes governing motor neuron excitability. We used the conformation specific antibody B8H10 which recognizes a misfolded state of SOD1 (misfSOD1) to longitudinally identify its interactome during early disease stage in SOD1G93A mice. This strategy identified a direct isozyme-specific association of misfSOD1 with Na(+)/K(+)ATPase-α3 leading to the premature impairment of its ATPase activity. Pharmacological inhibition of Na(+)/K(+)ATPase-α3 altered glutamate receptor 2 expression, modified cholinergic inputs and accelerated disease pathology. After mapping the site of direct association of misfSOD1 with Na(+)/K(+)ATPase-α3 onto a 10 amino acid stretch that is unique to Na(+)/K(+)ATPase-α3 but not found in the closely related Na(+)/K(+)ATPase-α1 isozyme, we generated a misfSOD1 binding deficient, but fully functional Na(+)/K(+)ATPase-α3 pump. Adeno associated virus (AAV)-mediated expression of this chimeric Na(+)/K(+)ATPase-α3 restored Na(+)/K(+)ATPase-α3 activity in the spinal cord, delayed pathological alterations and prolonged survival of SOD1G93A mice. Additionally, altered Na(+)/K(+)ATPase-α3 expression was observed in the spinal cord of individuals with sporadic and familial ALS. A fraction of sporadic ALS cases also presented B8H10 positive misfSOD1 immunoreactivity, suggesting that similar mechanism might contribute to the pathology.
Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Neuronas Motoras/patología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Superóxido Dismutasa/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Western Blotting , Modelos Animales de Enfermedad , Humanos , Inmunoprecipitación , Espectrometría de Masas , Ratones , Ratones Transgénicos , Microscopía Confocal , Pliegue de Proteína , Superóxido Dismutasa/química , Superóxido Dismutasa-1 , TransfecciónRESUMEN
DNA polymerase δ, which contains the catalytic subunit, Pol3, Pol31, and Pol32, contributes both to DNA replication and repair. The deletion of pol31 is lethal, and compromising the Pol3-Pol31 interaction domains confers hypersensitivity to cold, hydroxyurea (HU), and methyl methanesulfonate, phenocopying pol32Δ. We have identified alanine-substitutions in pol31 that suppress these deficiencies in pol32Δ cells. We characterize two mutants, pol31-T415A and pol31-W417A, which map to a solvent-exposed loop that mediates Pol31-Pol3 and Pol31-Rev3 interactions. The pol31-T415A substitution compromises binding to the Pol3 CysB domain, whereas Pol31-W417A improves it. Importantly, loss of Pol32, such as pol31-T415A, leads to reduced Pol3 and Pol31 protein levels, which are restored by pol31-W417A. The mutations have differential effects on recovery from acute HU, break-induced replication and trans-lesion synthesis repair pathways. Unlike trans-lesion synthesis and growth on HU, the loss of break-induced replication in pol32Δ cells is not restored by pol31-W417A, highlighting pathway-specific roles for Pol32 in fork-related repair. Intriguingly, CHIP analyses of replication forks on HU showed that pol32Δ and pol31-T415A indirectly destabilize DNA pol α and pol ε at stalled forks.
Asunto(s)
ADN Polimerasa III/química , ADN Polimerasa III/metabolismo , Reparación del ADN , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Subunidades de Proteína , Sitios de Unión , Replicación del ADN , Complejos Multiproteicos , Unión Proteica , Levaduras/genética , Levaduras/metabolismoRESUMEN
Influenza A virus is a pathogen of great medical impact. To develop novel antiviral strategies, it is essential to understand the molecular aspects of virus-host cell interactions in detail. During entry, the viral ribonucleoproteins (vRNPs) that carry the RNA genome must be released from the incoming particle before they can enter the nucleus for replication. The uncoating process is facilitated by histone deacetylase 6 (ref.1). However, the precise mechanism of shell opening and vRNP debundling is unknown. Here, we show that transportin 1, a member of the importin-ß family proteins, binds to a PY-NLS2 sequence motif close to the amino terminus of matrix protein (M1) exposed during acid priming of the viral core. It promotes the removal of M1 and induces disassembly of vRNP bundles. Next, the vRNPs interact with importin-α/ß and enter the nucleus. Thus, influenza A virus uses dual importin-ßs for distinct steps in host cell entry.
Asunto(s)
Virus de la Influenza A/fisiología , Gripe Humana/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Virales/metabolismo , Internalización del Virus , beta Carioferinas/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/virología , Humanos , Virus de la Influenza A/genética , Gripe Humana/genética , Gripe Humana/virología , Ribonucleoproteínas/genética , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/metabolismo , Proteínas Virales/genética , Replicación ViralRESUMEN
The human pathogen Streptococcus pneumoniae expresses neuraminidase proteins that cleave sialic acids from complex carbohydrates. The pneumococcus genome encodes up to three neuraminidase proteins that have been shown to be important virulence factors. Here, we report the first structure of a neuraminidase from S. pneumoniae: the crystal structure of NanB in complex with its reaction product 2,7-anhydro-Neu5Ac. Our structural data, together with biochemical analysis, establish NanB as an intramolecular trans-sialidase with strict specificity towards alpha2-3 linked sialic acid substrates. In addition, we show that NanB differs in its substrate specificity from the other pneumococcal neuraminidase NanA.
Asunto(s)
Glicoproteínas/química , Neuraminidasa/química , Streptococcus pneumoniae/enzimología , Secuencia de Aminoácidos , Cristalografía por Rayos X , Glicoproteínas/metabolismo , Ácido N-Acetilneuramínico/análogos & derivados , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Neuraminidasa/metabolismo , Conformación ProteicaRESUMEN
RNA-binding proteins regulate all aspects of RNA metabolism. Their association with RNA is mediated by RNA-binding domains, of which many remain uncharacterized. A recently reported example is the NHL domain, found in prominent regulators of cellular plasticity like the C. elegans LIN-41. Here we employ an integrative approach to dissect the RNA specificity of LIN-41. Using computational analysis, structural biology, and in vivo studies in worms and human cells, we find that a positively charged pocket, specific to the NHL domain of LIN-41 and its homologs (collectively LIN41), recognizes a stem-loop RNA element, whose shape determines the binding specificity. Surprisingly, the mechanism of RNA recognition by LIN41 is drastically different from that of its more distant relative, the fly Brat. Our phylogenetic analysis suggests that this reflects a rapid evolution of the domain, presenting an interesting example of a conserved protein fold that acquired completely different solutions to RNA recognition.
Asunto(s)
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Evolución Molecular , ARN de Helminto/genética , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Animales , Caenorhabditis elegans/clasificación , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Drosophila/clasificación , Drosophila/genética , Drosophila/metabolismo , Secuencias Invertidas Repetidas , Conformación de Ácido Nucleico , Filogenia , Dominios Proteicos , ARN de Helminto/química , ARN de Helminto/metabolismo , Factores de Transcripción/genéticaRESUMEN
The RNase XRN2 is essential in RNA metabolism. In Caenorhabditis elegans, XRN2 functions with PAXT-1, which shares a putative XRN2-binding domain (XTBD) with otherwise unrelated mammalian proteins. Here, we characterize the structure and function of an XTBD-XRN2 complex. Although XTBD stably interconnects two XRN2 domains through numerous interacting residues, mutation of a single critical residue suffices to disrupt XTBD-XRN2 complexes in vitro and to recapitulate paxt-1-null mutant phenotypes in vivo. Demonstrating conservation of function, vertebrate XTBD-containing proteins bind XRN2 in vitro, and human CDKN2AIPNL (HsC2AIL) can substitute for PAXT-1 in vivo. In vertebrates, which express three distinct XTBD-containing proteins, XRN2 may partition into distinct stable heterodimeric complexes, which probably differ in subcellular localization or function. In C. elegans, complex formation with PAXT-1, the sole XTBD protein, serves to preserve the stability of XRN2 in the absence of substrate.
Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas Portadoras/metabolismo , Exorribonucleasas/metabolismo , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/química , Proteínas Portadoras/química , Cristalografía por Rayos X , Exorribonucleasas/química , Células HEK293 , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , TermodinámicaRESUMEN
Obesity is a global health issue, arousing interest in molecular mechanisms controlling fat. Transcriptional regulation of fat has received much attention, and key transcription factors involved in lipid metabolism, such as SBP-1/SREBP, LPD-2/C/EBP, and MDT-15, are conserved from nematodes to mammals. However, there is a growing awareness that lipid metabolism can also be controlled by post-transcriptional mechanisms. Here, we show that the Caenorhabditis elegans RNase, REGE-1, related to MCPIP1/Zc3h12a/Regnase-1, a key regulator of mammalian innate immunity, promotes accumulation of body fat. Using exon-intron split analysis, we find that REGE-1 promotes fat by degrading the mRNA encoding ETS-4, a fat-loss-promoting transcription factor. Because ETS-4, in turn, induces rege-1 transcription, REGE-1 and ETS-4 appear to form an auto-regulatory module. We propose that this type of fat regulation may be of key importance when, if faced with an environmental change, an animal must rapidly but precisely remodel its metabolism.
Asunto(s)
Tejido Adiposo/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Endorribonucleasas/metabolismo , Ribonucleasas/metabolismo , Regiones no Traducidas 3'/genética , Animales , Frío , Regulación de la Expresión Génica , Genoma de los Helmintos , Intestinos/enzimología , Modelos Moleculares , Interferencia de ARN , Factores de Transcripción/metabolismo , Transcripción GenéticaRESUMEN
The crystal structure of 1-aminocyclopropane-1-carboxylate (ACC) synthase in complex with the substrate analogue [2-(amino-oxy)ethyl](5'-deoxyadenosin-5'-yl)(methyl)sulfonium (AMA) was determined at 2.01-A resolution. The crystallographic results show that a covalent adduct (oxime) is formed between AMA (an amino-oxy analogue of the natural substrate S-adenosyl-L-methionine (SAM)) and the pyridoxal 5'-phosphate (PLP) cofactor of ACC synthase. The oxime formation is supported by spectroscopic data. The ACC synthase-AMA structure provides reliable and detailed information on the binding mode of the natural substrate of ACC synthase and complements previous structural and functional work on this enzyme.