Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
RNA ; 29(10): 1610-1620, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37491319

RESUMEN

Structure probing combined with next-generation sequencing (NGS) has provided novel insights into RNA structure-function relationships. To date, such studies have focused largely on bacteria and eukaryotes, with little attention given to the third domain of life, archaea. Furthermore, functional RNAs have not been extensively studied in archaea, leaving open questions about RNA structure and function within this domain of life. With archaeal species being diverse and having many similarities to both bacteria and eukaryotes, the archaea domain has the potential to be an evolutionary bridge. In this study, we introduce a method for probing RNA structure in vivo in the archaea domain of life. We investigated the structure of ribosomal RNA (rRNA) from Methanosarcina acetivorans, a well-studied anaerobic archaeal species, grown with either methanol or acetate. After probing the RNA in vivo with dimethyl sulfate (DMS), Structure-seq2 libraries were generated, sequenced, and analyzed. We mapped the reactivity of DMS onto the secondary structure of the ribosome, which we determined independently with comparative analysis, and confirmed the accuracy of DMS probing in M. acetivorans Accessibility of the rRNA to DMS in the two carbon sources was found to be quite similar, although some differences were found. Overall, this study establishes the Structure-seq2 pipeline in the archaea domain of life and informs about ribosomal structure within M. acetivorans.


Asunto(s)
Archaea , ARN , Archaea/genética , Methanosarcina/genética , Metanol , Bacterias/genética , Ribosomas/genética
2.
RNA ; 28(5): 623-644, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35115361

RESUMEN

The ribosomal RNAs, along with their substrates the transfer RNAs, contain the most highly conserved nucleotides in all of biology. We have assembled a database containing structure-based alignments of sequences of the small-subunit rRNAs from organisms that span the entire phylogenetic spectrum, to identify the nucleotides that are universally conserved. In its simplest (bacterial and archaeal) forms, the small-subunit rRNA has ∼1500 nt, of which we identify 140 that are absolutely invariant among the 1961 species in our alignment. We examine the positions and detailed structural and functional interactions of these universal nucleotides in the context of a half century of biochemical and genetic studies and high-resolution structures of ribosome functional complexes. The vast majority of these nucleotides are exposed on the subunit interface surface of the small subunit, where the functional processes of the ribosome take place. However, only 40 of them have been directly implicated in specific ribosomal functions, such as contacting the tRNAs, mRNA, or translation factors. The roles of many other invariant nucleotides may serve to constrain the positions and orientations of those nucleotides that are directly involved in function. Yet others can be rationalized by participation in unusual noncanonical tertiary structures that may uniquely allow correct folding of the rRNA to form a functional ribosome. However, there remain at least 50 nt whose universal conservation is not obvious, serving as a metric for the incompleteness of our understanding of ribosome structure and function.


Asunto(s)
Nucleótidos , ARN Ribosómico , Conformación de Ácido Nucleico , Nucleótidos/genética , Filogenia , ARN Ribosómico/química , ARN Ribosómico/genética , ARN Ribosómico 16S/genética , Ribosomas/genética
3.
Nucleic Acids Res ; 45(D1): D128-D134, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-27794554

RESUMEN

RNAcentral is a database of non-coding RNA (ncRNA) sequences that aggregates data from specialised ncRNA resources and provides a single entry point for accessing ncRNA sequences of all ncRNA types from all organisms. Since its launch in 2014, RNAcentral has integrated twelve new resources, taking the total number of collaborating database to 22, and began importing new types of data, such as modified nucleotides from MODOMICS and PDB. We created new species-specific identifiers that refer to unique RNA sequences within a context of single species. The website has been subject to continuous improvements focusing on text and sequence similarity searches as well as genome browsing functionality. All RNAcentral data is provided for free and is available for browsing, bulk downloads, and programmatic access at http://rnacentral.org/.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , ARN no Traducido/química , Animales , Genómica , Humanos , Nucleótidos/química , Análisis de Secuencia de ARN , Especificidad de la Especie
4.
Nucleic Acids Res ; 43(W1): W15-23, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26048960

RESUMEN

The RNA 3D Structure-to-Multiple Sequence Alignment Server (R3D-2-MSA) is a new web service that seamlessly links RNA three-dimensional (3D) structures to high-quality RNA multiple sequence alignments (MSAs) from diverse biological sources. In this first release, R3D-2-MSA provides manual and programmatic access to curated, representative ribosomal RNA sequence alignments from bacterial, archaeal, eukaryal and organellar ribosomes, using nucleotide numbers from representative atomic-resolution 3D structures. A web-based front end is available for manual entry and an Application Program Interface for programmatic access. Users can specify up to five ranges of nucleotides and 50 nucleotide positions per range. The R3D-2-MSA server maps these ranges to the appropriate columns of the corresponding MSA and returns the contents of the columns, either for display in a web browser or in JSON format for subsequent programmatic use. The browser output page provides a 3D interactive display of the query, a full list of sequence variants with taxonomic information and a statistical summary of distinct sequence variants found. The output can be filtered and sorted in the browser. Previous user queries can be viewed at any time by resubmitting the output URL, which encodes the search and re-generates the results. The service is freely available with no login requirement at http://rna.bgsu.edu/r3d-2-msa.


Asunto(s)
ARN Ribosómico/química , Alineación de Secuencia/métodos , Análisis de Secuencia de ARN , Programas Informáticos , Internet , Conformación de Ácido Nucleico
5.
Nucleic Acids Res ; 43(Database issue): D123-9, 2015 01.
Artículo en Inglés | MEDLINE | ID: mdl-25352543

RESUMEN

The field of non-coding RNA biology has been hampered by the lack of availability of a comprehensive, up-to-date collection of accessioned RNA sequences. Here we present the first release of RNAcentral, a database that collates and integrates information from an international consortium of established RNA sequence databases. The initial release contains over 8.1 million sequences, including representatives of all major functional classes. A web portal (http://rnacentral.org) provides free access to data, search functionality, cross-references, source code and an integrated genome browser for selected species.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , ARN no Traducido/química , Mapeo Cromosómico , Humanos , Internet , ARN no Traducido/genética , Análisis de Secuencia de ARN
6.
RNA Biol ; 11(3): 254-72, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24713659

RESUMEN

A few years before I started my graduate studies, Carl Woese was establishing a collaboration with his friend, colleague, and my PhD advisor, Harry Noller. Carl was introducing comparative methods to Harry's lab to determine the secondary structure for the 16S and 23S rRNAs. In addition to an experimental project that had minimal to no success, I was attempting to predict an RNA secondary structure from a single sequence. I determined after a few months that the complexity of RNA folding was much greater than ever anticipated. Ten lessons were learned about the dynamics of RNA folding, the comparative methods used to accurately predict the RNAs secondary structure and the beginnings of its tertiary structure, the use of comparative methods to reveal much more than ever anticipated about RNA structure, other applications beyond RNA structure, and the lessons about the process of scientific discovery.


Asunto(s)
Biología Computacional/métodos , ARN Ribosómico/química , Conformación de Ácido Nucleico , Filogenia , Pliegue del ARN , ARN Ribosómico/genética
7.
Appl Environ Microbiol ; 79(6): 1803-12, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23291551

RESUMEN

Lactobacilli (Lactobacillales: Lactobacillaceae) are well known for their roles in food fermentation, as probiotics, and in human health, but they can also be dominant members of the microbiota of some species of Hymenoptera (ants, bees, and wasps). Honey bees and bumble bees associate with host-specific lactobacilli, and some evidence suggests that these lactobacilli are important for bee health. Social transmission helps maintain associations between these bees and their respective microbiota. To determine whether lactobacilli associated with social hymenopteran hosts are generally host specific, we gathered publicly available Lactobacillus 16S rRNA gene sequences, along with Lactobacillus sequences from 454 pyrosequencing surveys of six other hymenopteran species (three sweat bees and three ants). We determined the comparative secondary structural models of 16S rRNA, which allowed us to accurately align the entire 16S rRNA gene, including fast-evolving regions. BLAST searches and maximum-likelihood phylogenetic reconstructions confirmed that honey and bumble bees have host-specific Lactobacillus associates. Regardless of colony size or within-colony oral sharing of food (trophallaxis), sweat bees and ants associate with lactobacilli that are closely related to those found in vertebrate hosts or in diverse environments. Why honey and bumble bees associate with host-specific lactobacilli while other social Hymenoptera do not remains an open question. Lactobacilli are known to inhibit the growth of other microbes and can be beneficial whether they are coevolved with their host or are recruited by the host from environmental sources through mechanisms of partner choice.


Asunto(s)
Especificidad del Huésped , Himenópteros/microbiología , Lactobacillus/clasificación , Lactobacillus/aislamiento & purificación , Animales , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Lactobacillus/genética , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
9.
Nat Commun ; 12(1): 3494, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34108470

RESUMEN

Non-coding RNAs (ncRNA) are essential for all life, and their functions often depend on their secondary (2D) and tertiary structure. Despite the abundance of software for the visualisation of ncRNAs, few automatically generate consistent and recognisable 2D layouts, which makes it challenging for users to construct, compare and analyse structures. Here, we present R2DT, a method for predicting and visualising a wide range of RNA structures in standardised layouts. R2DT is based on a library of 3,647 templates representing the majority of known structured RNAs. R2DT has been applied to ncRNA sequences from the RNAcentral database and produced >13 million diagrams, creating the world's largest RNA 2D structure dataset. The software is amenable to community expansion, and is freely available at https://github.com/rnacentral/R2DT and a web server is found at https://rnacentral.org/r2dt .


Asunto(s)
Biología Computacional/métodos , ARN/química , Bases de Datos de Ácidos Nucleicos , Conformación de Ácido Nucleico , ARN no Traducido/química , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Programas Informáticos
10.
BMC Genomics ; 11: 485, 2010 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-20813041

RESUMEN

BACKGROUND: Discontinuous genes have been observed in bacteria, archaea, and eukaryotic nuclei, mitochondria and chloroplasts. Gene discontinuity occurs in multiple forms: the two most frequent forms result from introns that are spliced out of the RNA and the resulting exons are spliced together to form a single transcript, and fragmented gene transcripts that are not covalently attached post-transcriptionally. Within the past few years, fragmented ribosomal RNA (rRNA) genes have been discovered in bilateral metazoan mitochondria, all within a group of related oysters. RESULTS: In this study, we have characterized this fragmentation with comparative analysis and experimentation. We present secondary structures, modeled using comparative sequence analysis of the discontinuous mitochondrial large subunit rRNA genes of the cupped oysters C. virginica, C. gigas, and C. hongkongensis. Comparative structure models for the large subunit rRNA in each of the three oyster species are generally similar to those for other bilateral metazoans. We also used RT-PCR and analyzed ESTs to determine if the two fragmented LSU rRNAs are spliced together. The two segments are transcribed separately, and not spliced together although they still form functional rRNAs and ribosomes. CONCLUSIONS: Although many examples of discontinuous ribosomal genes have been documented in bacteria and archaea, as well as the nuclei, chloroplasts, and mitochondria of eukaryotes, oysters are some of the first characterized examples of fragmented bilateral animal mitochondrial rRNA genes. The secondary structures of the oyster LSU rRNA fragments have been predicted on the basis of previous comparative metazoan mitochondrial LSU rRNA structure models.


Asunto(s)
Genes de ARNr/genética , Genoma Mitocondrial/genética , Ostreidae/genética , Subunidades Ribosómicas Grandes/genética , Animales , Secuencia de Bases , Cristalografía por Rayos X , ADN Complementario/genética , ADN Mitocondrial/genética , Escherichia coli/genética , Regulación de la Expresión Génica , Modelos Genéticos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Placozoa/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA