Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nanotechnology ; 34(41)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37442107

RESUMEN

We study projection-enabled enhancement of asymmetric optical responses of plasmonic metasurfaces for photon-spin control of their far field scattering. Such a process occurs by detecting the light scattered by arrays of asymmetric U-shaped nanoantennas along their planes (in-plane scattering). The nanoantennas are considered to have relatively long bases and two unequal arms. Therefore, as their view angles along the planes of the arrays are changed, they offer an extensive range of shape and size projections, providing a wide control over the contributions of plasmonic near fields and multipolar resonances to the far field scattering of the arrays. We show that this increases the degree of the asymmetric spin-polarization responses of the arrays to circularly polarized light, offering a large amount of chirality. In particular, our results show the in-plane scattering of such metasurfaces can support opposite handedness, offering the possibility of photon spin-dependent directional control of energy routing.

2.
Photosynth Res ; 143(2): 143-153, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31495904

RESUMEN

Photocatalytic water splitting using solar energy for hydrogen production offers a promising alternative form of storable and clean energy for the future. To design an artificial photosynthesis system that is cost-effective and scalable, earth abundant elements must be used to develop each of the components of the assembly. To develop artificial photosynthetic systems, we need to couple a catalyst for proton reduction to a photosensitizer and understand the mechanism of photo-induced electron transfer from the photosensitizer to the catalyst that serves as the fundamental step for photocatalysis. Therefore, our work is focused on the study of light driven electron transfer kinetics from the quantum dot systems made with inorganic chalcogenides in the presence of Ni-based reduction catalysts. Herein, we report the synthesis and characterization of four Ni(II) complexes of tetradentate ligands with amine and pyridine functionalities (N2/Py2) and their interactions with CdTe quantum dots stabilized by 3-mercaptopropionic acid. The lifetime of the quantum dots was investigated in the presence of the Ni complexes and absorbance, emission and electrochemical measurements were performed to gain a deeper understanding of the photo-induced electron transfer process.


Asunto(s)
Ácido 3-Mercaptopropiónico/química , Compuestos de Cadmio/química , Complejos de Coordinación/síntesis química , Luz , Níquel/química , Puntos Cuánticos/química , Telurio/química , Agua/química , Complejos de Coordinación/química , Electroquímica , Electrodos , Transporte de Electrón , Hidrógeno/química , Cinética , Luminiscencia , Fotosíntesis/efectos de la radiación , Solubilidad
3.
Nanotechnology ; 30(39): 395203, 2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31242470

RESUMEN

We study the anomalous optical properties of lattices formed via periodic arrangement of a plasmonic unit structure consisting of a metallic nanorod and U-shape split-ring resonator. When the units are closely packed, i.e., small lattice constants, and the incident light is polarized along the transverse axis of the nanorods, our results show that the near-field plasmonic coupling of these units leads to a lattice-induced meta-mode. Such a meta-mode is not an intrinsic mode of these units or their constituents (nanorods and split-ring resonator), rather it is formed via capacitive coupling of the split-ring resonator of one unit with the nanorod of another unit. This leads to a unique charge distribution, generating a strong field accumulation at the center of the nanorod. We show that this assimilates a plasmon field profile similar to that of the intrinsic quadrupole mode of the nanorods, although it occurs at wavelengths longer than their dipole modes. Our results show that such a meta-mode generates a narrow dominant optical feature in the infrared range (∼1.5 µm) with significant immunity against the rotation of the lattices.

4.
Nanotechnology ; 29(1): 015402, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29130899

RESUMEN

We demonstrate that a metal-oxide plasmonic metafilm consisting of a Si/Al oxide junction in the vicinity of a thin gold layer can quarantine excitons in colloidal semiconductor quantum dots against their defect environments. This process happens while the plasmon fields of the gold layer enhance spontaneous emission decay rates of the quantum dots. We study the emission dynamics of such quantum dots when the distance between the Si/Al oxide junction and the gold thin layer is varied. The results show that for distances less than a critical value the lifetime of the quantum dots can be elongated while they experience intense plasmon fields. This suggests that the metal-oxide metafilm can keep photo-excited electrons in the cores of the quantum dots, suppressing their migration to the surface defect sites. This leads to suppression of Auger recombination, offering quantum dot super-emitters with emission that is enhanced not only by the plasmon fields (Purcell effect), but also by strong suppression of the non-radiative decay caused by the defect sites.

5.
Nanotechnology ; 28(35): 355504, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28649962

RESUMEN

We study biological sensing using the hybridization phase of localized surface plasmon resonances (LSPRs) with diffraction modes (photonic lattice modes) in arrays of gold nanoantennas. We map the degree of the hybridization process using an embedding dielectric material (Si), identifying the critical thicknesses wherein the optical responses of the arrays are mainly governed by pure LSPRs (insignificant hybridization), Fano-type coupling of LSPRs with diffraction orders (hybridization state), and their intermediate state (hybridization phase). The results show that hybridization phase can occur with slight change in the refractive index (RI), leading to sudden reduction of the linewidth of the main spectral feature of the arrays by about one order of magnitude while it is shifted nearly 140 nm. These processes, which offer significant improvement in RI sensitivity and figure of merit, are utilized to detect monolayers of biological molecules and streptavidin-conjugated semiconductor quantum dots with sensitivities far higher than pure LSPRs. We further explore how these sensors can be used based on the uncoupled LSPRs by changing the polarization of the incident light.

6.
J Phys D Appl Phys ; 50(14)2017.
Artículo en Inglés | MEDLINE | ID: mdl-29618846

RESUMEN

We study biological sensing using plasmonic and photonic-plasmonic resonances of arrays of ultralong metallic nanorods and analyze the impact of these resonances on emission dynamics of quantum dot bioconjugates. We demonstrate that the LSPRs and plasmonic lattice modes of such array can be used to detect a single self-assembled monolayer of alkanethiol at the visible (550 nm) and near infrared (770 nm) range with well resolved shifts. We study adsorption of streptavidin-quantum dot conjugates to this monolayer, demonstrating that formation of nearly two dimensional arrays of quantum dots with limited emission blinking can lead to extra well-defined wavelength shifts in these modes. Using spectrally-resolved lifetime measurements we study the emission dynamics of such quantum dot bioconjugates within their monodispersed size distribution. We show that, despite their close vicinity to the nanorods, the rate of energy transfer from these quantum dots to nanorods is rather weak, while the plasmon field enhancement can be strong. Our results reveal that the nanorods present a strongly wavelength or size-dependent non-radiative decay channel to the quantum dot bioconjugates.

7.
Opt Lett ; 41(14): 3367-70, 2016 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-27420537

RESUMEN

We study control of optical coupling of plasmon resonances in metallic nanoantenna arrays using ultrathin layers of silicon. This technique allows one to establish and tune plasmonic lattice modes of such arrays, demonstrating a controlled transformation from the localized surface plasmon resonances of individual nanoantennas to their optimized collective lattice modes. Depending on the polarization and incident angle of light, our results support two different types of the silicon-induced plasmonic lattice resonances. For s-polarization these resonances follow the Rayleigh anomaly, while for p-polarization an increase in the incident angle makes the lattice resonances significantly narrower and slightly blueshifted.

8.
Light Sci Appl ; 10(1): 42, 2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637696

RESUMEN

Lasers are the pillars of modern optics and sensing. Microlasers based on whispering-gallery modes (WGMs) are miniature in size and have excellent lasing characteristics suitable for biosensing. WGM lasers have been used for label-free detection of single virus particles, detection of molecular electrostatic changes at biointerfaces, and barcode-type live-cell tagging and tracking. The most recent advances in biosensing with WGM microlasers are described in this review. We cover the basic concepts of WGM resonators, the integration of gain media into various active WGM sensors and devices, and the cutting-edge advances in photonic devices for micro- and nanoprobing of biological samples that can be integrated with WGM lasers.

9.
ACS Appl Mater Interfaces ; 12(10): 11913-11921, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32083841

RESUMEN

We demonstrate that a solution-processed heterojunction interface formed via the addition of a thin buffer layer of CdSe/ZnS quantum dots (QDs) to a functional metal oxide plasmonic metastructure (FMOP) can set up a collective interquantum dot energy-transport process, significantly enhancing the emission of infrared PbS quantum dots. The FMOP includes a Schottky junction, formed via deposition of a Si layer on arrays of Au nanoantennas and a Si/Al oxide charge barrier. We show when these two junctions are separated from each other by about 15 nm and the CdSe/ZnS quantum dot buffer layer is placed in touch with the Si/Al oxide junction, the quantum efficiency of an upper layer of PbS quantum dots can increase by about 1 order of magnitude. These results highlight a unique energy circuit formed via collective coupling of the CdSe/ZnS quantum dots with the hybridized states of plasmons and diffraction modes of the arrays (surface lattice resonances) and coupling between such resonances with PbS QDs via lattice-induced photonic modes.

10.
ACS Appl Mater Interfaces ; 11(35): 32301-32309, 2019 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-31436955

RESUMEN

Plasmonic metal nanostructures provide a promising strategy for light trapping and therefore can dramatically enhance photocurrent in optoelectronics only if the trapped light can be coupled effectively from plasmons to excitons, whereas the reverse transfer of energy, charge, and heat from excitons to plasmons can be suppressed. Motivated by this, this work develops a scheme to implement a metafilm with Ag nanoparticles (NPs) embedded in 10 nm thick silica (Ag NPs-silica metafilm) to the active device channel of a hybrid perovskite film/graphene photodetector. Remarkably, an enhancement factor of 7.45 in photoresponsivity, the highest so far among all the reports adopting plasmonic metal NPs in perovskite photodetectors, has been achieved on the photodetectors with the Ag NPs-silica metafilms. Considering that the synthesis of the Ag NPs-silica metafilms can be readily scaled up to coat both rigid and flexible substrates, this result provides a low-cost metaplatform for a variety of high-performance optoelectronic device applications.

11.
Nanoscale ; 10(10): 4825-4832, 2018 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-29473074

RESUMEN

We study the impact of structural features of Si/Al oxide junctions on metal-oxide plasmonic metafilms formed via placing such junctions in close vicinity of an Au/Si Schottky barrier. The emission intensity and dynamics of colloidal semiconductor quantum dots deposited on such metafilms are investigated, while the surface morphology and structural compositions of the Si/Al oxide junction are controlled. The results show the conditions wherein the Si/Al oxide junction can reshape the impact of plasmonic effects, allowing it to increase the lifetimes of excitons. Under these conditions, the plasmonic metafilms can quarantine excitons against the fluctuating trap environments of the quantum dots, offering super-plasmonic emission enhancement that includes enhancement of the spontaneous emission decay rate combined with the suppression of Auger decay.

12.
J Phys Condens Matter ; 29(29): 295301, 2017 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-28604367

RESUMEN

We report on the ultrafast decay of quantum dots that reaches nearly 430 ps without reduction in the emission intensity when near a metasubstrate of simple geometry. By implementing a layered structure of amorphous silicon sandwiched between two gold layers, the balance between plasmonic near field enhancement and energy transfer of the quantum dots has been shifted. This is achieved by tailoring the amount of Förster resonance energy transfer (FRET) to the top Au layer and plasmonic near field enhancement by the bottom Au layer. We also study the impact of deposition of Al oxide on the top Au layer, forming a charge barrier junction that can suppress Auger recombination of quantum dots. The results show that such a barrier can increase emission efficiency of the metastructure without significant reduction in the decay rate. We study the impact of formation of small nanoislands to contiguous islands via variation of the thickness of the top Au layer, and discuss how such morphologies determine the amount of FRET, screening of plasmonic field from the bottom Au layer, and enhancement of emission due to their own plasmonic fields.

13.
J Appl Phys ; 118(12): 124302, 2015 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-26442574

RESUMEN

We investigate the shape and size effects of gold metallic nanoparticles on the enhancement of exciton-plasmon coupling and emission of semiconductor quantum dots induced via the simultaneous impact of metal-oxide and plasmonic effects. This enhancement occurs when metallic nanoparticle arrays are separated from the quantum dots by a layered thin film consisting of a high index dielectric material (silicon) and aluminum oxide. Our results show that adding the aluminum oxide layer can increase the degree of polarization of quantum dot emission induced by metallic nanorods by nearly two times, when these nanorods have large aspect ratios. We show when the aspect ratio of these nanorods is reduced to half, the aluminum oxide loses its impact, leading to no improvement in the degree of polarization. These results suggest that a silicon/aluminum oxide layer can significantly enhance exciton-plasmon coupling when quantum dots are in the vicinity of metallic nanoantennas with high aspect ratios.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA