Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35682814

RESUMEN

The prevention of biofilm formation is crucial for the limitation of bacterial infections typically associated with postoperative infections, complications in bedridden patients, and a short-term prognosis in affected cancer patients or mechanically ventilated patients. Antimicrobial photodynamic therapy (aPDT) emerges as a promising alternative for the prevention of infections due to the inability of bacteria to become resistant to aPDT inactivation processes. The aim of this study was to demonstrate the use of a functionalized combination of Chlorin e6 and Pheophorbide as a new approach to more effective aPDT by increasing the accumulation of photosensitizers (PSs) within Escherichia coli cells. The accumulation of PSs and changes in the dry mass density of single-cell bacteria before and after aPDT treatment were investigated by digital holotomography (DHT) using the refractive index as an imaging contrast for 3D label-free live bacteria cell imaging. The results confirmed that DHT can be used in complex examination of the cell-photosensitizer interaction and characterization of the efficiency of aPDT. Furthermore, the use of Pheophorbide a as an efflux pomp inhibitor in combination with Chlorin e6 increases photosensitizers accumulation within E. coli and overcomes the limited penetration of Gram-negative cells by anionic and neutral photosensitizers.


Asunto(s)
Antiinfecciosos , Infecciones por Escherichia coli , Fotoquimioterapia , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Bacterias , Escherichia coli , Humanos , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología
2.
Int J Mol Sci ; 23(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35008705

RESUMEN

The worldwide increase in bacterial resistance and healthcare-associated bacterial infections pose a serious threat to human health. The antimicrobial photodynamic method reveals the opportunity for a new therapeutic approach that is based on the limited delivery of photosensitizer from the material surface. Nanoporous inorganic-organic composites were obtained by entrapment of photosensitizer Photolon in polysiloxanes that was prepared by the sol-gel method. The material was characterized by its porosity, optical properties (fluorescence and absorbance), and laser-induced antimicrobial activity against Staphylococcus epidermidis, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. The permanent encapsulation of Photolon in the silica coating and the antimicrobial efficiency was confirmed by confocal microscope and digital holotomography. The generation of free radicals from nanoporous surfaces was proved by scanning Kelvin probe microscopy. For the first time, it was confirmed that Kelvin probe microscopy can be a label-free, noncontact alternative to other conventional methods based on fluorescence or chemiluminescence probes, etc. It was confirmed that the proposed photoactive coating enables the antibacterial photodynamic effect based on free radicals released from the surface of the coating. The highest bactericidal efficiency of the proposed coating was 87.16%. This coating can selectively limit the multiplication of bacterial cells, while protecting the environment and reducing the risk of surface contamination.


Asunto(s)
Antibacterianos/farmacología , Clorofilidas/farmacología , Radicales Libres/análisis , Nanoporos , Coloración y Etiquetado , Bacterias/efectos de los fármacos , Holografía , Humedad , Pruebas de Sensibilidad Microbiana , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Dióxido de Silicio/química , Espectrofotometría , Acero Inoxidable/química , Tomografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA