Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(10): e2122287119, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35238637

RESUMEN

SignificanceMetformin is the most commonly prescribed drug for the treatment of type 2 diabetes mellitus, yet the mechanism by which it lowers plasma glucose concentrations has remained elusive. Most studies to date have attributed metformin's glucose-lowering effects to inhibition of complex I activity. Contrary to this hypothesis, we show that inhibition of complex I activity in vitro and in vivo does not reduce plasma glucose concentrations or inhibit hepatic gluconeogenesis. We go on to show that metformin, and the related guanides/biguanides, phenformin and galegine, inhibit complex IV activity at clinically relevant concentrations, which, in turn, results in inhibition of glycerol-3-phosphate dehydrogenase activity, increased cytosolic redox, and selective inhibition of glycerol-derived hepatic gluconeogenesis both in vitro and in vivo.


Asunto(s)
Complejo IV de Transporte de Electrones/antagonistas & inhibidores , Gluconeogénesis , Guanidinas/farmacología , Hipoglucemiantes/farmacología , Metformina/farmacología , Fenformina/farmacología , Animales , Glucosa/metabolismo , Glicerol/metabolismo , Glicerolfosfato Deshidrogenasa/antagonistas & inhibidores , Hígado/efectos de los fármacos , Hígado/metabolismo , Oxidación-Reducción , Piridinas/farmacología
2.
Proc Natl Acad Sci U S A ; 119(47): e2213432119, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36378644

RESUMEN

Cytochrome c (cyt c) can undergo reversible conformational changes under biologically relevant conditions. Revealing these alternative cyt c conformers at the cell and tissue level is challenging. A monoclonal antibody (mAb) identifying a key conformational change in cyt c was previously reported, but the hybridoma was rendered nonviable. To resurrect the mAb in a recombinant form, the amino-acid sequences of the heavy and light chains were determined by peptide mapping-mass spectrometry-bioinformatic analysis and used to construct plasmids encoding the full-length chains. The recombinant mAb (R1D3) was shown to perform similarly to the original mAb in antigen-binding assays. The mAb bound to a variety of oxidatively modified cyt c species (e.g., nitrated at Tyr74 or oxidized at Met80), which lose the sixth heme ligation (Fe-Met80); it did not bind to several cyt c phospho- and acetyl-mimetics. Peptide competition assays together with molecular dynamic studies support that R1D3 binds a neoepitope within the loop 40-57. R1D3 was employed to identify alternative conformations of cyt c in cells under oxidant- or senescence-induced challenge as confirmed by immunocytochemistry and immunoaffinity studies. Alternative conformers translocated to the nuclei without causing apoptosis, an observation that was further confirmed after pinocytic loading of oxidatively modified cyt c to B16-F1 cells. Thus, alternative cyt c conformers, known to gain peroxidatic function, may represent redox messengers at the cell nuclei. The availability and properties of R1D3 open avenues of interrogation regarding the presence and biological functions of alternative conformations of cyt c in mammalian cells and tissues.


Asunto(s)
Citocromos c , Hemo , Animales , Secuencia de Aminoácidos , Anticuerpos Monoclonales , Citocromos c/química , Hemo/química , Hibridomas , Oxidación-Reducción , Melanoma Experimental , Ratones
3.
J Strength Cond Res ; 38(7): 1189-1199, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38900170

RESUMEN

ABSTRACT: Arroum, T, Hish, GA, Burghardt, KJ, Ghamloush, M, Bazzi, B, Mrech, A, Morse, PT, Britton, SL, Koch, LG, McCully, JD, Hüttemann, M, and Malek, MH. Mitochondria transplantation: Rescuing innate muscle bioenergetic impairment in a model of aging and exercise intolerance. J Strength Cond Res 38(7): 1189-1199, 2024-Mitochondria, through oxidative phosphorylation, are crucial for energy production. Disease, genetic impairment, or deconditioning can harm muscle mitochondria, affecting energy production. Endurance training enhances mitochondrial function but assumes mobility. Individuals with limited mobility lack effective treatments for mitochondrial dysfunction because of disease or aging. Mitochondrial transplantation replaces native mitochondria that have been damaged with viable, respiration-competent mitochondria. Here, we used a rodent model selectively bred for low-capacity running (LCR), which exhibits innate mitochondrial dysfunction in the hind limb muscles. Hence, the purpose of this study was to use a distinct breed of rats (i.e., LCR) that display hereditary skeletal muscle mitochondrial dysfunction to evaluate the consequences of mitochondrial transplantation. We hypothesized that the transplantation of mitochondria would effectively alleviate mitochondrial dysfunction in the hind limb muscles of rats when compared with placebo injections. In addition, we hypothesized that rats receiving the mitochondrial transplantation would experience an improvement in their functional capacity, as evaluated through incremental treadmill testing. Twelve aged LCR male rats (18 months old) were randomized into 2 groups (placebo or mitochondrial transplantation). One LCR rat of the same age and sex was used as the donor to isolate mitochondria from the hindlimb muscles. Isolated mitochondria were injected into both hindlimb muscles (quadriceps femoris, tibialis anterior (TA), and gastrocnemius complex) of a subset LCR (n = 6; LCR-M) rats. The remaining LCR (n = 5; LCR-P) subset received a placebo injection containing only the vehicle without the isolated mitochondria. Four weeks after mitochondrial transplantation, rodents were euthanized and hindlimb muscles harvested. The results indicated a significant (p < 0.05) increase in mitochondrial markers for glycolytic (plantaris and TA) and mixed (quadricep femoris) muscles, but not oxidative muscle (soleus). Moreover, we found significant (p < 0.05) epigenetic changes (i.e., hypomethylation) at the global and site-specific levels for a key mitochondrial regulator (transcription factor A mitochondrial) between the placebo and mitochondrial transplantation groups. To our knowledge, this is the first study to examine the efficacy of mitochondrial transplantation in a rodent model of aging with congenital skeletal muscle dysfunction.


Asunto(s)
Envejecimiento , Metabolismo Energético , Tolerancia al Ejercicio , Mitocondrias Musculares , Músculo Esquelético , Animales , Músculo Esquelético/metabolismo , Ratas , Masculino , Envejecimiento/fisiología , Mitocondrias Musculares/metabolismo , Tolerancia al Ejercicio/fisiología , Metabolismo Energético/fisiología , Condicionamiento Físico Animal/fisiología , Modelos Animales de Enfermedad , Miembro Posterior , Fosforilación Oxidativa
4.
Crit Care ; 27(1): 491, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38098060

RESUMEN

BACKGROUND: Brain injury is a leading cause of morbidity and mortality in patients resuscitated from cardiac arrest. Mitochondrial dysfunction contributes to brain injury following cardiac arrest; therefore, therapies that limit mitochondrial dysfunction have the potential to improve neurological outcomes. Generation of reactive oxygen species (ROS) during ischemia-reperfusion injury in the brain is a critical component of mitochondrial injury and is dependent on hyperactivation of mitochondria following resuscitation. Our previous studies have provided evidence that modulating mitochondrial function with specific near-infrared light (NIR) wavelengths can reduce post-ischemic mitochondrial hyperactivity, thereby reducing brain injury during reperfusion in multiple small animal models. METHODS: Isolated porcine brain cytochrome c oxidase (COX) was used to investigate the mechanism of NIR-induced mitochondrial modulation. Cultured primary neurons from mice expressing mitoQC were utilized to explore the mitochondrial mechanisms related to protection with NIR following ischemia-reperfusion. Anesthetized pigs were used to optimize the delivery of NIR to the brain by measuring the penetration depth of NIR to deep brain structures and tissue heating. Finally, a model of out-of-hospital cardiac arrest with CPR in adult pigs was used to evaluate the translational potential of NIR as a noninvasive therapeutic approach to protect the brain after resuscitation. RESULTS: Molecular evaluation of enzyme activity during NIR irradiation demonstrated COX function was reduced in an intensity-dependent manner with a threshold of enzyme inhibition leading to a moderate reduction in activity without complete inhibition. Mechanistic interrogation in neurons demonstrated that mitochondrial swelling and upregulation of mitophagy were reduced with NIR treatment. NIR therapy in large animals is feasible, as NIR penetrates deep into the brain without substantial tissue heating. In a translational porcine model of CA/CPR, transcranial NIR treatment for two hours at the onset of return of spontaneous circulation (ROSC) demonstrated significantly improved neurological deficit scores and reduced histologic evidence of brain injury after resuscitation from cardiac arrest. CONCLUSIONS: NIR modulates mitochondrial function which improves mitochondrial dynamics and quality control following ischemia/reperfusion. Noninvasive modulation of mitochondria, achieved by transcranial treatment of the brain with NIR, mitigates post-cardiac arrest brain injury and improves neurologic functional outcomes.


Asunto(s)
Lesiones Encefálicas , Reanimación Cardiopulmonar , Enfermedades Mitocondriales , Paro Cardíaco Extrahospitalario , Humanos , Ratones , Animales , Porcinos , Mitocondrias , Isquemia , Modelos Animales de Enfermedad
5.
J Biol Chem ; 297(4): 101110, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34428448

RESUMEN

Valproate (VPA) is a widely used mood stabilizer, but its therapeutic mechanism of action is not understood. This knowledge gap hinders the development of more effective drugs with fewer side effects. Using the yeast model to elucidate the effects of VPA on cellular metabolism, we determined that the drug upregulated expression of genes normally repressed during logarithmic growth on glucose medium and increased levels of activated (phosphorylated) Snf1 kinase, the major metabolic regulator of these genes. VPA also decreased the cytosolic pH (pHc) and reduced glycolytic production of 2/3-phosphoglycerate. ATP levels and mitochondrial membrane potential were increased, and glucose-mediated extracellular acidification decreased in the presence of the drug, as indicated by a smaller glucose-induced shift in pH, suggesting that the major P-type proton pump Pma1 was inhibited. Interestingly, decreasing the pHc by omeprazole-mediated inhibition of Pma1 led to Snf1 activation. We propose a model whereby VPA lowers the pHc causing a decrease in glycolytic flux. In response, Pma1 is inhibited and Snf1 is activated, resulting in increased expression of normally repressed metabolic genes. These findings suggest a central role for pHc in regulating the metabolic program of yeast cells.


Asunto(s)
Citosol/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/enzimología , Ácido Valproico/farmacología , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Glucólisis/efectos de los fármacos , Glucólisis/genética , Concentración de Iones de Hidrógeno , Proteínas Serina-Treonina Quinasas/genética , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Biochem Soc Trans ; 50(5): 1377-1388, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36066188

RESUMEN

Ischemic stroke affects over 77 million people annually around the globe. Due to the blockage of a blood vessel caused by a stroke, brain tissue becomes ischemic. While prompt restoration of blood flow is necessary to save brain tissue, it also causes reperfusion injury. Mitochondria play a crucial role in early ischemia-reperfusion injury due to the generation of reactive oxygen species (ROS). During ischemia, mitochondria sense energy depletion and futilely attempt to up-regulate energy production. When reperfusion occurs, mitochondria become hyperactive and produce large amounts of ROS which damages neuronal tissue. This ROS burst damages mitochondria and the cell, which results in an eventual decrease in mitochondrial activity and pushes the fate of the cell toward death. This review covers the relationship between the mitochondrial membrane potential (ΔΨm) and ROS production. We also discuss physiological mechanisms that couple mitochondrial energy production to cellular energy demand, focusing on serine 47 dephosphorylation of cytochrome c (Cytc) in the brain during ischemia, which contributes to ischemia-reperfusion injury. Finally, we discuss the use of near infrared light (IRL) to treat stroke. IRL can both stimulate or inhibit mitochondrial activity depending on the wavelength. We emphasize that the use of the correct wavelength is crucial for outcome: inhibitory IRL, applied early during reperfusion, can prevent the ROS burst from occurring, thus preserving neurological tissue.


Asunto(s)
Daño por Reperfusión , Accidente Cerebrovascular , Humanos , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/metabolismo , Mitocondrias/metabolismo , Reperfusión , Isquemia/metabolismo , Accidente Cerebrovascular/metabolismo
7.
J Biol Chem ; 295(33): 11928-11937, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32636300

RESUMEN

Cardiolipin (CL) is the signature phospholipid of mitochondrial membranes, where it is synthesized locally and plays an important role in mitochondrial bioenergetics. Previous studies in the yeast model have indicated that CL is required for optimal iron homeostasis, which is disrupted by a mechanism not yet determined in the yeast CL mutant, crd1Δ. This finding has implications for the severe genetic disorder, Barth syndrome (BTHS), in which CL metabolism is perturbed because of mutations in the CL-remodeling enzyme, tafazzin. Here, we investigate the effects of tafazzin deficiency on iron homeostasis in the mouse myoblast model of BTHS tafazzin knockout (TAZ-KO) cells. Similarly to CL-deficient yeast cells, TAZ-KO cells exhibited elevated sensitivity to iron, as well as to H2O2, which was alleviated by the iron chelator deferoxamine. TAZ-KO cells exhibited increased expression of the iron exporter ferroportin and decreased expression of the iron importer transferrin receptor, likely reflecting a regulatory response to elevated mitochondrial iron. Reduced activities of mitochondrial iron-sulfur cluster enzymes suggested that the mechanism underlying perturbation of iron homeostasis was defective iron-sulfur biogenesis. We observed decreased levels of Yfh1/frataxin, an essential component of the iron-sulfur biogenesis machinery, in mitochondria from TAZ-KO mouse cells and in CL-deleted yeast crd1Δ cells, indicating that the role of CL in iron-sulfur biogenesis is highly conserved. Yeast crd1Δ cells exhibited decreased processing of the Yfh1 precursor upon import, which likely contributes to the iron homeostasis defects. Implications for understanding the pathogenesis of BTHS are discussed.


Asunto(s)
Síndrome de Barth/metabolismo , Cardiolipinas/metabolismo , Proteínas de Unión a Hierro/metabolismo , Hierro/metabolismo , Mioblastos/metabolismo , Aciltransferasas , Animales , Síndrome de Barth/genética , Síndrome de Barth/patología , Cardiolipinas/genética , Línea Celular , Eliminación de Gen , Técnicas de Inactivación de Genes , Proteínas de Unión a Hierro/genética , Ratones , Mioblastos/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Frataxina
8.
IUBMB Life ; 73(3): 554-567, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33166061

RESUMEN

Near-infrared light (IRL) has been evaluated as a therapeutic for a variety of pathological conditions, including ischemia/reperfusion injury of the brain, which can be caused by an ischemic stroke or cardiac arrest. Strategies have focused on modulating the activity of mitochondrial electron transport chain (ETC) enzyme cytochrome c oxidase (COX), which has copper centers that broadly absorb IRL between 700 and 1,000 nm. We have recently identified specific COX-inhibitory IRL wavelengths that are profoundly neuroprotective in rodent models of brain ischemia/reperfusion through the following mechanism: COX inhibition by IRL limits mitochondrial membrane potential hyperpolarization during reperfusion, which otherwise causes reactive oxygen species (ROS) production and cell death. Prior to clinical application of IRL on humans, IRL penetration must be tested, which may be wavelength dependent. In the present study, four fresh (unfixed) cadavers and isolated cadaver tissues were used to examine the transmission of infrared light through human biological tissues. We conclude that the transmission of 750 and 940 nm IRL through 4 cm of cadaver head supports the viability of IRL to treat human brain ischemia/reperfusion injury and is similar for skin with different skin pigmentation. We discuss experimental difficulties of working with fresh cadavers and strategies to overcome them as a guide for future studies.


Asunto(s)
Encéfalo , Complejo IV de Transporte de Electrones/metabolismo , Fototerapia/instrumentación , Fototerapia/métodos , Anciano , Anciano de 80 o más Años , Encéfalo/diagnóstico por imagen , Cadáver , Complejo IV de Transporte de Electrones/antagonistas & inhibidores , Diseño de Equipo , Femenino , Humanos , Rayos Infrarrojos , Persona de Mediana Edad , Fibras Ópticas , Daño por Reperfusión/terapia , Piel/química
9.
Mol Pharmacol ; 97(1): 9-22, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31707355

RESUMEN

Folate-dependent one-carbon (C1) metabolism is compartmentalized in the mitochondria and cytosol and is a source of critical metabolites for proliferating tumors. Mitochondrial C1 metabolism including serine hydroxymethyltransferase 2 (SHMT2) generates glycine for de novo purine nucleotide and glutathione biosynthesis and is an important source of NADPH, ATP, and formate, which affords C1 units as 10-formyl-tetrahydrofolate and 5,10-methylene-tetrahydrofolate for nucleotide biosynthesis in the cytosol. We previously discovered novel first-in-class multitargeted pyrrolo[3,2-d]pyrimidine inhibitors of SHMT2 and de novo purine biosynthesis at glycinamide ribonucleotide formyltransferase and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase with potent in vitro and in vivo antitumor efficacy toward pancreatic adenocarcinoma cells. In this report, we extend our findings to an expanded panel of pancreatic cancer models. We used our lead analog AGF347 [(4-(4-(2-amino-4-oxo-3,4-dihydro-5H-pyrrolo[3,2-d]pyrimidin-5-yl)butyl)-2-fluorobenzoyl)-l-glutamic acid] to characterize pharmacodynamic determinants of antitumor efficacy for this series and demonstrated plasma membrane transport into the cytosol, uptake from cytosol into mitochondria, and metabolism to AGF347 polyglutamates in both cytosol and mitochondria. Antitumor effects of AGF347 downstream of SHMT2 and purine biosynthesis included suppression of mammalian target of rapamycin signaling, and glutathione depletion with increased levels of reactive oxygen species. Our results provide important insights into the cellular pharmacology of novel pyrrolo[3,2-d]pyrimidine inhibitors as antitumor compounds and establish AGF347 as a unique agent for potential clinical application for pancreatic cancer, as well as other malignancies. SIGNIFICANCE STATEMENT: This study establishes the antitumor efficacies of novel inhibitors of serine hydroxymethyltransferase 2 and of cytosolic targets toward a panel of clinically relevant pancreatic cancer cells and demonstrates the important roles of plasma membrane transport, mitochondrial accumulation, and metabolism to polyglutamates of the lead compound AGF347 to drug activity. We also establish that loss of serine catabolism and purine biosynthesis resulting from AGF347 treatment impacts mammalian target of rapamycin signaling, glutathione pools, and reactive oxygen species, contributing to antitumor efficacy.


Asunto(s)
Antineoplásicos/farmacología , Citosol/efectos de los fármacos , Glicina Hidroximetiltransferasa/antagonistas & inhibidores , Mitocondrias/efectos de los fármacos , Pirimidinas/farmacología , Pirroles/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Citosol/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Técnicas de Inactivación de Genes , Glutatión/biosíntesis , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Humanos , Leucovorina/análogos & derivados , Leucovorina/metabolismo , Mitocondrias/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Nucleótidos de Purina/biosíntesis , Pirimidinas/química , Pirimidinas/uso terapéutico , Pirroles/química , Pirroles/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Serina/metabolismo , Tetrahidrofolatos/metabolismo
10.
FASEB J ; 33(2): 1540-1553, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30222078

RESUMEN

Cytochrome c (Cyt c) plays a vital role in the mitochondrial electron transport chain (ETC). In addition, it is a key regulator of apoptosis. Cyt c has multiple other functions including ROS production and scavenging, cardiolipin peroxidation, and mitochondrial protein import. Cyt c is tightly regulated by allosteric mechanisms, tissue-specific isoforms, and post-translational modifications (PTMs). Distinct residues of Cyt c are modified by PTMs, primarily phosphorylations, in a highly tissue-specific manner. These modifications downregulate mitochondrial ETC flux and adjust the mitochondrial membrane potential (ΔΨm), to minimize reactive oxygen species (ROS) production under normal conditions. In pathologic and acute stress conditions, such as ischemia-reperfusion, phosphorylations are lost, leading to maximum ETC flux, ΔΨm hyperpolarization, excessive ROS generation, and the release of Cyt c. It is also the dephosphorylated form of the protein that leads to maximum caspase activation. We discuss the complex regulation of Cyt c and propose that it is a central regulatory step of the mammalian ETC that can be rate limiting in normal conditions. This regulation is important because it maintains optimal intermediate ΔΨm, limiting ROS generation. We examine the role of Cyt c PTMs, including phosphorylation, acetylation, methylation, nitration, nitrosylation, and sulfoxidation and consider their potential biological significance by evaluating their stoichiometry.-Kalpage, H. A., Bazylianska, V., Recanati, M. A., Fite, A., Liu, J., Wan, J., Mantena, N., Malek, M. H., Podgorski, I., Heath, E. I., Vaishnav, A., Edwards, B. F., Grossman, L. I., Sanderson, T. H., Lee, I., Hüttemann, M. Tissue-specific regulation of cytochrome c by post-translational modifications: respiration, the mitochondrial membrane potential, ROS, and apoptosis.


Asunto(s)
Apoptosis , Citocromos c/metabolismo , Potencial de la Membrana Mitocondrial , Procesamiento Proteico-Postraduccional , Especies Reactivas de Oxígeno/metabolismo , Acetilación , Aminoácidos/metabolismo , Animales , Citocromos c/química , Humanos , Metilación , Mitocondrias/metabolismo , Compuestos Nitrosos/metabolismo , Oxidación-Reducción , Fosforilación , Sulfuros/metabolismo
11.
FASEB J ; 33(12): 13503-13514, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31570002

RESUMEN

Cytochrome c (Cytc) is a multifunctional protein that operates as an electron carrier in the mitochondrial electron transport chain and plays a key role in apoptosis. We have previously shown that tissue-specific phosphorylations of Cytc in the heart, liver, and kidney play an important role in the regulation of cellular respiration and cell death. Here, we report that Cytc purified from mammalian brain is phosphorylated on S47 and that this phosphorylation is lost during ischemia. We have characterized the functional effects in vitro using phosphorylated Cytc purified from pig brain tissue and a recombinant phosphomimetic mutant (S47E). We crystallized S47E phosphomimetic Cytc at 1.55 Å and suggest that it spatially matches S47-phosphorylated Cytc, making it a good model system. Both S47-phosphorylated and phosphomimetic Cytc showed a lower oxygen consumption rate in reaction with isolated Cytc oxidase, which we propose maintains intermediate mitochondrial membrane potentials under physiologic conditions, thus minimizing production of reactive oxygen species. S47-phosphorylated and phosphomimetic Cytc showed lower caspase-3 activity. Furthermore, phosphomimetic Cytc had decreased cardiolipin peroxidase activity and is more stable in the presence of H2O2. Our data suggest that S47 phosphorylation of Cytc is tissue protective and promotes cell survival in the brain.-Kalpage, H. A., Vaishnav, A., Liu, J., Varughese, A., Wan, J., Turner, A. A., Ji, Q., Zurek, M. P., Kapralov, A. A., Kagan, V. E., Brunzelle, J. S., Recanati, M.-A., Grossman, L. I., Sanderson, T. H., Lee, I., Salomon, A. R., Edwards, B. F. P, Hüttemann, M. Serine-47 phosphorylation of cytochrome c in the mammalian brain regulates cytochrome c oxidase and caspase-3 activity.


Asunto(s)
Encéfalo/metabolismo , Caspasa 3/metabolismo , Citocromos c/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias/metabolismo , Daño por Reperfusión/metabolismo , Serina/metabolismo , Animales , Apoptosis , Caspasa 3/genética , Respiración de la Célula , Cristalografía por Rayos X , Citocromos c/química , Citocromos c/genética , Complejo IV de Transporte de Electrones/genética , Potencial de la Membrana Mitocondrial , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Mutación , Oxidación-Reducción , Fosforilación , Conformación Proteica , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/patología , Serina/química , Serina/genética , Porcinos
12.
J Biol Chem ; 293(17): 6517-6529, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29540477

RESUMEN

Coiled-coil-helix-coiled-coil-helix domain-containing 10 (CHCHD10) and CHCHD2 (MNRR1) are homologous proteins with 58% sequence identity and belong to the twin CX9C family of proteins that mediate cellular stress responses. Despite the identification of several neurodegeneration-associated mutations in the CHCHD10 gene, few studies have assessed its physiological role. Here, we investigated CHCHD10's function as a regulator of oxidative phosphorylation in the mitochondria and the nucleus. We show that CHCHD10 copurifies with cytochrome c oxidase (COX) and up-regulates COX activity by serving as a scaffolding protein required for MNRR1 phosphorylation, mediated by ARG (ABL proto-oncogene 2, nonreceptor tyrosine kinase (ABL2)). The CHCHD10 gene was maximally transcribed in cultured cells at 8% oxygen, unlike MNRR1, which was maximally expressed at 4%, suggesting a fine-tuned oxygen-sensing system that adapts to the varying oxygen concentrations in the human body under physiological conditions. We show that nuclear CHCHD10 protein down-regulates the expression of genes harboring the oxygen-responsive element (ORE) in their promoters by interacting with and augmenting the activity of the largely uncharacterized transcriptional repressor CXXC finger protein 5 (CXXC5). We further show that two genetic CHCHD10 disease variants, G66V and P80L, in the mitochondria exhibit faulty interactions with MNRR1 and COX, reducing respiration and increasing reactive oxygen species (ROS), and in the nucleus abrogating transcriptional repression of ORE-containing genes. Our results reveal that CHCHD10 positively regulates mitochondrial respiration and contributes to transcriptional repression of ORE-containing genes in the nucleus, and that genetic CHCHD10 variants are impaired in these activities.


Asunto(s)
Núcleo Celular/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Elementos de Respuesta , Factores de Transcripción/metabolismo , Transcripción Genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Núcleo Celular/genética , Núcleo Celular/patología , Proteínas de Unión al ADN , Células HEK293 , Células HeLa , Humanos , Mitocondrias/genética , Mitocondrias/patología , Proteínas Mitocondriales/genética , Consumo de Oxígeno , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proto-Oncogenes Mas , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/genética
13.
Circ Res ; 121(4): 424-438, 2017 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-28620066

RESUMEN

RATIONALE: Acute pulmonary oxygen sensing is essential to avoid life-threatening hypoxemia via hypoxic pulmonary vasoconstriction (HPV) which matches perfusion to ventilation. Hypoxia-induced mitochondrial superoxide release has been suggested as a critical step in the signaling pathway underlying HPV. However, the identity of the primary oxygen sensor and the mechanism of superoxide release in acute hypoxia, as well as its relevance for chronic pulmonary oxygen sensing, remain unresolved. OBJECTIVES: To investigate the role of the pulmonary-specific isoform 2 of subunit 4 of the mitochondrial complex IV (Cox4i2) and the subsequent mediators superoxide and hydrogen peroxide for pulmonary oxygen sensing and signaling. METHODS AND RESULTS: Isolated ventilated and perfused lungs from Cox4i2-/- mice lacked acute HPV. In parallel, pulmonary arterial smooth muscle cells (PASMCs) from Cox4i2-/- mice showed no hypoxia-induced increase of intracellular calcium. Hypoxia-induced superoxide release which was detected by electron spin resonance spectroscopy in wild-type PASMCs was absent in Cox4i2-/- PASMCs and was dependent on cysteine residues of Cox4i2. HPV could be inhibited by mitochondrial superoxide inhibitors proving the functional relevance of superoxide release for HPV. Mitochondrial hyperpolarization, which can promote mitochondrial superoxide release, was detected during acute hypoxia in wild-type but not Cox4i2-/- PASMCs. Downstream signaling determined by patch-clamp measurements showed decreased hypoxia-induced cellular membrane depolarization in Cox4i2-/- PASMCs compared with wild-type PASMCs, which could be normalized by the application of hydrogen peroxide. In contrast, chronic hypoxia-induced pulmonary hypertension and pulmonary vascular remodeling were not or only slightly affected by Cox4i2 deficiency, respectively. CONCLUSIONS: Cox4i2 is essential for acute but not chronic pulmonary oxygen sensing by triggering mitochondrial hyperpolarization and release of mitochondrial superoxide which, after conversion to hydrogen peroxide, contributes to cellular membrane depolarization and HPV. These findings provide a new model for oxygen-sensing processes in the lung and possibly also in other organs.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Pulmón/metabolismo , Mitocondrias/metabolismo , Oxígeno/metabolismo , Animales , Hipoxia de la Célula/fisiología , Línea Celular Tumoral , Complejo IV de Transporte de Electrones/genética , Femenino , Humanos , Masculino , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Ratones Noqueados , Mitocondrias/genética
14.
BMC Womens Health ; 19(1): 70, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31138184

RESUMEN

BACKGROUND: To determine whether oral norethindrone acetate is superior to combined oral contraceptives (OCP) in delaying menstruation and preventing breakthrough bleeding when started late in the cycle. METHODS: This article comprises of a case control study followed by a pilot randomized controlled study. In the first study, four women who presented late in their cycle and desired avoiding vaginal bleeding within 10 days before a wedding were started on norethindrone 5 mg three times daily and compared to age matched controls started on OCPs. Subsequently, a randomized controlled pilot study (n = 50) comparing OCPs to norethindrone for the retiming of menses was conducted. Percentage of women reporting spotting were compared with level of statistical significance set at p < 0.05. RESULTS: Of the norethindrone treated group, only 2 women (8%) reported spotting compared with 10 women (43%) in the control group (p < 0.01). Norethindrone recipients experienced significant weight gain, which resolved after cessation of therapy and had heavier withdrawal bleed (p < 0.04) when compared to controls. Patient satisfaction was significantly higher in the norethindrone group, with 80% willing to choose this method again. Time to conceive was significantly shorter in the norethindrone group (p < 0.03). CONCLUSIONS: Norethindrone, begun on or before cycle day 12, is superior for women who desire to avoid breakthrough bleeding and maintain fertility when compared to OCPs. It is an ideal approach in patients presenting late in their cycle and who desire delaying menses as well as in circumstances when even minute amounts of breakthrough bleeding cannot be tolerated. TRIAL REGISTRATION: Clinicaltrials.gov NCT03594604 , July 2018. Retrospectively registered.


Asunto(s)
Anticonceptivos Sintéticos Orales/administración & dosificación , Trastornos de la Menstruación/tratamiento farmacológico , Noretindrona/administración & dosificación , Hemorragia Uterina/prevención & control , Adulto , Estudios de Casos y Controles , Anticonceptivos Orales Combinados/administración & dosificación , Femenino , Humanos , Menstruación/efectos de los fármacos , Proyectos Piloto , Estudios Retrospectivos , Aumento de Peso
15.
Biochim Biophys Acta Mol Cell Res ; 1864(2): 440-448, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27913209

RESUMEN

We previously showed that MNRR1 (Mitochondrial Nuclear Retrograde Regulator 1, also CHCHD2) functions in two subcellular compartments, displaying a different function in each. In the mitochondria it is a stress regulator of respiration that binds to cytochrome c oxidase (COX) whereas in the nucleus it is a transactivator of COX4I2 and other hypoxia-stimulated genes. We now show that binding of MNRR1 to COX is promoted by phosphorylation at tyrosine-99 and that this interaction stimulates respiration. We show that phosphorylation of MNRR1 takes place in mitochondria and is mediated by Abl2 kinase (ARG). A family with Charcot-Marie-Tooth disease type 1A with an exaggerated phenotype harbors a Q112H mutation in MNRR1, located in a domain that is necessary for transcriptional activation by MNRR1. Furthermore, the mutation causes the protein to function suboptimally in the mitochondria in response to cellular stress. The Q112H mutation hinders the ability of the protein to interact with Abl kinase, leading to defective tyrosine phosphorylation and a resultant defect in respiration.


Asunto(s)
Respiración de la Célula , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Factores de Transcripción/metabolismo , Adenosina Trifosfato/metabolismo , Línea Celular , Enfermedad de Charcot-Marie-Tooth/genética , Proteínas de Unión al ADN , Femenino , Humanos , Persona de Mediana Edad , Proteínas Mitocondriales/genética , Mutación , Fosforilación Oxidativa , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/genética
16.
J Biol Chem ; 292(1): 64-79, 2017 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-27758862

RESUMEN

Mammalian cytochrome c (Cytc) plays a key role in cellular life and death decisions, functioning as an electron carrier in the electron transport chain and as a trigger of apoptosis when released from the mitochondria. However, its regulation is not well understood. We show that the major fraction of Cytc isolated from kidneys is phosphorylated on Thr28, leading to a partial inhibition of respiration in the reaction with cytochrome c oxidase. To further study the effect of Cytc phosphorylation in vitro, we generated T28E phosphomimetic Cytc, revealing superior behavior regarding protein stability and its ability to degrade reactive oxygen species compared with wild-type unphosphorylated Cytc Introduction of T28E phosphomimetic Cytc into Cytc knock-out cells shows that intact cell respiration, mitochondrial membrane potential (ΔΨm), and ROS levels are reduced compared with wild type. As we show by high resolution crystallography of wild-type and T28E Cytc in combination with molecular dynamics simulations, Thr28 is located at a central position near the heme crevice, the most flexible epitope of the protein apart from the N and C termini. Finally, in silico prediction and our experimental data suggest that AMP kinase, which phosphorylates Cytc on Thr28 in vitro and colocalizes with Cytc to the mitochondrial intermembrane space in the kidney, is the most likely candidate to phosphorylate Thr28 in vivo We conclude that Cytc phosphorylation is mediated in a tissue-specific manner and leads to regulation of electron transport chain flux via "controlled respiration," preventing ΔΨm hyperpolarization, a known cause of ROS and trigger of apoptosis.


Asunto(s)
Adenilato Quinasa/metabolismo , Respiración de la Célula/fisiología , Citocromos c/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Riñón/metabolismo , Treonina/metabolismo , Adenilato Quinasa/química , Animales , Apoptosis , Cristalografía por Rayos X , Citocromos c/química , Transporte de Electrón , Complejo IV de Transporte de Electrones/química , Riñón/citología , Potencial de la Membrana Mitocondrial , Ratones , Mitocondrias/metabolismo , Oxidación-Reducción , Fosforilación , Conformación Proteica , Especies Reactivas de Oxígeno/metabolismo
17.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(8): 857-865, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29694924

RESUMEN

Barth syndrome (BTHS) is an X-linked genetic disorder resulting from mutations in the tafazzin gene (TAZ), which encodes the transacylase that remodels the mitochondrial phospholipid cardiolipin (CL). While most BTHS patients exhibit pronounced skeletal myopathy, the mechanisms linking defective CL remodeling and skeletal myopathy have not been determined. In this study, we constructed a CRISPR-generated stable tafazzin knockout (TAZ-KO) C2C12 myoblast cell line. TAZ-KO cells exhibit mitochondrial deficits consistent with other models of BTHS, including accumulation of monolyso-CL (MLCL), decreased mitochondrial respiration, and increased mitochondrial ROS production. Additionally, tafazzin deficiency was associated with impairment of myocyte differentiation. Future studies should determine whether alterations in myogenic determination contribute to the skeletal myopathy observed in BTHS patients. The BTHS myoblast model will enable studies to elucidate mechanisms by which defective CL remodeling interferes with normal myocyte differentiation and skeletal muscle ontogenesis.


Asunto(s)
Síndrome de Barth/patología , Cardiolipinas/metabolismo , Diferenciación Celular/genética , Lisofosfolípidos/metabolismo , Mioblastos/patología , Factores de Transcripción/metabolismo , Aciltransferasas , Animales , Síndrome de Barth/genética , Sistemas CRISPR-Cas , Línea Celular , Técnicas de Inactivación de Genes , Humanos , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Modelos Biológicos , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Mioblastos/citología , Mioblastos/metabolismo , Factores de Transcripción/genética
18.
J Assist Reprod Genet ; 35(8): 1359-1366, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29882092

RESUMEN

Here we examine recent evidence suggesting that many drugs and diet supplements (DS), experimental AMP-activated protein kinase (AMPK) agonists as well as energy-depleting stress, lead to decreases in anabolism, growth or proliferation, and potency of cultured oocytes, embryos, and stem cells in an AMPK-dependent manner. Surprising data for DS and drugs that have some activity as AMPK agonists in in vitro experiments show possible toxicity. This needs to be balanced against a preponderance of evidence in vivo that these drugs and DS are beneficial for reproduction. We here discuss and analyze data that leads to two possible conclusions: First, although DS and drugs that have some of their therapeutic mechanisms mediated by AMPK activity associated with low ATP levels, some of the associated health problems in vivo and in vitro fertilization/assisted reproductive technologies (IVF/ART) may be better-treated by increasing ATP production using CoQ10 (Ben-Meir et al., Aging Cell 14:887-895, 2015). This enables high developmental trajectories simultaneous with solving stress by energy-requiring responses. In IVF/ART, it is ultimately best to maintain handling and culture of gametes and embryos in the quietest state with low metabolic activity (Leese et al., Mol Hum Reprod 14:667-672, 2008; Leese, Bioessays 24 (9):845-849, 2002) using back-to-nature or simplex algorithms to identify optima (Biggers, Reprod Biomed Online 4 Suppl 1:30-38, 2002). Stress markers, such as checkpoint proteins like TRP53 (aka p53) (Ganeshan et al., Exp Cell Res 358:227-233, 2017); Ganeshan et al., Biol Reprod 83:958-964, 2010) and a small set of kinases from the protein kinome that mediate enzymatic stress responses, can also be used to define optima. But, some gametes or embryos may have been stressed in vivo prior to IVF/ART or IVF/ART optimized for one outcome may be suboptimal for another. Increasing nutrition or adding CoQ10 to increase ATP production (Yang et al., Stem Cell Rev 13:454-464, 2017), managing stress enzyme levels with inhibitors (Xie et al., Mol Hum Reprod 12:217-224, 2006), or adding growth factors such as GM-CSF (Robertson et al., J Reprod Immunol 125:80-88, 2018); Chin et al., Hum Reprod 24:2997-3009, 2009) may increase survival and health of cultured embryos during different stress exposure contexts (Puscheck et al., Adv Exp Med Biol 843:77-128, 2015). We define "stress" as negative stimuli which decrease normal magnitude and speed of development, and these can be stress hormones, reactive oxygen species, inflammatory cytokines, or physical stimuli such as hypoxia. AMPK is normally activated by high AMP, commensurate with low ATP, but it was recently shown that if glucose is present inside the cell, AMPK activation by low ATP/high AMP is suppressed (Zhang et al., Nature 548:112-116, 2017). As we discuss in more detail below, this may also lead to greater AMPK agonist toxicity observed in two-cell embryos that do not import glucose. Stress in embryos and stem cells increases AMPK in large stimulation indexes but also direness indexes; the fastest AMPK activation occurs when stem cells are shifted from optimal oxygen to lower or high levels (Yang et al., J Reprod Dev 63:87-94, 2017). CoQ10 use may be better than risking AMPK-dependent metabolic and developmental toxicity when ATP is depleted and AMPK activated. Second, the use of AMPK agonists, DS, and drugs may best be rationalized when insulin resistance or obesity leads to aberrant hyperglycemia and hypertriglyceridemia, and obesity that negatively affect fertility. Under these conditions, beneficial effects of AMPK on increasing triglyceride and fatty acid and glucose uptake are important, as long as AMPK agonist exposures are not too high or do not occur during developmental windows of sensitivity. During these windows of sensitivity suppression of anabolism, proliferation, and stemness/potency due to AMPK activity, or overexposure may stunt or kill embryos or cause deleterious epigenetic changes.


Asunto(s)
Aborto Espontáneo/patología , Suplementos Dietéticos/efectos adversos , Obesidad/tratamiento farmacológico , Proteínas Quinasas/efectos de los fármacos , Quinasas de la Proteína-Quinasa Activada por el AMP , Aborto Espontáneo/inducido químicamente , Aborto Espontáneo/enzimología , Adenosina Trifosfato/metabolismo , Blastocisto/efectos de los fármacos , Femenino , Humanos , Resistencia a la Insulina/genética , Metformina/uso terapéutico , Oocitos/efectos de los fármacos , Embarazo , Técnicas Reproductivas Asistidas/tendencias , Células Madre/efectos de los fármacos
19.
J Strength Cond Res ; 32(5): 1391-1403, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29309390

RESUMEN

Liu, J, Lee, I, Feng, H-Z, Galen, SS, Hüttemann, PP, Perkins, GA, Jin, J-P, Hüttemann, M, and Malek, MH. Aerobic exercise preconception and during pregnancy enhances oxidative capacity in the hindlimb muscles of mice offspring. J Strength Cond Res 32(5): 1391-1403, 2018-Little is known about the effect of maternal exercise on offspring skeletal muscle health. The purpose of this study, therefore, was to determine whether maternal exercise (preconception and during pregnancy) alters offspring skeletal muscle capillarity and mitochondrial biogenesis. We hypothesized that offspring from exercised dams would have higher capillarity and mitochondrial density in the hindlimb muscles compared with offspring from sedentary dams. Female mice in the exercise condition had access to a running wheel in their individual cage 30 days before mating and throughout pregnancy, whereas the sedentary group did not have access to the running wheel before mating and during pregnancy. Male offspring from both groups were killed when they were 2 months old, and their tissues were analyzed. The results indicated no significant (p > 0.05) mean differences for capillarity density, capillarity-to-fiber ratio, or regulators of angiogenesis such as VEGF-A and TSP-1. Compared with offspring from sedentary dams, however, offspring from exercised dams had an increase in protein expression of myosin heavy chain type I (MHC I) (∼134%; p = 0.009), but no change in MHC II. For mitochondrial morphology, we found significant (all p-values ≤ 0.0124) increases in mitochondrial volume density (∼55%) and length (∼18%) as well as mitochondria per unit area (∼19%). For mitochondrial enzymes, there were also significant (all p-values ≤ 0.0058) increases in basal citrate synthase (∼79%) and cytochrome c oxidase activity (∼67%) in the nonoxidative muscle fibers as well as increases in basal (ATP) (∼52%). Last, there were also significant mean differences in protein expression for regulators (FIS1, Lon protease, and TFAM) of mitochondrial biogenesis. These findings suggest that maternal exercise before and during pregnancy enhances offspring skeletal muscle mitochondria functionality, but not capillarity.


Asunto(s)
Mitocondrias Musculares/fisiología , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/fisiología , Condicionamiento Físico Animal/fisiología , Atención Preconceptiva/métodos , Animales , Femenino , Miembro Posterior , Extremidad Inferior/fisiología , Masculino , Ratones , Mitocondrias/metabolismo , Cadenas Pesadas de Miosina/fisiología , Oxidación-Reducción , Estrés Oxidativo , Embarazo , Trombospondina 1/metabolismo
20.
Am J Physiol Endocrinol Metab ; 313(4): E391-E401, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28698281

RESUMEN

Bone marrow-derived progenitor cells (BMPCs) are potential candidates for autologous cell therapy in tissue repair and regeneration because of their high angiogenic potential. However, increased progenitor cell apoptosis in diabetes directly limits their success in the clinic. MicroRNAs are endogenous noncoding RNAs that regulate gene expression at the posttranscriptional level, but their roles in BMPC-mediated angiogenesis are incompletely understood. In the present study, we tested the hypothesis that the proangiogenic miR-27b inhibits BMPC apoptosis in Type 2 diabetes. Bone marrow-derived EPCs from adult male Type 2 diabetic db/db mice and their normal littermates db/+ mice were used. MiR-27b expression (real-time PCR) in EPCs was decreased after 24 h of exposure to methylglyoxal (MGO) or oxidized low-density lipoprotein but not high glucose, advanced glycation end products, the reactive oxygen species generator LY83583, or H2O2 The increase in BMPC apoptosis in the diabetic mice was rescued following transfection with a miR-27b mimic, and the increased apoptosis induced by MGO was also rescued by the miR-27b mimic. p53 protein expression and the Bax/Bcl-2 ratio in EPCs (Western blot analyses) were significantly higher in db/db mice, both of which were suppressed by miR-27b. Furthermore, mitochondrial respiration, as measured by oxygen consumption rate, was enhanced by miR-27b in diabetic BMPCs, with concomitant decrease of mitochondrial Bax/Bcl-2 ratio. The 3' UTR binding assays revealed that both Bax, and its activator RUNX1, were direct targets of miR-27b, suggesting that miR-27b inhibits Bax expression in both direct and indirect manners. miR-27b prevents EPC apoptosis in Type 2 diabetic mice, at least in part, by suppressing p53 and the Bax/Bcl-2 ratio. These findings may provide a mechanistic basis for rescuing BMPC dysfunction in diabetes for successful autologous cell therapy.


Asunto(s)
Apoptosis/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Progenitoras Endoteliales/metabolismo , MicroARNs/genética , Mitocondrias/metabolismo , Aminoquinolinas/farmacología , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Estudios de Casos y Controles , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Células Progenitoras Endoteliales/citología , Células Progenitoras Endoteliales/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Productos Finales de Glicación Avanzada/farmacología , Peróxido de Hidrógeno/farmacología , Lipoproteínas LDL/farmacología , Masculino , Ratones , MicroARNs/efectos de los fármacos , MicroARNs/metabolismo , Mitocondrias/efectos de los fármacos , Oxidantes/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Piruvaldehído/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa , Células Madre/citología , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína X Asociada a bcl-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA