Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37569446

RESUMEN

This study investigated the protective effect of glutathione (GSH), an antioxidant drug, against doxorubicin (DOX)-induced cardiotoxicity. Human cardiac progenitor cells (hCPCs) treated with DOX (250 to 500 nM) showed increased viability and reduced ROS generation and apoptosis with GSH treatment (0.1 to 1 mM) for 24 h. In contrast to the 500 nM DOX group, pERK levels were restored in the group co-treated with GSH and suppression of ERK signaling improved hCPCs' survival. Similarly to the previous results, the reduced potency of hCPCs in the 100 nM DOX group, which did not affect cell viability, was ameliorated by co-treatment with GSH (0.1 to 1 mM). Furthermore, GSH was protected against DOX-induced cardiotoxicity in the in vivo model (DOX 20 mg/kg, GSH 100 mg/kg). These results suggest that GSH is a potential therapeutic strategy for DOX-induced cardiotoxicity, which performs its function via ROS reduction and pERK signal regulation.

3.
Int J Mol Sci ; 23(2)2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35055132

RESUMEN

Anterior gradient protein 2 homolog (AGR2), an endoplasmic reticulum protein, is secreted in the tumor microenvironment. AGR2 is a member of the disulfide isomerase family, is highly expressed in multiple cancers, and promotes cancer metastasis. In this study, we found that etravirine, which is a non-nucleoside reverse transcriptase inhibitor, could induce AGR2 degradation via autophagy. Moreover, etravirine diminished proliferation, migration, and invasion in vitro. Moreover, in an orthotopic xenograft mouse model, the combination of etravirine and paclitaxel significantly suppressed cancer progression and metastasis. This drug may be a promising therapeutic agent for the treatment of ovarian cancer.


Asunto(s)
Mucoproteínas/metabolismo , Nitrilos/administración & dosificación , Proteínas Oncogénicas/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Paclitaxel/administración & dosificación , Pirimidinas/administración & dosificación , Inhibidores de la Transcriptasa Inversa/administración & dosificación , Animales , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Mucoproteínas/genética , Metástasis de la Neoplasia , Nitrilos/farmacología , Proteínas Oncogénicas/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Paclitaxel/farmacología , Proteolisis , Pirimidinas/farmacología , Inhibidores de la Transcriptasa Inversa/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946516

RESUMEN

Endothelial progenitor cells (EPCs) are specialized cells in circulating blood, well known for their ability to form new vascular structures. Aging and various ailments such as diabetes, atherosclerosis and cardiovascular disease make EPCs vulnerable to decreasing in number, which affects their migration, proliferation and angiogenesis. Myocardial ischemia is also linked to a reduced number of EPCs and their endothelial functional role, which hinders proper blood circulation to the myocardium. The current study shows that an aminopyrimidine derivative compound (CHIR99021) induces the inhibition of GSK-3ß in cultured late EPCs. GSK-3ß inhibition subsequently inhibits mTOR by blocking the phosphorylation of TSC2 and lysosomal localization of mTOR. Furthermore, suppression of GSK-3ß activity considerably increased lysosomal activation and autophagy. The activation of lysosomes and autophagy by GSK-3ß inhibition not only prevented replicative senescence of the late EPCs but also directed their migration, proliferation and angiogenesis. To conclude, our results demonstrate that lysosome activation and autophagy play a crucial role in blocking the replicative senescence of EPCs and in increasing their endothelial function. Thus, the findings provide an insight towards the treatment of ischemia-associated cardiovascular diseases based on the role of late EPCs.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Células Progenitoras Endoteliales/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Pirimidinas/farmacología , Autofagia/efectos de los fármacos , Células Cultivadas , Células Progenitoras Endoteliales/citología , Células Progenitoras Endoteliales/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Serina-Treonina Quinasas TOR/metabolismo
5.
Korean J Physiol Pharmacol ; 25(5): 459-466, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34448463

RESUMEN

Cardiovascular disease (CVD) and its complications are the leading cause of morbidity and mortality in the world. Because of the side effects and incomplete recovery from current therapy, stem cell therapy emerges as a potential therapy for CVD treatment, and endothelial progenitor cell (EPC) is one of the key stem cells used for therapeutic applications. The effect of this therapy required the expansion of EPC function. To enhance the EPC activation, proliferation, and angiogenesis using dronedarone hydrochloride (DH) is the purpose of this study. DH received approval for atrial fibrillation treatment and its cardiovascular protective effects were already reported. In this study, DH significantly increased EPC proliferation, tube formation, migration, and maintained EPCs surface marker expression. In addition, DH treatment up-regulated the phosphorylation of AKT and reduced the reactive oxygen species production. In summary, the cell priming by DH considerably improved the functional activity of EPCs, and the use of which might be a novel strategy for CVD treatment.

6.
Biochem Biophys Res Commun ; 515(4): 600-606, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31178140

RESUMEN

Colorectal cancer is one of the leading causes of cancer-related deaths. Due to relapse after current therapy regimens, cancer stem cells (CSCs) are being studied to target this small tumor-initiating population. Anterior gradient 2 (AGR2), a disulfide isomerase protein, is a well-known pro-oncogenic/metastatic oncogene overexpressed in various tumor tissues, including colon cancer. We found that AGR2 was a novel stem cell marker that was regulated by the canonical Wnt/ß-catenin pathway in colon CSCs. AGR2 was highly co-expressed with surface stem cell markers in spheroidal culture. Silencing of AGR2 resulted in decreased sphere-forming ability and down-regulated expression of stem cell markers, whereas the opposite effects were seen with AGR2 overexpression. Moreover, patients with high ß-catenin and AGR2 expression showed lower overall survival than those with low expression. In conclusion, our study describes a novel role for AGR2 as a stem cell marker that is highly regulated by canonical Wnt/ß-catenin signaling in colorectal cancer.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Regulación Neoplásica de la Expresión Génica , Mucoproteínas/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas Oncogénicas/metabolismo , Vía de Señalización Wnt , Línea Celular Tumoral , Perfilación de la Expresión Génica , Silenciador del Gen , Células HCT116 , Células HEK293 , Humanos , Metástasis de la Neoplasia , Transducción de Señal , Esferoides Celulares , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
7.
Biochem Biophys Res Commun ; 516(1): 149-156, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31202462

RESUMEN

Anterior gradient protein 2 homolog (AGR2) belongs to the disulfide isomerase family of endoplasmic reticulum proteins. Itis overexpressed in several types of solid tumors, including tumors of the prostate, lung, and pancreas. However, the role of AGR2 in breast cancer and the regulatory mechanisms underlying AGR2 protein expressionare not fullyunderstood. We demonstrated that AGR2 levels are increased under hypoxic conditions and in breast cancer tumors. Mechanistically, Twist1 binds to, and activates the AGR2 promoter via an E-box sequence. Under hypoxic conditions, the increased expression of ARG2 is attenuated when Twist1 levels are reduced by shRNA. Conversely, Twist1 overexpression fully reverses decreased AGR2 levels upon HIF-1α knockdown. Notably, AGR2 is required for Twist1-induced proliferation, migration, and invasion of breast cancer cells. Collectively, these findings extend our understanding of AGR2 regulation in breast cancer and may contribute to development of Twist1-AGR2 targeting therapeutics for breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , Mucoproteínas/genética , Proteínas Nucleares/genética , Proteínas Oncogénicas/genética , Proteína 1 Relacionada con Twist/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Humanos , Persona de Mediana Edad , Regiones Promotoras Genéticas
8.
Mar Drugs ; 17(7)2019 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-31277207

RESUMEN

The purpose of the present study is to improve the endothelial progenitor cells (EPC) activation, proliferation, and angiogenesis using enzyme-aided extraction of fucoidan by amyloglucosidase (EAEF-AMG). Enzyme-aided extraction of fucoidan by AMG (EAEF-AMG) significantly increased EPC proliferation by reducing the reactive oxygen species (ROS) and decreasing apoptosis. Notably, EAEF-AMG treated EPCs repressed the colocalization of TSC2/LAMP1 and promoted perinuclear localization of mTOR/LAMP1 and mTOR/Rheb. Moreover, EAEF-AMG enhanced EPC functionalities, including tube formation, cell migration, and wound healing via regulation of AKT/Rheb signaling. Our data provided cell priming protocols to enhance therapeutic applications of EPCs using bioactive compounds for the treatment of CVD.


Asunto(s)
Células Progenitoras Endoteliales/efectos de los fármacos , Glucano 1,4-alfa-Glucosidasa/metabolismo , Polisacáridos/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Células Progenitoras Endoteliales/metabolismo , Humanos , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo , Cicatrización de Heridas/efectos de los fármacos
9.
Mar Drugs ; 17(6)2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31234277

RESUMEN

Cardiac progenitor cells (CPCs) are resident stem cells present in a small portion of ischemic hearts and function in repairing the damaged heart tissue. Intense oxidative stress impairs cell metabolism thereby decreasing cell viability. Protecting CPCs from undergoing cellular apoptosis during oxidative stress is crucial in optimizing CPC-based therapy. Histochrome (sodium salt of echinochrome A-a common sea urchin pigment) is an antioxidant drug that has been clinically used as a pharmacologic agent for ischemia/reperfusion injury in Russia. However, the mechanistic effect of histochrome on CPCs has never been reported. We investigated the protective effect of histochrome pretreatment on human CPCs (hCPCs) against hydrogen peroxide (H2O2)-induced oxidative stress. Annexin V/7-aminoactinomycin D (7-AAD) assay revealed that histochrome-treated CPCs showed significant protective effects against H2O2-induced cell death. The anti-apoptotic proteins B-cell lymphoma 2 (Bcl-2) and Bcl-xL were significantly upregulated, whereas the pro-apoptotic proteins BCL2-associated X (Bax), H2O2-induced cleaved caspase-3, and the DNA damage marker, phosphorylated histone (γH2A.X) foci, were significantly downregulated upon histochrome treatment of hCPCs in vitro. Further, prolonged incubation with histochrome alleviated the replicative cellular senescence of hCPCs. In conclusion, we report the protective effect of histochrome against oxidative stress and present the use of a potent and bio-safe cell priming agent as a potential therapeutic strategy in patient-derived hCPCs to treat heart disease.


Asunto(s)
Miocitos Cardíacos/efectos de los fármacos , Naftoquinonas/farmacología , Estrés Oxidativo/efectos de los fármacos , Células Madre/efectos de los fármacos , Anexina A5/metabolismo , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Caspasa 3/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/farmacología , Miocitos Cardíacos/metabolismo , Daño por Reperfusión/inducido químicamente , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Federación de Rusia , Proteína X Asociada a bcl-2/metabolismo
10.
J Neurochem ; 127(1): 139-48, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23859404

RESUMEN

The role of phosphoinositide 3-kinase (PI3K) in oxidative glutamate toxicity is not clear. Here, we investigate its role in HT22 mouse hippocampal cells and primary cortical neuronal cultures, showing that inhibitors of PI3K, LY294002, and wortmannin suppress extracellular hydrogen peroxide (H2O2) generation and increase cell survival during glutamate toxicity in HT22 cells. The mitogen-activated protein kinase kinase (MEK) inhibitor U0126 also reduced glutamate-induced H2O2 generation and inhibited phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. LY294002 was seen to abolish phosphorylation of both ERK1/2 and Akt. A small interfering RNA (siRNA) study showed that PI3Kß and PI3Kγ, rather than PI3Kα and PI3Kδ, contribute to glutamate-induced H2O2 generation and cell death. PI3Kγ knockdown also inhibited glutamate-induced ERK1/2 phosphorylation, whereas transfection with the constitutively active form of human PI3Kγ (PI3Kγ-CAAX) triggered MEK1/2 and ERK1/2 phosphorylation and H2O2 generation without glutamate exposure. This H2O2 generation was reduced by inhibition of MEK. Transfection with kinase-dead 3-phosphoinositide-dependent protein kinase 1 (PDK1-KD) reduced glutamate-induced ERK1/2 phosphorylation and H2O2 generation. Accordingly, cotransfection of cells with PDK1-KD and PI3Kγ-CAAX suppressed PI3Kγ-CAAX-triggered ERK1/2 phosphorylation and H2O2 generation. These results suggest that activation of PI3Kγ induces ERK1/2 phosphorylation, leading to extracellular H2O2 generation via PDK1 in oxidative glutamate toxicity.


Asunto(s)
Ácido Glutámico/toxicidad , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Animales , Western Blotting , Supervivencia Celular , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Ratones Endogámicos ICR , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Oxidación-Reducción , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación , Plásmidos/genética , ARN Interferente Pequeño/metabolismo , Transfección
11.
Cells ; 12(15)2023 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-37566085

RESUMEN

Endothelial progenitor cell (EPC)-based stem cell therapy is a promising therapeutic strategy for vascular diseases. However, continuous in vitro expansion for clinical studies induces the loss of EPC functionality due to aging. In this study, we investigated the effects of StemRegenin-1 (SR-1), an antagonist of aryl hydrocarbon receptor (AhR), on replicative senescence in EPCs. We found that SR-1 maintained the expression of EPC surface markers, including stem cell markers, such as CD34, c-Kit, and CXCR4. Moreover, SR-1 long-term-treated EPCs preserved their characteristics. Subsequently, we demonstrated that SR-1 showed that aging phenotypes were reduced through senescence-associated phenotypes, such as ß-galactosidase activity, SMP30, p21, p53, and senescence-associated secretory phenotype (SASP). SR-1 treatment also increased the proliferation, migration, and tube-forming capacity of senescent EPCs. SR-1 inhibited the AhR-mediated cytochrome P450 (CYP)1A1 expression, reactive-oxygen species (ROS) production, and DNA damage under oxidative stress conditions in EPCs. Furthermore, as a result of CYP1A1-induced ROS inhibition, it was found that accumulated intracellular ROS were decreased in senescent EPCs. Finally, an in vivo Matrigel plug assay demonstrated drastically enhanced blood vessel formation via SR-1-treated EPCs. In summary, our results suggest that SR-1 contributes to the protection of EPCs against cellular senescence.


Asunto(s)
Células Progenitoras Endoteliales , Especies Reactivas de Oxígeno/metabolismo , Células Progenitoras Endoteliales/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Citocromo P-450 CYP1A1/metabolismo
12.
Transl Cancer Res ; 11(2): 316-326, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35281415

RESUMEN

Background: To identify immunotherapy biomarkers, we examined granzyme B levels in peripheral blood PD-1+ CD8+ T cells and their relationship with treatment outcomes in patients with non-small cell lung cancer (NSCLC). Methods: To evaluate the association of granzyme B with response to immunotherapy, we tested blood samples obtained from 16 patients with stage IIIC to IV NSCLC receiving immune-checkpoint inhibitor treatment. We used flow cytometry to measure the change in the percentage of PD1+ CD8+ T cells expressing granzyme B before (t0) and after (t1) immunotherapy, and we evaluated for an association with tumor response to therapy, progression-free survival (PFS) and overall survival (OS). Additionally, we measured immune markers correlated with immunotherapy response by enzyme-linked immunosorbent assay. Results: We found that the sequential change of granzyme B+ T cells after immunotherapy (t1/t0) significantly predicted durable clinical benefit (DCB) compared to no clinical benefit (NCB) (P=0.048), and prolonged PFS (P=0.025). Patients who demonstrated a PD-L1 tumor proportion score (TPS) >50% showed NCB if patients had low granzyme B t1/t0 levels (<0.805). Additionally, all patients with 1% PD-L1 TPS (or higher) and high granzyme B t1/t0 (≥0.805) showed DCB. Therefore, granzyme B t1/t0 may be an adjunctive marker with available PD-L1 TPS. Conclusions: Our findings revealed that sequential change in granzyme B might be utilized as a predictive biomarker of immune checkpoint inhibitor monotherapy.

13.
Exp Cell Res ; 316(10): 1651-61, 2010 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-20363222

RESUMEN

Reactive oxygen species (ROS) can trigger neuronal cell death and has been implicated in a variety of neurodegenerative diseases as well as brain ischemia. Here, we demonstrate that chronic (but not acute) glutamate toxicity in primary cortical neuronal cultures is associated with hydrogen peroxide (H(2)O(2)) accumulation in the culture medium and that neurotoxicity can be eliminated by external catalase treatment. Neuronal cultures in Ca(2+)-free medium or treated with BAPTA showed reduced glutamate-induced H(2)O(2) generation, indicating that H(2)O(2) generation is Ca(2+)-dependent. Pharmacological and genetic approaches revealed that NADPH oxidase plays a role in glutamate-induced H(2)O(2) generation and that activation of NMDA and AMPA receptors is involved in this H(2)O(2) generation. The Nox4 siRNA reduced NMDA-induced H(2)O(2) production by 54% and cytotoxicity in parallel, suggesting that Nox4-containing NADPH oxidase functions NMDA receptor-mediated H(2)O(2) production resulting in neurotoxicity. These findings suggest that the modulation of NADPH oxidase can be used as a new therapeutic strategy for glutamate-induced neuronal diseases.


Asunto(s)
Ácido Glutámico/metabolismo , Ácido Glutámico/toxicidad , Peróxido de Hidrógeno/metabolismo , NADPH Oxidasas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Animales , Secuencia de Bases , Calcio/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Cartilla de ADN/genética , Ratones , N-Metilaspartato/metabolismo , N-Metilaspartato/farmacología , NADPH Oxidasa 4 , NADPH Oxidasas/antagonistas & inhibidores , NADPH Oxidasas/genética , Neuronas/citología , Interferencia de ARN , ARN Interferente Pequeño/genética , Especies Reactivas de Oxígeno/metabolismo , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
14.
Biosens Bioelectron ; 194: 113567, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34481239

RESUMEN

There is a growing interest in electronic nose-based diagnostic systems that are fast and portable. However, existing technologies are suitable only for operation in the laboratory, making them difficult to apply in a rapid, non-face-to-face, and field-suitable manner. Here, we demonstrate a DNA-derived phage nose (D2pNose) as a portable respiratory disease diagnosis system requiring no pretreatment. D2pNose was produced based on phage colour films implanted with DNA sequences from mammalian olfactory receptor cells, and as a result, it possesses the comprehensive reactivity of these cells. The manipulated surface chemistry of the genetically engineered phages was verified through a correlation analysis between the calculated and the experimentally measured reactivity. Breaths from 31 healthy subjects and 31 lung cancer patients were collected and exposed to D2pNose without pretreatment. With the help of deep learning and neural pattern separation, D2pNose has achieved a diagnostic success rate of over 75% and a classification success rate of over 86% for lung cancer based on raw human breath. Based on these results, D2pNose can be expected to be directly applicable to other respiratory diseases.


Asunto(s)
Bacteriófagos , Técnicas Biosensibles , Neoplasias Pulmonares , Bacteriófagos/genética , ADN , Humanos , Neoplasias Pulmonares/diagnóstico , Aprendizaje Automático
15.
Exp Mol Med ; 53(9): 1423-1436, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34584195

RESUMEN

Stem cell-based therapies with clinical applications require millions of cells. Therefore, repeated subculture is essential for cellular expansion, which is often complicated by replicative senescence. Cellular senescence contributes to reduced stem cell regenerative potential as it inhibits stem cell proliferation and differentiation as well as the activation of the senescence-associated secretory phenotype (SASP). In this study, we employed MHY-1685, a novel mammalian target of rapamycin (mTOR) inhibitor, and examined its long-term priming effect on the activities of senile human cardiac stem cells (hCSCs) and the functional benefits of primed hCSCs after transplantation. In vitro experiments showed that the MHY-1685‒primed hCSCs exhibited higher viability in response to oxidative stress and an enhanced proliferation potential compared to that of the unprimed senile hCSCs. Interestingly, priming MHY-1685 enhanced the expression of stemness-related markers in senile hCSCs and provided the differentiation potential of hCSCs into vascular lineages. In vivo experiment with echocardiography showed that transplantation of MHY-1685‒primed hCSCs improved cardiac function than that of the unprimed senile hCSCs at 4 weeks post-MI. In addition, hearts transplanted with MHY-1685-primed hCSCs exhibited significantly lower cardiac fibrosis and higher capillary density than that of the unprimed senile hCSCs. In confocal fluorescence imaging, MHY-1685‒primed hCSCs survived for longer durations than that of the unprimed senile hCSCs and had a higher potential to differentiate into endothelial cells (ECs) within the infarcted hearts. These findings suggest that MHY-1685 can rejuvenate senile hCSCs by modulating autophagy and that as a senescence inhibitor, MHY-1685 can provide opportunities to improve hCSC-based myocardial regeneration.


Asunto(s)
Autofagia , Diferenciación Celular , Mioblastos Cardíacos/citología , Mioblastos Cardíacos/metabolismo , Regeneración , Células Madre/citología , Células Madre/metabolismo , Autofagia/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Fibrosis , Humanos , Masculino , Miocardio/metabolismo , Miocardio/patología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Trasplante de Células Madre , Serina-Treonina Quinasas TOR/metabolismo
16.
Exp Mol Med ; 52(4): 615-628, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32273566

RESUMEN

The mammalian target of rapamycin (mTOR) signaling pathway efficiently regulates the energy state of cells and maintains tissue homeostasis. Dysregulation of the mTOR pathway has been implicated in several human diseases. Rapamycin is a specific inhibitor of mTOR and pharmacological inhibition of mTOR with rapamycin promote cardiac cell generation from the differentiation of mouse and human embryonic stem cells. These studies strongly implicate a role of sustained mTOR activity in the differentiating functions of embryonic stem cells; however, they do not directly address the required effect for sustained mTOR activity in human cardiac progenitor cells. In the present study, we evaluated the effect of mTOR inhibition by rapamycin on the cellular function of human cardiac progenitor cells and discovered that treatment with rapamycin markedly attenuated replicative cell senescence in human cardiac progenitor cells (hCPCs) and promoted their cellular functions. Furthermore, rapamycin not only inhibited mTOR signaling but also influenced signaling pathways, including STAT3 and PIM1, in hCPCs. Therefore, these data reveal a crucial function for rapamycin in senescent hCPCs and provide clinical strategies based on chronic mTOR activity.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Mioblastos Cardíacos/efectos de los fármacos , Mioblastos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Biología Computacional/métodos , Perfilación de la Expresión Génica , Humanos , Sirolimus/farmacología , Células Madre/metabolismo
17.
Tissue Eng Regen Med ; 17(3): 323-333, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32227286

RESUMEN

BACKGROUND: Despite promising advances in stem cell-based therapy, the treatment of ischemic cardiovascular diseases remains a big challenge due to both the insufficient in vivo viability of transplanted cells and poor angiogenic potential of stem cells. The goal of this study was to develop therapeutic human cardiac progenitor cells (hCPCs) for ischemic cardiovascular diseases with a novel M13 peptide carrier. METHOD: In this study, an engineered M13 peptide carrier was successfully generated using a QuikChange Kit. The cellular function of M13 peptide carrier-treated hCPCs was assessed using a tube formation assay and scratch wound healing assay. The in vivo engraftment and cell survival bioactivities of transplanted cells were demonstrated by immunohistochemistry after hCPC transplantation into a myocardial infarction animal model. RESULTS: The engineered M13RGD+SDKP peptide carrier, which expressed RGD peptide on PIII site and SDKP peptide on PVIII site, did not affect morphologic change and proliferation ability in hCPCs. In contrast, hCPCs treated with M13RGD+SDKP showed enhanced angiogenic capacity, including tube formation and migration capacity. Moreover, transplanted hCPCs with M13RGD+SDKP were engrafted into the ischemic region and promoted in vivo cell survival. CONCLUSION: Our present data provides a promising protocol for CPC-based cell therapy via short-term cell priming of hCPCs with engineered M13RGD+SDKP before cell transplantation for treatment of cardiovascular disease.


Asunto(s)
Inductores de la Angiogénesis/farmacología , Infarto del Miocardio/terapia , Péptidos/metabolismo , Trasplante de Células Madre , Células Madre/efectos de los fármacos , Animales , Bacteriófago M13/genética , Enfermedades Cardiovasculares , Supervivencia Celular , Células Endoteliales , Ingeniería Genética , Humanos , Masculino , Ratones Endogámicos BALB C , Miocitos Cardíacos/trasplante , Péptidos/farmacología , Cicatrización de Heridas
18.
J Microbiol Biotechnol ; 18(8): 1427-30, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18756104

RESUMEN

Decursinol, found in the roots of Angelica gigas Nakai, has been traditionally used to treat anemia and other various diseases. Recently, numerous biological activities such as cytotoxic effect on leukemia cells, and antitumor, neuroprotection, and antibacterial activities have been reported for this compound. Although a number of proteins including protein kinase C, androgen receptor, and acetylcholinesterase were proposed as molecular targets responsible for the activities of decursinol, they are not enough to explain such a diverse biological activity mentioned above. In this study, we employed a chemical proteomic approach, leading to identification of seven proteins as potential proteins interacting with decursinol. Most of the proteins contain a defined ATP or nucleic acid binding domain and have been implied to be involved in the pathogenesis and progression of various human diseases including cancer, autoimmune disorders, or neurodegenerative diseases. The present results may provide clues to understand the molecular mechanism of the biological activities shown by decursinol, an anticancer natural product.


Asunto(s)
Benzopiranos/metabolismo , Benzopiranos/farmacología , Butiratos/metabolismo , Butiratos/farmacología , Proteínas/metabolismo , Proteómica/métodos , Angelica/química , Animales , Benzopiranos/química , Butiratos/química , Línea Celular , Cromatografía de Afinidad , Cromatografía Liquida , Ratones , Unión Proteica , Proteínas/química , Espectrometría de Masas en Tándem
19.
Stem Cells Int ; 2018: 7453161, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30510587

RESUMEN

Cross talks between the renin-angiotensin system (RAS), sympathetic nervous system, and vascular homeostasis are tightly coordinated in hypertension. Angiotensin II (Ang II), a key factor in RAS, when abnormally activated, affects the number and bioactivity of circulating human endothelial progenitor cells (hEPCs) in hypertensive patients. In this study, we investigated how the augmentation of Ang II regulates adrenergic receptor-mediated signaling and angiogenic bioactivities of hEPCs. Interestingly, the short-term treatment of hEPCs with Ang II drastically attenuated the expression of beta-2 adrenergic receptor (ADRB2), but did not alter the expression of beta-1 adrenergic receptor (ADRB1) and Ang II type 1 receptor (AT1R). EPC functional assay clearly demonstrated that the treatment with ADRB2 agonists significantly increased EPC bioactivities including cell proliferation, migration, and tube formation abilities. However, EPC bioactivities were decreased dramatically when treated with Ang II. Importantly, the attenuation of EPC bioactivities by Ang II was restored by treatment with an AT1R antagonist (telmisartan; TERT). We found that AT1R binds to ADRB2 in physiological conditions, but this binding is significantly decreased in the presence of Ang II. Furthermore, TERT, an Ang II-AT1R interaction blocker, restored the interaction between AT1R and ADRB2, suggesting that Ang II might induce the dysfunction of EPCs via downregulation of ADRB2, and an AT1R blocker could prevent Ang II-mediated ADRB2 depletion in EPCs. Taken together, our report provides novel insights into potential therapeutic approaches for hypertension-related cardiovascular diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA