Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nature ; 598(7881): 515-520, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34588691

RESUMEN

Prokaryotes adapt to challenges from mobile genetic elements by integrating spacers derived from foreign DNA in the CRISPR array1. Spacer insertion is carried out by the Cas1-Cas2 integrase complex2-4. A substantial fraction of CRISPR-Cas systems use a Fe-S cluster containing Cas4 nuclease to ensure that spacers are acquired from DNA flanked by a protospacer adjacent motif (PAM)5,6 and inserted into the CRISPR array unidirectionally, so that the transcribed CRISPR RNA can guide target searching in a PAM-dependent manner. Here we provide a high-resolution mechanistic explanation for the Cas4-assisted PAM selection, spacer biogenesis and directional integration by type I-G CRISPR in Geobacter sulfurreducens, in which Cas4 is naturally fused with Cas1, forming Cas4/Cas1. During biogenesis, only DNA duplexes possessing a PAM-embedded 3'-overhang trigger Cas4/Cas1-Cas2 assembly. During this process, the PAM overhang is specifically recognized and sequestered, but is not cleaved by Cas4. This 'molecular constipation' prevents the PAM-side prespacer from participating in integration. Lacking such sequestration, the non-PAM overhang is trimmed by host nucleases and integrated to the leader-side CRISPR repeat. Half-integration subsequently triggers PAM cleavage and Cas4 dissociation, allowing spacer-side integration. Overall, the intricate molecular interaction between Cas4 and Cas1-Cas2 selects PAM-containing prespacers for integration and couples the timing of PAM processing with the stepwise integration to establish directionality.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Endonucleasas/metabolismo , Geobacter/enzimología , Bases de Datos Genéticas , Modelos Moleculares , Conformación Molecular , Motivos de Nucleótidos
2.
Biophys J ; 120(7): 1198-1209, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33617832

RESUMEN

The ability to detect specific nucleic acid sequences allows for a wide range of applications such as the identification of pathogens, clinical diagnostics, and genotyping. CRISPR-Cas proteins Cas12a and Cas13a are RNA-guided endonucleases that bind and cleave specific DNA and RNA sequences, respectively. After recognition of a target sequence, both enzymes activate indiscriminate nucleic acid cleavage, which has been exploited for sequence-specific molecular diagnostics of nucleic acids. Here, we present a label-free detection approach that uses a readout based on solution turbidity caused by liquid-liquid phase separation (LLPS). Our approach relies on the fact that the LLPS of oppositely charged polymers requires polymers to be longer than a critical length. This length dependence is predicted by the Voorn-Overbeek model, which we describe in detail and validate experimentally in mixtures of polynucleotides and polycations. We show that the turbidity resulting from LLPS can be used to detect the presence of specific nucleic acid sequences by employing the programmable CRISPR-nucleases Cas12a and Cas13a. Because LLPS of polynucleotides and polycations causes solutions to become turbid, the detection of specific nucleic acid sequences can be observed with the naked eye. We furthermore demonstrate that there is an optimal polynucleotide concentration for detection. Finally, we provide a theoretical prediction that hints towards possible improvements of an LLPS-based detection assay. The deployment of LLPS complements CRISPR-based molecular diagnostic applications and facilitates easy and low-cost nucleotide sequence detection.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ARN , Sistemas CRISPR-Cas , ADN/genética , Endonucleasas , ARN/genética
3.
PLoS Comput Biol ; 16(1): e1007314, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31971941

RESUMEN

The last decade has witnessed a remarkable increase in our ability to measure genetic information. Advancements of sequencing technologies are challenging the existing methods of data storage and analysis. While methods to cope with the data deluge are progressing, many biologists have lagged behind due to the fast pace of computational advancements and tools available to address their scientific questions. Future generations of biologists must be more computationally aware and capable. This means they should be trained to give them the computational skills to keep pace with technological developments. Here, we propose a model that bridges experimental and bioinformatics concepts using the Oxford Nanopore Technologies (ONT) sequencing platform. We provide both a guide to begin to empower the new generation of educators, scientists, and students in performing long-read assembly of bacterial and bacteriophage genomes and a standalone virtual machine containing all the required software and learning materials for the course.


Asunto(s)
Biología Computacional/educación , Secuenciación de Nanoporos , Humanos , Programas Informáticos
4.
Nucleic Acids Res ; 46(6): 3187-3197, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29325071

RESUMEN

RNA interference (RNAi) is an indispensable mechanism for antiviral defense in insects, including mosquitoes that transmit human diseases. To escape this antiviral defense system, viruses encode suppressors of RNAi that prevent elimination of viral RNAs, and thus ensure efficient virus accumulation. Although the first animal Viral Suppressor of RNAi (VSR) was identified more than a decade ago, the molecular basis of RNAi suppression by these viral proteins remains unclear. Here, we developed a single-molecule fluorescence assay to investigate how VSRs inhibit the recognition of viral RNAs by Dcr-2, a key endoribonuclease enzyme in the RNAi pathway. Using VSRs from three insect RNA viruses (Culex Y virus, Drosophila X virus and Drosophila C virus), we reveal bimodal physical interactions between RNA molecules and VSRs. During initial interactions, these VSRs rapidly discriminate short RNA substrates from long dsRNA. VSRs engage nearly irreversible binding with long dsRNAs, thereby shielding it from recognition by Dcr-2. We propose that the length-dependent switch from rapid screening to irreversible binding reflects the main mechanism by which VSRs distinguish viral dsRNA from cellular RNA species such as microRNAs.


Asunto(s)
Entomobirnavirus/genética , MicroARNs/genética , Interferencia de ARN , Virus ARN/genética , ARN Bicatenario/genética , ARN Viral/genética , Animales , Humanos , MicroARNs/metabolismo , Unión Proteica , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Viral/metabolismo , Células Sf9 , Spodoptera , Receptores Señuelo del Factor de Necrosis Tumoral/genética , Receptores Señuelo del Factor de Necrosis Tumoral/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
5.
Methods ; 105: 99-108, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27017911

RESUMEN

The genome and transcriptome are constantly modified by proteins in the cell. Recent advances in single-molecule techniques allow for high spatial and temporal observations of these interactions between proteins and nucleic acids. However, due to the difficulty of obtaining functional protein complexes, it remains challenging to study the interactions between macromolecular protein complexes and nucleic acids. Here, we combined single-molecule fluorescence with various protein complex pull-down techniques to determine the function and stoichiometry of ribonucleoprotein complexes. Through the use of three examples of protein complexes from eukaryotic cells (Drosha, Dicer, and TUT4 protein complexes), we provide step-by-step guidance for using novel single-molecule techniques. Our single-molecule methods provide sub-second and nanometer resolution and can be applied to other nucleoprotein complexes that are essential for cellular processes.


Asunto(s)
Proteínas de Unión al ADN/química , Microscopía Fluorescente/métodos , Complejos Multiproteicos/química , Imagen Individual de Molécula/métodos , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/genética , Proteínas de Unión al ADN/genética , Humanos , Complejos Multiproteicos/genética , Nanotecnología/métodos , Ácidos Nucleicos/química , Ácidos Nucleicos/genética , Ribonucleasa III/química , Ribonucleasa III/genética
7.
ACS Chem Biol ; 19(5): 1051-1055, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38602884

RESUMEN

The Craspase CRISPR-Cas effector consists of the RNA-guided ribonuclease gRAMP and the protease TPR-CHAT, coupling target RNA recognition to protease activation. The natural substrate of Craspase is Csx30, a protein cleaved in two fragments that subsequently activates downstream antiviral pathways. Here, we determined the protease substrate specificity of Craspase from Candidatus "Jettenia caeni" (Jc-Craspase). We find that Jc-Craspase cleaves Jc-Csx30 in a target RNA-dependent fashion in A|S, which is different from the sites found in two other studied Craspases (L|D and M|K for Candidatus "Scalindua brodae" and Desulfonema ishimotonii, respectively). The fact that Craspase cleaves a nonconserved site across orthologs indicates the evolution of specific protein interactions between Craspase and its respective Csx30 target protein. The Craspase family thus represents a panel of proteases with different substrate specificities, which we exploited for the development of a readout for multiplexed RNA detection.


Asunto(s)
Sistemas CRISPR-Cas , Especificidad por Sustrato , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/genética
8.
Sci Adv ; 10(8): eadj0341, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38394193

RESUMEN

Prokaryotes encode multiple distinct anti-phage defense systems in their genomes. However, the impact of carrying a multitude of defense systems on phage resistance remains unclear, especially in a clinical context. Using a collection of antibiotic-resistant clinical strains of Pseudomonas aeruginosa and a broad panel of phages, we demonstrate that defense systems contribute substantially to defining phage host range and that overall phage resistance scales with the number of defense systems in the bacterial genome. We show that many individual defense systems target specific phage genera and that defense systems with complementary phage specificities co-occur in P. aeruginosa genomes likely to provide benefits in phage-diverse environments. Overall, we show that phage-resistant phenotypes of P. aeruginosa with at least 19 phage defense systems exist in the populations of clinical, antibiotic-resistant P. aeruginosa strains.


Asunto(s)
Bacteriófagos , Infecciones por Pseudomonas , Fagos Pseudomonas , Humanos , Bacteriófagos/genética , Pseudomonas aeruginosa , Fagos Pseudomonas/genética , Infecciones por Pseudomonas/microbiología , Antibacterianos
9.
CRISPR J ; 5(4): 536-547, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35833800

RESUMEN

Adaptation of clustered regularly interspaced short palindromic repeats (CRISPR) arrays is a crucial process responsible for the unique, adaptive nature of CRISPR-Cas immune systems. The acquisition of new CRISPR spacers from mobile genetic elements has previously been studied for several types of CRISPR-Cas systems. In this study, we used a high-throughput sequencing approach to characterize CRISPR adaptation of the type V-A system from Francisella novicida and the type V-B system from Alicyclobacillus acidoterrestris. In contrast to other class 2 CRISPR-Cas systems, we found that for the type V-A and V-B systems, the Cas12 nucleases are dispensable for spacer acquisition, with only Cas1 and Cas2 (type V-A) or Cas4/1 and Cas2 (type V-B) being necessary and sufficient. Whereas the catalytic activity of Cas4 is not essential for adaptation, Cas4 activity is required for correct protospacer adjacent motif selection in both systems and for prespacer trimming in type V-A. In addition, we provide evidence for acquisition of RecBCD-produced DNA fragments by both systems, but with spacers derived from foreign DNA being incorporated preferentially over those derived from the host chromosome. Our work shows that several spacer acquisition mechanisms are conserved between diverse CRISPR-Cas systems, but also highlights unexpected nuances between similar systems that generally contribute to a bias of gaining immunity against invading genetic elements.


Asunto(s)
Proteínas Asociadas a CRISPR , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , ADN , Endonucleasas/genética , Edición Génica
10.
Science ; 377(6612): 1278-1285, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36007061

RESUMEN

The CRISPR-Cas type III-E RNA-targeting effector complex gRAMP/Cas7-11 is associated with a caspase-like protein (TPR-CHAT/Csx29) to form Craspase (CRISPR-guided caspase). Here, we use cryo-electron microscopy snapshots of Craspase to explain its target RNA cleavage and protease activation mechanisms. Target-guide pairing extending into the 5' region of the guide RNA displaces a gating loop in gRAMP, which triggers an extensive conformational relay that allosterically aligns the protease catalytic dyad and opens an amino acid side-chain-binding pocket. We further define Csx30 as the endogenous protein substrate that is site-specifically proteolyzed by RNA-activated Craspase. This protease activity is switched off by target RNA cleavage by gRAMP and is not activated by RNA targets containing a matching protospacer flanking sequence. We thus conclude that Craspase is a target RNA-activated protease with self-regulatory capacity.


Asunto(s)
Proteínas Bacterianas , Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , Caspasas , Planctomicetos , ARN Guía de Kinetoplastida , Proteínas Bacterianas/química , Proteínas Asociadas a CRISPR/química , Caspasas/química , Microscopía por Crioelectrón , Planctomicetos/enzimología , Conformación Proteica , ARN Guía de Kinetoplastida/química
11.
Antimicrob Agents Chemother ; 55(11): 5354-7, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21876062

RESUMEN

Pyrazinoic acid, the active form of the first-line antituberculosis drug pyrazinamide, decreased the proton motive force and respiratory ATP synthesis rates in subcellular mycobacterial membrane assays. Pyrazinoic acid also significantly lowered cellular ATP levels in Mycobacterium bovis BCG. These results indicate that the predominant mechanism of killing by this drug may operate by depletion of cellular ATP reserves.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Antituberculosos/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Fuerza Protón-Motriz/efectos de los fármacos , Pirazinamida/análogos & derivados , Adenosina Trifosfato/metabolismo , Mycobacterium bovis/efectos de los fármacos , Mycobacterium bovis/metabolismo , Pirazinamida/farmacología
12.
CRISPR J ; 4(4): 536-548, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34406043

RESUMEN

The immunization of bacteria and archaea against invading viruses via CRISPR adaptation is critically reliant on the efficient capture, accurate processing, and integration of CRISPR spacers into the host genome. The adaptation proteins Cas1 and Cas2 are sufficient for successful spacer acquisition in some CRISPR-Cas systems. However, many CRISPR-Cas systems additionally require the Cas4 protein for efficient adaptation. Cas4 has been implied in the selection and processing of spacer precursors, but the detailed mechanistic understanding of how Cas4 contributes to CRISPR adaptation is lacking. Here, we biochemically reconstitute the CRISPR-Cas type I-D adaptation system and show two functionally distinct adaptation complexes: Cas4-Cas1 and Cas1-Cas2. The Cas4-Cas1 complex recognizes and cleaves protospacer adjacent motif (PAM) sequences in 3' overhangs in a sequence-specific manner, while the Cas1-Cas2 complex defines the cleavage of non-PAM sites via host-factor nucleases. Both sub-complexes are capable of mediating half-site integration, facilitating the integration of processed spacers in the correct interference-proficient orientation. We provide a model in which an asymmetric adaptation complex differentially acts on PAM- and non-PAM-containing overhangs, providing cues for the correct orientation of spacer integration.


Asunto(s)
Sitios de Unión , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Edición Génica , Motivos de Nucleótidos , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/genética , ADN Bacteriano , Edición Génica/métodos , Orden Génico , Complejos Multiproteicos , Plásmidos/química , Plásmidos/genética , Unión Proteica , Multimerización de Proteína
13.
Science ; 373(6561): 1349-1353, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34446442

RESUMEN

Type III CRISPR-Cas immunity is widespread in prokaryotes and is generally mediated by multisubunit effector complexes. These complexes recognize complementary viral transcripts and can activate ancillary immune proteins. Here, we describe a type III-E effector from Candidatus "Scalindua brodae" (Sb-gRAMP), which is natively encoded by a single gene with several type III domains fused together. This effector uses CRISPR RNA to guide target RNA recognition and cleaves single-stranded RNA at two defined positions six nucleotides apart. Sb-gRAMP physically combines with the caspase-like TPR-CHAT peptidase to form the CRISPR-guided caspase (Craspase) complex, suggesting a potential mechanism of target RNA­induced protease activity to gain viral immunity.


Asunto(s)
Bacterias/enzimología , Bacterias/genética , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Endorribonucleasas/metabolismo , Péptido Hidrolasas/metabolismo , Proteínas Bacterianas/química , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/genética , Caspasas/química , Caspasas/metabolismo , Endorribonucleasas/química , Endorribonucleasas/genética , Secuencias Repetitivas Esparcidas , Péptido Hidrolasas/química , Dominios Proteicos , ARN Bacteriano/metabolismo , ARN Viral/metabolismo , Especificidad por Sustrato
14.
Antimicrob Agents Chemother ; 53(3): 1290-2, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19075053

RESUMEN

The diarylquinoline TMC207 kills Mycobacterium tuberculosis by specifically inhibiting ATP synthase. We show here that human mitochondrial ATP synthase (50% inhibitory concentration [IC(50)] of >200 microM) displayed more than 20,000-fold lower sensitivity for TMC207 compared to that of mycobacterial ATP synthase (IC(50) of 10 nM). Also, oxygen consumption in mouse liver and bovine heart mitochondria showed very low sensitivity for TMC207. These results suggest that TMC207 may not elicit ATP synthesis-related toxicity in mammalian cells. ATP synthase, although highly conserved between prokaryotes and eukaryotes, may still qualify as an attractive antibiotic target.


Asunto(s)
Antituberculosos/farmacología , Células Eucariotas/enzimología , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Quinolinas/farmacología , Animales , Bovinos , Línea Celular , Línea Celular Tumoral , Diarilquinolinas , Relación Dosis-Respuesta a Droga , Humanos , Concentración 50 Inhibidora , Ratones , Mitocondrias Cardíacas/metabolismo , Mitocondrias Hepáticas/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/aislamiento & purificación , Consumo de Oxígeno/efectos de los fármacos , Sensibilidad y Especificidad
15.
Biochem J ; 411(3): 495-506, 2008 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-18248332

RESUMEN

A site-specific cross-linking approach was used to study the integration of TM (transmembrane) segments 4-7 of the polytopic membrane protein, opsin, at the ER (endoplasmic reticulum). We found that although TM4 exits the ER translocon rapidly, TM segments 5, 6 and 7 are all retained at the translocon until opsin biosynthesis is terminated. Furthermore, although artificial extension of the nascent chain is not sufficient to release the C-terminal region of opsin from the translocon, substitution of the native TM segment 7 with a more hydrophobic TM segment results in its rapid lateral exit into the lipid bilayer. We conclude that the intrinsic properties of a TM segment determine the timing of its membrane integration rather than its relative location within the polypeptide chain. A pronounced and prolonged association of opsin TM5 with the translocon-associated component PAT-10 was also observed, suggesting that PAT-10 may facilitate the assembly of distinct opsin subdomains during membrane integration. The results of the present study strongly support a model in which the ER translocon co-ordinates the integration of selected TM segments in response to the specific requirements of the precursor being synthesized.


Asunto(s)
Retículo Endoplásmico/metabolismo , Opsinas de Bastones/biosíntesis , Animales , Bovinos , Eliminación de Gen , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/metabolismo , Mutación/genética , Transporte de Proteínas , Opsinas de Bastones/genética , Canales de Translocación SEC
16.
Cell Rep ; 22(13): 3377-3384, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29590607

RESUMEN

CRISPR-Cas systems adapt their immunological memory against their invaders by integrating short DNA fragments into clustered regularly interspaced short palindromic repeat (CRISPR) loci. While Cas1 and Cas2 make up the core machinery of the CRISPR integration process, various class I and II CRISPR-Cas systems encode Cas4 proteins for which the role is unknown. Here, we introduced the CRISPR adaptation genes cas1, cas2, and cas4 from the type I-D CRISPR-Cas system of Synechocystis sp. 6803 into Escherichia coli and observed that cas4 is strictly required for the selection of targets with protospacer adjacent motifs (PAMs) conferring I-D CRISPR interference in the native host Synechocystis. We propose a model in which Cas4 assists the CRISPR adaptation complex Cas1-2 by providing DNA substrates tailored for the correct PAM. Introducing functional spacers that target DNA sequences with the correct PAM is key to successful CRISPR interference, providing a better chance of surviving infection by mobile genetic elements.


Asunto(s)
Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Humanos , Synechocystis/genética
17.
Nat Commun ; 7: 13694, 2016 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-27934859

RESUMEN

The RNA-binding protein TRBP is a central component of the Dicer complex. Despite a decade of biochemical and structural studies, the essential functionality of TRBP in microRNA (miRNA) biogenesis remains unknown. Here we show that TRBP is an integral cofactor for time-efficient Dicer processing in RNA-crowded environments. We competed for Dicer processing of pre-miRNA with a large amount of cellular RNA species and found that Dicer-TRBP, but not Dicer alone, remains resilient. To apprehend the mechanism of this substrate selectivity, we use single-molecule fluorescence. The real-time observation reveals that TRBP acts as a gatekeeper, precluding Dicer from engaging with pre-miRNA-like substrates. TRBP acquires the selectivity using the PAZ domain of Dicer, whereas Dicer moderates the RNA-binding affinity of TRBP for fast turnover. This coordinated action between TRBP and Dicer accomplishes an efficient way of discarding pre-miRNA-like substrates.


Asunto(s)
MicroARNs/metabolismo , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN/fisiología , Proteínas de Unión al ARN/metabolismo , Ribonucleasa III/metabolismo , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Complejos Multiproteicos/metabolismo , Coactivadores de Receptor Nuclear , Unión Proteica , Dominios Proteicos , ARN , Proteínas de Unión al ARN/genética , Transcripción Genética
18.
J Vis Exp ; (86)2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24797261

RESUMEN

Single-molecule fluorescence spectroscopy has proven to be instrumental in understanding a wide range of biological phenomena at the nanoscale. Important examples of what this technique can yield to biological sciences are the mechanistic insights on protein-protein and protein-nucleic acid interactions. When interactions of proteins are probed at the single-molecule level, the proteins or their substrates are often immobilized on a glass surface, which allows for a long-term observation. This immobilization scheme may introduce unwanted surface artifacts. Therefore, it is essential to passivate the glass surface to make it inert. Surface coating using polyethylene glycol (PEG) stands out for its high performance in preventing proteins from non-specifically interacting with a glass surface. However, the polymer coating procedure is difficult, due to the complication arising from a series of surface treatments and the stringent requirement that a surface needs to be free of any fluorescent molecules at the end of the procedure. Here, we provide a robust protocol with step-by-step instructions. It covers surface cleaning including piranha etching, surface functionalization with amine groups, and finally PEG coating. To obtain a high density of a PEG layer, we introduce a new strategy of treating the surface with PEG molecules over two rounds, which remarkably improves the quality of passivation. We provide representative results as well as practical advice for each critical step so that anyone can achieve the high quality surface passivation.


Asunto(s)
Microscopía Fluorescente/métodos , Polietilenglicoles/química , Proteínas/química , Vidrio/química , Técnicas Analíticas Microfluídicas , Microscopía Fluorescente/instrumentación , Propiedades de Superficie
19.
PLoS One ; 6(8): e23575, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21858172

RESUMEN

Infections with Mycobacterium tuberculosis are substantially increasing on a worldwide scale and new antibiotics are urgently needed to combat concomitantly emerging drug-resistant mycobacterial strains. The diarylquinoline TMC207 is a highly promising drug candidate for treatment of tuberculosis. This compound kills M. tuberculosis by binding to a new target, mycobacterial ATP synthase. In this study we used biochemical assays and binding studies to characterize the interaction between TMC207 and ATP synthase. We show that TMC207 acts independent of the proton motive force and does not compete with protons for a common binding site. The drug is active on mycobacterial ATP synthesis at neutral and acidic pH with no significant change in affinity between pH 5.25 and pH 7.5, indicating that the protonated form of TMC207 is the active drug entity. The interaction of TMC207 with ATP synthase can be explained by a one-site binding mechanism, the drug molecule thus binds to a defined binding site on ATP synthase. TMC207 affinity for its target decreases with increasing ionic strength, suggesting that electrostatic forces play a significant role in drug binding. Our results are consistent with previous docking studies and provide experimental support for a predicted function of TMC207 in mimicking key residues in the proton transfer chain and blocking rotary movement of subunit c during catalysis. Furthermore, the high affinity of TMC207 at low proton motive force and low pH values may in part explain the exceptional ability of this compound to efficiently kill mycobacteria in different microenvironments.


Asunto(s)
Adenosina Trifosfato/metabolismo , ATPasas de Translocación de Protón Bacterianas/metabolismo , Mycobacterium smegmatis/enzimología , Quinolinas/metabolismo , Adenosina Trifosfato/química , Antituberculosos/química , Antituberculosos/metabolismo , ATPasas de Translocación de Protón Bacterianas/química , ATPasas de Translocación de Protón Bacterianas/genética , Sitios de Unión/genética , Unión Competitiva/efectos de los fármacos , Diarilquinolinas , Relación Dosis-Respuesta a Droga , Concentración de Iones de Hidrógeno , Ionóforos/farmacología , Cinética , Modelos Moleculares , Estructura Molecular , Mutación , Nitrilos/farmacología , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Fuerza Protón-Motriz , Protones , Quinolinas/química , Electricidad Estática , Resonancia por Plasmón de Superficie
20.
FEMS Microbiol Lett ; 313(1): 68-74, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21039782

RESUMEN

ATP synthase is a validated drug target for the treatment of tuberculosis, and ATP synthase inhibitors are promising candidate drugs for the treatment of infections caused by other slow-growing mycobacteria, such as Mycobacterium leprae and Mycobacterium ulcerans. ATP synthase is an essential enzyme in the energy metabolism of Mycobacterium tuberculosis; however, no biochemical data are available to characterize the role of ATP synthase in slow-growing mycobacterial strains. Here, we show that inverted membrane vesicles from the slow-growing model strain Mycobacterium bovis BCG are active in ATP synthesis, but ATP synthase displays no detectable ATP hydrolysis activity and does not set up a proton-motive force (PMF) using ATP as a substrate. Treatment with methanol as well as PMF activation unmasked the ATP hydrolysis activity, indicating that the intrinsic subunit ɛ and inhibitory ADP are responsible for the suppression of hydrolytic activity. These results suggest that the enzyme is needed for the synthesis of ATP, not for the maintenance of the PMF. For the development of new antimycobacterial drugs acting on ATP synthase, screening for ATP synthesis inhibitors, but not for ATP hydrolysis blockers, can be regarded as a promising strategy.


Asunto(s)
Adenosina Trifosfato/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Mycobacterium/enzimología , Mycobacterium/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA