Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Cell Sci ; 130(6): 1147-1157, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28137756

RESUMEN

Adaptation of cell shape and polarization through the formation and retraction of cellular protrusions requires balancing of endocytosis and exocytosis combined with fine-tuning of the local activity of small GTPases like Rab8. Here, we show that endocytic turnover of the plasma membrane at protrusions is directly coupled to surface removal and inactivation of Rab8. Removal is induced by reduced membrane tension and mediated by the GTPase regulator associated with focal adhesion kinase-1 (GRAF1, also known as ARHGAP26), a regulator of clathrin-independent endocytosis. GRAF1-depleted cells were deficient in multi-directional spreading and displayed elevated levels of GTP-loaded Rab8, which was accumulated at the tips of static protrusions. Furthermore, GRAF1 depletion impaired lumen formation and spindle orientation in a 3D cell culture system, indicating that GRAF1 activity regulates polarity establishment. Our data suggest that GRAF1-mediated removal of Rab8 from the cell surface restricts its activity during protrusion formation, thereby facilitating dynamic adjustment of the polarity axis.


Asunto(s)
Polaridad Celular , Endocitosis , Proteínas de Unión al GTP rab/metabolismo , Animales , Extensiones de la Superficie Celular/metabolismo , Perros , Proteínas Activadoras de GTPasa/metabolismo , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Células de Riñón Canino Madin Darby , Metaloproteinasa 14 de la Matriz/metabolismo , Unión Proteica , Transporte de Proteínas , Huso Acromático/metabolismo
2.
Cell Stem Cell ; 30(11): 1434-1451.e9, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37922878

RESUMEN

Most organs have tissue-resident immune cells. Human organoids lack these immune cells, which limits their utility in modeling many normal and disease processes. Here, we describe that pluripotent stem cell-derived human colonic organoids (HCOs) co-develop a diverse population of immune cells, including hemogenic endothelium (HE)-like cells and erythromyeloid progenitors that undergo stereotypical steps in differentiation, resulting in the generation of functional macrophages. HCO macrophages acquired a transcriptional signature resembling human fetal small and large intestine tissue-resident macrophages. HCO macrophages modulate cytokine secretion in response to pro- and anti-inflammatory signals and were able to phagocytose and mount a robust response to pathogenic bacteria. When transplanted into mice, HCO macrophages were maintained within the colonic organoid tissue, established a close association with the colonic epithelium, and were not displaced by the host bone-marrow-derived macrophages. These studies suggest that HE in HCOs gives rise to multipotent hematopoietic progenitors and functional tissue-resident macrophages.


Asunto(s)
Células Madre Pluripotentes , Humanos , Ratones , Animales , Células Madre Hematopoyéticas , Colon , Organoides , Macrófagos
3.
Stem Cell Reports ; 16(7): 1718-1734, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34143974

RESUMEN

Across species, hematopoietic stem and progenitor cells (HSPCs) arise during embryogenesis from a specialized arterial population, termed hemogenic endothelium. Here, we describe a mechanistic role for the epigenetic regulator, Enhancer of zeste homolog-1 (Ezh1), in vertebrate HSPC production via regulation of hemogenic commitment. Loss of ezh1 in zebrafish embryos favored acquisition of hemogenic (gata2b) and HSPC (runx1) fate at the expense of the arterial program (ephrinb2a, dll4). In contrast, ezh1 overexpression blocked hematopoietic progression via maintenance of arterial gene expression. The related Polycomb group subunit, Ezh2, functioned in a non-redundant, sequential manner, whereby inhibition had no impact on arterial identity, but was capable of blocking ezh1-knockdown-associated HSPC expansion. Single-cell RNA sequencing across ezh1 genotypes revealed a dropout of ezh1+/- cells among arterial endothelium associated with positive regulation of gene transcription. Exploitation of Ezh1/2 modulation has potential functional relevance for improving in vitro HSPC differentiation from induced pluripotent stem cell sources.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Hemangioblastos/metabolismo , Células Madre Hematopoyéticas/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Embrión no Mamífero/metabolismo , Células Endoteliales/metabolismo , Técnicas de Silenciamiento del Gen , Hematopoyesis , Mutación con Pérdida de Función , Linfocitos/metabolismo , Ratones , RNA-Seq , Análisis de la Célula Individual
4.
Curr Biol ; 31(4): 696-706.e9, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33275893

RESUMEN

The actin cortex is involved in many biological processes and needs to be significantly remodeled during cell differentiation. Developing epithelial cells construct a dense apical actin cortex to carry out their barrier and exchange functions. The apical cortex assembles in response to three-dimensional (3D) extracellular cues, but the regulation of this process during epithelial morphogenesis remains unknown. Here, we describe the function of Smoothelin-like 2 (SMTNL2), a member of the smooth-muscle-related Smoothelin protein family, in apical cortex maturation. SMTNL2 is induced during development in multiple epithelial tissues and localizes to the apical and junctional actin cortex in intestinal and kidney epithelial cells. SMTNL2 deficiency leads to membrane herniations in the apical domain of epithelial cells, indicative of cortex abnormalities. We find that SMTNL2 binds to actin filaments and is required to slow down the turnover of apical actin. We also characterize the SMTNL2 proximal interactome and find that SMTNL2 executes its functions partly through inhibition of coronin-1B. Although coronin-1B-mediated actin dynamics are required for early morphogenesis, its sustained activity is detrimental for the mature apical shape. SMTNL2 binds to coronin-1B through its N-terminal coiled-coil region and negates its function to stabilize the apical cortex. In sum, our results unveil a mechanism for regulating actin dynamics during epithelial morphogenesis, providing critical insights on the developmental control of the cellular cortex.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas de Microfilamentos/antagonistas & inhibidores , Morfogénesis , Fosfoproteínas/metabolismo , Animales , Perros , Células Epiteliales/citología , Células Epiteliales/metabolismo , Epitelio , Femenino , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Pez Cebra
5.
Dev Cell ; 55(2): 133-149.e6, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-32810442

RESUMEN

Embryonic hematopoietic stem and progenitor cells (HSPCs) robustly proliferate while maintaining multilineage potential in vivo; however, an incomplete understanding of spatiotemporal cues governing their generation has impeded robust production from human induced pluripotent stem cells (iPSCs) in vitro. Using the zebrafish model, we demonstrate that NLRP3 inflammasome-mediated interleukin-1-beta (IL1ß) signaling drives HSPC production in response to metabolic activity. Genetic induction of active IL1ß or pharmacologic inflammasome stimulation increased HSPC number as assessed by in situ hybridization for runx1/cmyb and flow cytometry. Loss of inflammasome components, including il1b, reduced CD41+ HSPCs and prevented their expansion in response to metabolic cues. Cell ablation studies indicated that macrophages were essential for initial inflammasome stimulation of Il1rl1+ HSPCs. Significantly, in human iPSC-derived hemogenic precursors, transient inflammasome stimulation increased multilineage hematopoietic colony-forming units and T cell progenitors. This work establishes the inflammasome as a conserved metabolic sensor that expands HSPC production in vivo and in vitro.


Asunto(s)
Células Madre Embrionarias/metabolismo , Células Madre Hematopoyéticas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Inflamasomas/metabolismo , Animales , Diferenciación Celular/fisiología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/fisiología , Hematopoyesis/fisiología , Humanos , Pez Cebra/embriología
6.
Biomaterials ; 218: 119339, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31326655

RESUMEN

Tubulogenesis in epithelial organs often initiates with the acquisition of apicobasal polarity, giving rise to the formation of small lumens that expand and fuse to generate a single opened cavity. In this study, we present a micropattern-based device engineered to generate epithelial tubes through a process that recapitulates in vivo tubule morphogenesis. Interestingly, tubulogenesis in this device is dependent on microenvironmental cues such as cell confinement, extracellular matrix composition, and substrate stiffness, and our set-up specifically allows the control of these extracellular conditions. Additionally, proximal tubule cell lines growing on micropatterns express higher levels of drug transporters and are more sensitive to nephrotoxicity. These tubes display specific morphological defects that can be linked to nephrotoxicity, which would be helpful to predict potential toxicity when developing new compounds. This device, with the ability to recapitulate tube formation in vitro, has emerged as a powerful tool to study the molecular mechanisms involved in organogenesis and, by being more physiologically relevant than existing cellular models, becomes an innovative platform to conduct drug discovery assays.


Asunto(s)
Túbulos Renales/citología , Morfogénesis/fisiología , Animales , Adhesión Celular/fisiología , División Celular/fisiología , Línea Celular , Polaridad Celular/fisiología , Proliferación Celular/fisiología , Perros , Técnica del Anticuerpo Fluorescente , Microscopía Confocal
7.
Nat Commun ; 10(1): 2481, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31171792

RESUMEN

Mammary stroma is essential for epithelial morphogenesis and development. Indeed, postnatal mammary gland (MG) development is controlled locally by the repetitive and bi-directional cross-talk between the epithelial and the stromal compartment. However, the signalling pathways involved in stromal-epithelial communication are not entirely understood. Here, we identify Sfrp3 as a mediator of the stromal-epithelial communication that is required for normal mouse MG development. Using Drosophila wing imaginal disc, we demonstrate that Sfrp3 functions as an extracellular transporter of Wnts that facilitates their diffusion, and thus, their levels in the boundaries of different compartments. Indeed, loss of Sfrp3 in mice leads to an increase of ductal invasion and branching mirroring an early pregnancy state. Finally, we observe that loss of Sfrp3 predisposes for invasive breast cancer. Altogether, our study shows that Sfrp3 controls MG morphogenesis by modulating the stromal-epithelial cross-talk during pubertal development.


Asunto(s)
Comunicación Celular/genética , Células Epiteliales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Glándulas Mamarias Animales/crecimiento & desarrollo , Neoplasias Mamarias Animales/genética , Células del Estroma/metabolismo , Proteínas Wnt/metabolismo , Animales , Drosophila , Proteínas de Drosophila , Femenino , Discos Imaginales , Glándulas Mamarias Animales/metabolismo , Ratones , Ratones Noqueados , Morfogénesis , Embarazo , Maduración Sexual , Factores de Transcripción , Vía de Señalización Wnt
8.
Artículo en Inglés | MEDLINE | ID: mdl-28246178

RESUMEN

Epithelial tubes are crucial to the function of organ systems including the excretory, gastrointestinal, cardiovascular, and pulmonary. Studies in the last two decades using in vitro organotypic systems and a variety of animal models have substantiated a large number of the morphogenetic mechanisms required to form epithelial tubes in development and regeneration. Many of these mechanisms modulate the differentiation and proliferation events necessary for generating the cell movements and changes in cell shape to delineate the wide variety of epithelial tube sizes, lengths, and conformations. For instance, when coupled with oriented cell division, proliferation itself plays a role in changes in tube shape and their directed expansion. Most of these processes are regulated in response to signaling inputs from adjacent cells or soluble factors from the environment. Despite the great deal of recent investigation in this direction, the knowledge we have about the signaling pathways associated with all epithelial tubulogenesis in development and regeneration is still very limited.


Asunto(s)
Epitelio/metabolismo , Transducción de Señal , Animales , Diferenciación Celular , Movimiento Celular , Polaridad Celular , Proliferación Celular , Perros , Drosophila , Células Epiteliales/citología , Epitelio/embriología , Humanos , Imagenología Tridimensional , Ratones , Ratones Noqueados , Mitosis , Morfogénesis , Tubo Neural/metabolismo , Proteínas Wnt/metabolismo , Xenopus , Pez Cebra
9.
PLoS One ; 7(7): e41743, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22911850

RESUMEN

Human papillomavirus (HPV) is the causative agent of human cervical cancer and has been associated with oropharyngeal squamous cell carcinoma development. Although prophylactic vaccines have been developed, there is a need to develop new targeted therapies for individuals affected with malignant infected lesions in these locations, which must be tested in appropriate models. Cutaneous beta HPV types appear to be involved in skin carcinogenesis. Virus oncogenicity is partly achieved by inactivation of retinoblastoma protein family members by the viral E7 gene. Here we show that the E7 protein of cutaneous beta HPV5 binds pRb and promotes its degradation. In addition, we described an in vivo model of HPV-associated disease in which artificial human skin prepared using primary keratinocytes engineered to express the E7 protein is engrafted onto nude mice. Expression of E7 in the transplants was stably maintained for up to 6 months, inducing the appearance of lesions that, in the case of HPV16 E7, histologically resembled human anogenital lesions caused by oncogenic HPVs. Moreover, it was confirmed through biomarker expression analysis via immunodetection and/or quantitative PCR from mRNA and miRNA that the 16E7-modified engrafted skin shares molecular features with human HPV-associated pretumoral and tumoral lesions. Finally, our findings indicate a decrease of the in vitro capacity of HPV5 E7 to reduce pRb levels in vivo, possibly explaining the phenotypical differences when compared with 16E7-grafts. Our model seems to be a valuable platform for basic research into HPV oncogenesis and preclinical testing of HPV-associated antitumor therapies.


Asunto(s)
Papillomaviridae/fisiología , Proteínas E7 de Papillomavirus/genética , Infecciones por Papillomavirus/patología , Infecciones por Papillomavirus/virología , Animales , Apoptosis/genética , Biomarcadores/metabolismo , Diferenciación Celular/genética , Proliferación Celular , Niño , Ciclina A/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Modelos Animales de Enfermedad , Epidermis/metabolismo , Epidermis/patología , Epidermis/virología , Células Epiteliales/patología , Humanos , Inmunohistoquímica , Masculino , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Papillomaviridae/genética , Proteínas E7 de Papillomavirus/metabolismo , Infecciones por Papillomavirus/genética , Reproducibilidad de los Resultados , Proteína de Retinoblastoma/metabolismo , Trasplante de Piel , Transducción Genética , Transgenes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA