Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
bioRxiv ; 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37214910

RESUMEN

Microbiome science has greatly contributed to our understanding of microbial life and its essential roles for the environment and human health1-5. However, the nature of microbial interactions and how microbial communities respond to perturbations remains poorly understood, resulting in an often descriptive and correlation-based approach to microbiome research6-8. Achieving causal and predictive microbiome science would require direct functional measurements in complex communities to better understand the metabolic role of each member and its interactions with others. In this study we present a new approach that integrates transcription and translation measurements to predict competition and substrate preferences within microbial communities, consequently enabling the selective manipulation of the microbiome. By performing metatranscriptomic (metaRNA-Seq) and metatranslatomic (metaRibo-Seq) analysis in complex samples, we classified microbes into functional groups (i.e. guilds) and demonstrated that members of the same guild are competitors. Furthermore, we predicted preferred substrates based on importer proteins, which specifically benefited selected microbes in the community (i.e. their niche) and simultaneously impaired their competitors. We demonstrated the scalability of microbial guild and niche determination to natural samples and its ability to successfully manipulate microorganisms in complex microbiomes. Thus, the approach enhances the design of pre- and probiotic interventions to selectively alter members within microbial communities, advances our understanding of microbial interactions, and paves the way for establishing causality in microbiome science.

2.
Mol Ther Nucleic Acids ; 2: e68, 2013 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-23360951

RESUMEN

Zinc finger nucleases (ZFN) can facilitate targeted gene addition to the genome while minimizing the risks of insertional mutagenesis. Here, we used a previously characterized ZFN pair targeting the chemokine (C-C motif) receptor 5 (CCR5) locus to introduce, as a proof of concept, the enhanced green fluorescent protein (eGFP) or the microdystrophin genes into human myoblasts. Using integrase-defective lentiviral vectors (IDLVs) and chimeric adenoviral vectors to transiently deliver template DNA and ZFN respectively, we achieved up to 40% targeted gene addition in human myoblasts. When the O(6)-methylguanine-DNA methyltransferase(P140K) gene was co-introduced with eGFP, the frequency of cells with targeted integration could be increased to over 90% after drug selection. Importantly, gene-targeted myoblasts retained their mitogenic activity and potential to form myotubes both in vitro and in vivo when injected into the tibialis anterior of immune-deficient mice. Altogether, our results could lead to the development of improved cell therapy transplantation protocols for muscular diseases.Molecular Therapy - Nucleic Acids (2013) 2, e68; doi:10.1038/mtna.2012.55; published online 29 January 2013.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA