Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Circ Res ; 134(11): e133-e149, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38639105

RESUMEN

BACKGROUND: The precise origin of newly formed ACTA2+ (alpha smooth muscle actin-positive) cells appearing in nonmuscularized vessels in the context of pulmonary hypertension is still debatable although it is believed that they predominantly derive from preexisting vascular smooth muscle cells (VSMCs). METHODS: Gli1Cre-ERT2; tdTomatoflox mice were used to lineage trace GLI1+ (glioma-associated oncogene homolog 1-positive) cells in the context of pulmonary hypertension using 2 independent models of vascular remodeling and reverse remodeling: hypoxia and cigarette smoke exposure. Hemodynamic measurements, right ventricular hypertrophy assessment, flow cytometry, and histological analysis of thick lung sections followed by state-of-the-art 3-dimensional reconstruction and quantification using Imaris software were used to investigate the contribution of GLI1+ cells to neomuscularization of the pulmonary vasculature. RESULTS: The data show that GLI1+ cells are abundant around distal, nonmuscularized vessels during steady state, and this lineage contributes to around 50% of newly formed ACTA2+ cells around these normally nonmuscularized vessels. During reverse remodeling, cells derived from the GLI1+ lineage are largely cleared in parallel to the reversal of muscularization. Partial ablation of GLI1+ cells greatly prevented vascular remodeling in response to hypoxia and attenuated the increase in right ventricular systolic pressure and right heart hypertrophy. Single-cell RNA sequencing on sorted lineage-labeled GLI1+ cells revealed an Acta2high fraction of cells with pathways in cancer and MAPK (mitogen-activated protein kinase) signaling as potential players in reprogramming these cells during vascular remodeling. Analysis of human lung-derived material suggests that GLI1 signaling is overactivated in both group 1 and group 3 pulmonary hypertension and can promote proliferation and myogenic differentiation. CONCLUSIONS: Our data highlight GLI1+ cells as an alternative cellular source of VSMCs in pulmonary hypertension and suggest that these cells and the associated signaling pathways represent an important therapeutic target for further studies.


Asunto(s)
Hipertensión Pulmonar , Remodelación Vascular , Proteína con Dedos de Zinc GLI1 , Animales , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína con Dedos de Zinc GLI1/genética , Ratones , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/patología , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Ratones Endogámicos C57BL , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Ratones Transgénicos , Masculino , Humanos , Hipoxia/metabolismo , Hipoxia/fisiopatología
2.
Am J Respir Crit Care Med ; 207(12): 1576-1590, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37219322

RESUMEN

Rationale: Tobacco smoking and air pollution are primary causes of chronic obstructive pulmonary disease (COPD). However, only a minority of smokers develop COPD. The mechanisms underlying the defense against nitrosative/oxidative stress in nonsusceptible smokers to COPD remain largely unresolved. Objectives: To investigate the defense mechanisms against nitrosative/oxidative stress that possibly prevent COPD development or progression. Methods: Four cohorts were investigated: 1) sputum samples (healthy, n = 4; COPD, n = 37), 2) lung tissue samples (healthy, n = 13; smokers without COPD, n = 10; smoker+COPD, n = 17), 3) pulmonary lobectomy tissue samples (no/mild emphysema, n = 6), and 4) blood samples (healthy, n = 6; COPD, n = 18). We screened 3-nitrotyrosine (3-NT) levels, as indication of nitrosative/oxidative stress, in human samples. We established a novel in vitro model of a cigarette smoke extract (CSE)-resistant cell line and studied 3-NT formation, antioxidant capacity, and transcriptomic profiles. Results were validated in lung tissue, isolated primary cells, and an ex vivo model using adeno-associated virus-mediated gene transduction and human precision-cut lung slices. Measurements and Main Results: 3-NT levels correlate with COPD severity of patients. In CSE-resistant cells, nitrosative/oxidative stress upon CSE treatment was attenuated, paralleled by profound upregulation of heme oxygenase-1 (HO-1). We identified carcinoembryonic antigen cell adhesion molecule 6 (CEACAM6) as a negative regulator of HO-1-mediated nitrosative/oxidative stress defense in human alveolar type 2 epithelial cells (hAEC2s). Consistently, inhibition of HO-1 activity in hAEC2s increased the susceptibility toward CSE-induced damage. Epithelium-specific CEACAM6 overexpression increased nitrosative/oxidative stress and cell death in human precision-cut lung slices on CSE treatment. Conclusions: CEACAM6 expression determines the hAEC2 sensitivity to nitrosative/oxidative stress triggering emphysema development/progression in susceptible smokers.


Asunto(s)
Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Humanos , Antígenos CD/metabolismo , Antioxidantes , Moléculas de Adhesión Celular/metabolismo , Proteínas Ligadas a GPI/efectos adversos , Proteínas Ligadas a GPI/metabolismo , Hemo-Oxigenasa 1/metabolismo , Estrés Oxidativo , Nicotiana
3.
Circulation ; 145(12): 916-933, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35175782

RESUMEN

BACKGROUND: Pulmonary hypertension (PH) is a life-threatening disease, characterized by excessive pulmonary vascular remodeling, leading to elevated pulmonary arterial pressure and right heart hypertrophy. PH can be caused by chronic hypoxia, leading to hyper-proliferation of pulmonary arterial smooth muscle cells (PASMCs) and apoptosis-resistant pulmonary microvascular endothelial cells (PMVECs). On reexposure to normoxia, chronic hypoxia-induced PH in mice is reversible. In this study, the authors aim to identify novel candidate genes involved in pulmonary vascular remodeling specifically in the pulmonary vasculature. METHODS: After microarray analysis, the authors assessed the role of SPARC (secreted protein acidic and rich in cysteine) in PH using lung tissue from idiopathic pulmonary arterial hypertension (IPAH) patients, as well as from chronically hypoxic mice. In vitro studies were conducted in primary human PASMCs and PMVECs. In vivo function of SPARC was proven in chronic hypoxia-induced PH in mice by using an adeno-associated virus-mediated Sparc knockdown approach. RESULTS: C57BL/6J mice were exposed to normoxia, chronic hypoxia, or chronic hypoxia with subsequent reexposure to normoxia for different time points. Microarray analysis of the pulmonary vascular compartment after laser microdissection identified Sparc as one of the genes downregulated at all reoxygenation time points investigated. Intriguingly, SPARC was vice versa upregulated in lungs during development of hypoxia-induced PH in mice as well as in IPAH, although SPARC plasma levels were not elevated in PH. TGF-ß1 (transforming growth factor ß1) or HIF2A (hypoxia-inducible factor 2A) signaling pathways induced SPARC expression in human PASMCs. In loss of function studies, SPARC silencing enhanced apoptosis and reduced proliferation. In gain of function studies, elevated SPARC levels induced PASMCs, but not PMVECs, proliferation. Coculture and conditioned medium experiments revealed that PMVECs-secreted SPARC acts as a paracrine factor triggering PASMCs proliferation. Contrary to the authors' expectations, in vivo congenital Sparc knockout mice were not protected from hypoxia-induced PH, most probably because of counter-regulatory proproliferative signaling. However, adeno-associated virus-mediated Sparc knockdown in adult mice significantly improved hemodynamic and cardiac function in PH mice. CONCLUSIONS: This study provides evidence for the involvement of SPARC in the pathogenesis of human PH and chronic hypoxia-induced PH in mice, most likely by affecting vascular cell function.


Asunto(s)
Hipertensión Pulmonar , Animales , Proliferación Celular , Células Cultivadas , Células Endoteliales/metabolismo , Hipertensión Pulmonar Primaria Familiar/metabolismo , Humanos , Hipertensión Pulmonar/patología , Hipoxia/metabolismo , Ratones , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/metabolismo , Osteonectina/genética , Arteria Pulmonar , Remodelación Vascular/genética
4.
Eur Respir J ; 62(5)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37884305

RESUMEN

BACKGROUND: COPD is an incurable disease and a leading cause of death worldwide. In mice, fibroblast growth factor (FGF)10 is essential for lung morphogenesis, and in humans, polymorphisms in the human FGF10 gene correlate with an increased susceptibility to develop COPD. METHODS: We analysed FGF10 signalling in human lung sections and isolated cells from healthy donor, smoker and COPD lungs. The development of emphysema and PH was investigated in Fgf10+/- and Fgfr2b+/- (FGF receptor 2b) mice upon chronic exposure to cigarette smoke. In addition, we overexpressed FGF10 in mice following elastase- or cigarette smoke-induced emphysema and pulmonary hypertension (PH). RESULTS: We found impaired FGF10 expression in human lung alveolar walls and in primary interstitial COPD lung fibroblasts. In contrast, FGF10 expression was increased in large pulmonary vessels in COPD lungs. Consequently, we identified impaired FGF10 signalling in alveolar walls as an integral part of the pathomechanism that leads to emphysema and PH development: mice with impaired FGF10 signalling (Fgf10+/- and Fgfr2b+/- ) spontaneously developed lung emphysema, PH and other typical pathomechanistic features that generally arise in response to cigarette smoke exposure. CONCLUSION: In a therapeutic approach, FGF10 overexpression successfully restored lung alveolar and vascular structure in mice with established cigarette smoke- and elastase-induced emphysema and PH. FGF10 treatment triggered an initial increase in the number of alveolar type 2 cells that gradually returned to the basal level when the FGF10-mediated repair process progressed. Therefore, the application of recombinant FGF10 or stimulation of the downstream signalling cascade might represent a novel therapeutic strategy in the future.


Asunto(s)
Fumar Cigarrillos , Enfisema , Hipertensión Pulmonar , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Humanos , Animales , Ratones , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Hipertensión Pulmonar/complicaciones , Elastasa Pancreática/efectos adversos , Elastasa Pancreática/metabolismo , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Factor 10 de Crecimiento de Fibroblastos/uso terapéutico , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/uso terapéutico , Fumar Cigarrillos/efectos adversos , Enfisema Pulmonar/etiología , Pulmón/metabolismo , Enfisema/complicaciones , Ratones Endogámicos C57BL
5.
Eur Respir J ; 61(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37105573

RESUMEN

BACKGROUND: Electronic cigarette (e-cigarette) vapour is gaining popularity as an alternative to tobacco smoking and can induce acute lung injury. However, the specific role of nicotine in e-cigarette vapour and its long-term effects on the airways, lung parenchyma and vasculature remain unclear. RESULTS: In vitro exposure to nicotine-containing e-cigarette vapour extract (ECVE) or to nicotine-free e-cigarette vapour extract (NF ECVE) induced changes in gene expression of epithelial cells and pulmonary arterial smooth muscle cells (PASMCs), but ECVE in particular caused functional alterations (e.g. a decrease in human and mouse PASMC proliferation by 29.3±5.3% and 44.3±8.4%, respectively). Additionally, acute inhalation of nicotine-containing e-cigarette vapour (ECV) but not nicotine-free e-cigarette vapour (NF ECV) increased pulmonary endothelial permeability in isolated lungs. Long-term in vivo exposure of mice to ECV for 8 months significantly increased the number of inflammatory cells, in particular lymphocytes, compared to control and NF ECV in the bronchoalveolar fluid (BALF) (ECV: 853.4±150.8 cells·mL-1; control: 37.0±21.1 cells·mL-1; NF ECV: 198.6±94.9 cells·mL-1) and in lung tissue (ECV: 25.7±3.3 cells·mm-3; control: 4.8±1.1 cells·mm-3; NF ECV: 14.1±2.2 cells·mm-3). BALF cytokines were predominantly increased by ECV. Moreover, ECV caused significant changes in lung structure and function (e.g. increase in airspace by 17.5±1.4% compared to control), similar to mild tobacco smoke-induced alterations, which also could be detected in the NF ECV group, albeit to a lesser degree. In contrast, the pulmonary vasculature was not significantly affected by ECV or NF ECV. CONCLUSIONS: NF ECV components induce cell type-specific effects and mild pulmonary alterations, while inclusion of nicotine induces significant endothelial damage, inflammation and parenchymal alterations.


Asunto(s)
Cigarrillo Electrónico a Vapor , Sistemas Electrónicos de Liberación de Nicotina , Neumonía , Humanos , Animales , Ratones , Nicotina/efectos adversos , Cigarrillo Electrónico a Vapor/efectos adversos , Cigarrillo Electrónico a Vapor/metabolismo , Neumonía/etiología , Neumonía/metabolismo , Pulmón/metabolismo , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología
6.
Circulation ; 144(13): 1042-1058, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34247492

RESUMEN

BACKGROUND: The pathogenesis of life-threatening cardiopulmonary diseases such as pulmonary hypertension (PH) and chronic obstructive pulmonary disease (COPD) originates from a complex interplay of environmental factors and genetic predispositions that is not fully understood. Likewise, little is known about developmental abnormalities or epigenetic dysregulations that might predispose for PH or COPD in adult individuals. METHODS: To identify pathology-associated epigenetic alteration in diseased lung tissues, we screened a cohort of human patients with PH and COPD for changes of histone modifications by immunofluorescence staining. To analyze the function of H4K20me2/3 in lung pathogenesis, we developed a series of Suv4-20h1 knockout mouse lines targeting cardiopulmonary progenitor cells and different heart and lung cell types, followed by hemodynamic studies and morphometric assessment of tissue samples. Molecular, cellular, and biochemical techniques were applied to analyze the function of Suv4-20h1-dependent epigenetic processes in cardiopulmonary progenitor cells and their derivatives. RESULTS: We discovered a strong reduction of the histone modifications of H4K20me2/3 in human patients with COPD but not patients with PH that depend on the activity of the H4K20 di-methyltransferase SUV4-20H1. Loss of Suv4-20h1 in cardiopulmonary progenitor cells caused a COPD-like/PH phenotype in mice including the formation of perivascular tertiary lymphoid tissue and goblet cell hyperplasia, hyperproliferation of smooth muscle cells/myofibroblasts, impaired alveolarization and maturation defects of the microvasculature leading to massive right ventricular dilatation and premature death. Mechanistically, SUV4-20H1 binds directly to the 5'-upstream regulatory element of the superoxide dismutase 3 (Sod3) gene to repress its expression. Increased levels of the extracellular SOD3 enzyme in Suv4-20h1 mutants increases hydrogen peroxide concentrations, causing vascular defects and impairing alveolarization. CONCLUSIONS: Our findings reveal a pivotal role of the histone modifier SUV4-20H1 in cardiopulmonary codevelopment and uncover the developmental origins of cardiopulmonary diseases. We assume that the study will facilitate the understanding of pathogenic events causing PH and COPD and aid the development of epigenetic drugs for the treatment of cardiopulmonary diseases.


Asunto(s)
Epigénesis Genética/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Hipertensión Pulmonar/genética , Enfermedad Pulmonar Obstructiva Crónica/genética , Células Madre/metabolismo , Animales , Humanos , Ratones , Ratones Noqueados
7.
Eur Respir J ; 59(4)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34475225

RESUMEN

BACKGROUND: Pulmonary hypertension (PH) is a common complication of COPD, associated with increased mortality and morbidity. Intriguingly, pulmonary vascular alterations have been suggested to drive emphysema development. Previously, we identified inducible nitric oxide synthase (iNOS) as an essential enzyme for development and reversal of smoke-induced PH and emphysema, and showed that iNOS expression in bone-marrow-derived cells drives pulmonary vascular remodelling, but not parenchymal destruction. In this study, we aimed to identify the iNOS-expressing cell type driving smoke-induced PH and to decipher pro-proliferative pathways involved. METHODS: To address this question we used 1) myeloid-cell-specific iNOS knockout mice in chronic smoke exposure and 2) co-cultures of macrophages and pulmonary artery smooth muscle cells (PASMCs) to decipher underlying signalling pathways. RESULTS: Myeloid-cell-specific iNOS knockout prevented smoke-induced PH but not emphysema in mice. Moreover, iNOS deletion in myeloid cells ameliorated the increase in expression of CD206, a marker of M2 polarisation, on interstitial macrophages. Importantly, the observed effects on lung macrophages were hypoxia-independent, as these mice developed hypoxia-induced PH. In vitro, smoke-induced PASMC proliferation in co-cultures with M2-polarised macrophages could be abolished by iNOS deletion in phagocytic cells, as well as by extracellular signal-regulated kinase inhibition in PASMCs. Crucially, CD206-positive and iNOS-positive macrophages accumulated in proximity of remodelled vessels in the lungs of COPD patients, as shown by immunohistochemistry. CONCLUSION: In summary, our results demonstrate that iNOS deletion in myeloid cells confers protection against PH in smoke-exposed mice and provide evidence for an iNOS-dependent communication between M2-like macrophages and PASMCs in underlying pulmonary vascular remodelling.


Asunto(s)
Enfisema , Hipertensión Pulmonar , Enfisema Pulmonar , Animales , Humanos , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/prevención & control , Hipoxia , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Humo/efectos adversos , Nicotiana/metabolismo , Remodelación Vascular
8.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L903-L915, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33760647

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a major cause of death and a still incurable disease, comprising emphysema and chronic bronchitis. In addition to airflow limitation, patients with COPD can suffer from pulmonary hypertension (PH). Doxycycline, an antibiotic from the tetracycline family, in addition to its pronounced antimicrobial activity, acts as a matrix metalloproteinase (MMP) inhibitor and has anti-inflammatory properties. Furthermore, doxycycline treatment exhibited a beneficial effect in several preclinical cardiovascular disease models. In preclinical research, doxycycline is frequently employed for gene expression modulation in Tet-On/Tet-Off transgenic animal models. Therefore, it is crucial to know whether doxycycline treatment in Tet-On/Tet-Off systems has effects independent of gene expression modulation by such systems. Against this background, we assessed the possible curative effects of long-term doxycycline administration in a mouse model of chronic CS exposure. Animals were exposed to cigarette smoke (CS) for 8 mo and then subsequently treated with doxycycline for additional 3 mo in room air conditions. Doxycycline decreased the expression of MMPs and general pro-inflammatory markers in the lungs from CS-exposed mice. This downregulation was, however, insufficient to ameliorate CS-induced emphysema or PH. Tet-On/Tet-Off induction by doxycycline in such models is a feasible genetic approach to study curative effects at least in established CS-induced emphysema and PH. However, we report several parameters that are influenced by doxycycline and use of a Tet-On/Tet-Off system when evaluating those parameters should be interpreted with caution.


Asunto(s)
Fumar Cigarrillos , Doxiciclina/farmacología , Hipertensión Pulmonar , Enfisema Pulmonar , Animales , Fumar Cigarrillos/tratamiento farmacológico , Fumar Cigarrillos/genética , Fumar Cigarrillos/metabolismo , Fumar Cigarrillos/patología , Modelos Animales de Enfermedad , Humanos , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Ratones , Ratones Transgénicos , Enfisema Pulmonar/tratamiento farmacológico , Enfisema Pulmonar/genética , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patología , Factores de Tiempo
9.
Am J Physiol Lung Cell Mol Physiol ; 318(4): L831-L843, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32186397

RESUMEN

PDGF-A is a key contributor to lung development in mice. Its expression is needed for secondary septation of the alveoli and deletion of the gene leads to abnormally enlarged alveolar air spaces in mice. In humans, the same phenotype is the hallmark of bronchopulmonary dysplasia (BPD), a disease that affects premature babies and may have long lasting consequences in adulthood. So far, the knowledge regarding adult effects of developmental arrest in the lung is limited. This is attributable to few follow-up studies of BPD survivors and lack of good experimental models that could help predict the outcomes of this early age disease for the adult individual. In this study, we used the constitutive lung-specific Pdgfa deletion mouse model to analyze the consequences of developmental lung defects in adult mice. We assessed lung morphology, physiology, cellular content, ECM composition and proteomics data in mature mice, that perinatally exhibited lungs with a BPD-like morphology. Histological and physiological analyses both revealed that enlarged alveolar air spaces remained until adulthood, resulting in higher lung compliance and higher respiratory volume in knockout mice. Still, no or only small differences were seen in cellular, ECM and protein content when comparing knockout and control mice. Taken together, our results indicate that Pdgfa deletion-induced lung developmental arrest has consequences for the adult lung at the morphological and functional level. In addition, these mice can reach adulthood with a BPD-like phenotype, which makes them a robust model to further investigate the pathophysiological progression of the disease and test putative regenerative therapies.


Asunto(s)
Pulmón/patología , Factor de Crecimiento Derivado de Plaquetas/genética , Animales , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/patología , Modelos Animales de Enfermedad , Femenino , Estudios de Seguimiento , Hiperoxia/genética , Hiperoxia/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Alveolos Pulmonares/patología
10.
Eur Respir J ; 53(6)2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30956210

RESUMEN

Chronic obstructive pulmonary disease (COPD), which comprises the phenotypes of chronic bronchitis and emphysema, is often associated with pulmonary hypertension (PH). However, currently, no approved therapy exists for PH-COPD. Signalling of the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) axis plays an important role in PH and COPD.We investigated the treatment effect of riociguat, which promotes the NO-cGMP pathway, in the mouse model of smoke-induced PH and emphysema in a curative approach, and retrospectively analysed the effect of riociguat treatment on PH in single patients with PH-COPD.In mice with established PH and emphysema (after 8 months of cigarette smoke exposure), riociguat treatment for another 3 months fully reversed PH. Moreover, histological hallmarks of emphysema were decreased. Microarray analysis revealed involvement of different signalling pathways, e.g. related to matrix metalloproteinases (MMPs). MMP activity was decreased in vivo by riociguat. In PH-COPD patients treated with riociguat (n=7), the pulmonary vascular resistance, airway resistance and circulating MMP levels decreased, while oxygenation at rest was not significantly changed.Riociguat may be beneficial for treatment of PH-COPD. Further long-term prospective studies are necessary to investigate the tolerability, efficacy on functional parameters and effect specifically on pulmonary emphysema in COPD patients.


Asunto(s)
GMP Cíclico/metabolismo , Hipertensión Pulmonar/tratamiento farmacológico , Óxido Nítrico/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Pirazoles/farmacología , Pirimidinas/farmacología , Animales , Modelos Animales de Enfermedad , Humanos , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/metabolismo , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfisema Pulmonar/fisiopatología , Estudios Retrospectivos , Transducción de Señal , Guanilil Ciclasa Soluble/metabolismo , Investigación Biomédica Traslacional
11.
Acta Biol Hung ; 69(4): 395-410, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30587022

RESUMEN

Cancer drug resistance and poor selectivity towards cancer cells demand the constant search for new therapeutics. PI3K-Akt-mTOR and RAS-MAPK-ERK signaling pathways are key mechanisms involved in cell survival, proliferation, differentiation, and metabolism and their deregulation in cancer can promote development of therapy resistance. We investigated the effects of targeted inhibitors (wortmannin, GSK690693, AZD2014 and tipifarnib) towards these two pathways on early zebrafish and sea urchin development to assess their toxicity in normal, fast proliferating cells. PI3K inhibitor wortmannin and RAS inhibitor tipifarnib displayed highest toxicity while GSK690693, a pan-Akt kinase inhibitor, exhibited a less significant impact on embryo survival and development. Moreover, inhibition of the upstream part of the PI3K-Akt-mTOR pathway (wortmannin/GSK690693 co-treatment) produced a synergistic effect and impacted zebrafish embryo survival and development at much lower concentrations. Dual mTORC1/mTORC2 inhibitor AZD2014 showed no considerable effects on embryonic cells of zebrafish in concentrations substantially toxic in cancer cells. AZD2014 also caused the least prominent effects on sea urchin embryo development compared to other inhibitors. Significant toxicity of AZD2014 in human cancer cells, its capacity to sensitize resistant cancers, lower antiproliferative activity against human normal cell lines and fast proliferating embryonic cells could make this agent a promising candidate for anticancer therapy.


Asunto(s)
Antineoplásicos/toxicidad , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/toxicidad , Terapia Molecular Dirigida/efectos adversos , Transducción de Señal/efectos de los fármacos , Anomalías Inducidas por Medicamentos/enzimología , Anomalías Inducidas por Medicamentos/etiología , Anomalías Inducidas por Medicamentos/patología , Animales , Arbacia/embriología , Benzamidas , Relación Dosis-Respuesta a Droga , Desarrollo Embrionario/efectos de los fármacos , Morfolinas/toxicidad , Oxadiazoles/toxicidad , Pirimidinas , Quinolonas/toxicidad , Wortmanina/toxicidad , Pez Cebra/embriología
13.
Exp Cell Res ; 335(2): 248-57, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26026740

RESUMEN

Chemoresistance is a severe limitation to glioblastoma (GBM) therapy and there is a strong need to understand the underlying mechanisms that determine its response to different chemotherapeutics. Therefore, we induced resistance in C6 rat glioma cell line, which considerably resembles the characteristics of human GBM. The resistant phenotype was developed by 3-bis (2-chloroethyl)-1-nitrosourea (BCNU), one of the most commonly used therapeutic drug in the course of GBM treatment. After confirmation of the cross-resistance to cisplatin (CPt) and temozolomide (TMZ) in newly established RC6 cell line, we examined cell death induction and DNA damage by these drugs. Resistance to apoptosis and deficiency in forming DNA double-strand breaks was followed by significant decrease in the mRNA expression of pro-apoptotic and anti-apoptotic genes. The development of drug resistance was associated with significant increase in reactive oxygen species (ROS) and decrease in oxidized to reduced gluthatione ratio in RC6 cell line indicating a reduced level of oxidative stress. The mRNA expression levels of manganese superoxid dismutase (MnSOD), inducible nitric oxide synthase (iNOS) and gluthatione peroxidase (GPx) were increased while hypoxia-inducible factor 1-α (HIF-1α) was decreased in RC6 compared to C6 cells. This was in line with obtained changes in ROS content and increased antioxidative capacity of RC6 cells. Importantly, RC6 cells demonstrated collateral sensitivity to doxorubicin (DOX). The analysis of this phenomenon revealed increased accumulation of DOX in RC6 cells due to their adaptation to high ROS content and acidification of cytoplasm. In conclusion, newly established RC6 rat glioma cell line could be used as a starting material for the development of allogenic animal model and preclinical evaluation of new antiglioma agents. Collateral sensitivity to DOX obtained after BCNU treatment may prompt new studies aimed to find efficient delivery of DOX to the glioma site in brain.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Antineoplásicos Alquilantes/farmacología , Carmustina/farmacología , Doxorrubicina/farmacología , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Daño del ADN , Dacarbazina/análogos & derivados , Dacarbazina/farmacología , Resistencia a Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Glioma , Concentración 50 Inhibidora , Estrés Oxidativo , Ratas , Temozolomida
16.
Commun Biol ; 7(1): 693, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844781

RESUMEN

Pericyte dysfunction, with excessive migration, hyperproliferation, and differentiation into smooth muscle-like cells contributes to vascular remodeling in Pulmonary Arterial Hypertension (PAH). Augmented expression and action of growth factors trigger these pathological changes. Endogenous factors opposing such alterations are barely known. Here, we examine whether and how the endothelial hormone C-type natriuretic peptide (CNP), signaling through the cyclic guanosine monophosphate (cGMP) -producing guanylyl cyclase B (GC-B) receptor, attenuates the pericyte dysfunction observed in PAH. The results demonstrate that CNP/GC-B/cGMP signaling is preserved in lung pericytes from patients with PAH and prevents their growth factor-induced proliferation, migration, and transdifferentiation. The anti-proliferative effect of CNP is mediated by cGMP-dependent protein kinase I and inhibition of the Phosphoinositide 3-kinase (PI3K)/AKT pathway, ultimately leading to the nuclear stabilization and activation of the Forkhead Box O 3 (FoxO3) transcription factor. Augmentation of the CNP/GC-B/cGMP/FoxO3 signaling pathway might be a target for novel therapeutics in the field of PAH.


Asunto(s)
Proliferación Celular , GMP Cíclico , Proteína Forkhead Box O3 , Péptido Natriurético Tipo-C , Pericitos , Transducción de Señal , Humanos , Pericitos/metabolismo , Pericitos/patología , Péptido Natriurético Tipo-C/metabolismo , GMP Cíclico/metabolismo , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Masculino , Femenino , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/patología , Persona de Mediana Edad , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Adulto , Receptores del Factor Natriurético Atrial/metabolismo , Receptores del Factor Natriurético Atrial/genética , Células Cultivadas
17.
Aging Dis ; 15(2): 911-926, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37548932

RESUMEN

The mitochondrial adaptor protein p66Shc has been suggested to control life span in mice via the release of hydrogen peroxide. However, the role of p66Shc in lung aging remains unsolved. Thus, we investigated the effects of p66Shc-/- on the aging of the lung and pulmonary circulation. In vivo lung and cardiac characteristics were investigated in p66Shc-/- and wild type (WT) mice at 3, 12, and 24 months of age by lung function measurements, micro-computed tomography (µCT), and echocardiography. Alveolar number and muscularization of small pulmonary arteries were measured by stereology and vascular morphometry, respectively. Protein and mRNA levels of senescent markers were measured by western blot and PCR, respectively. Lung function declined similarly in WT and p66Shc-/- mice during aging. However, µCT analyses and stereology showed slightly enhanced signs of aging-related parameters in p66Shc-/- mice, such as a decline of alveolar density. Accordingly, p66Shc-/- mice showed higher protein expression of the senescence marker p21 in lung homogenate compared to WT mice of the corresponding age. Pulmonary vascular remodeling was increased during aging, but aged p66Shc-/- mice showed similar muscularization of pulmonary vessels and hemodynamics like WT mice. In the heart, p66Shc-/- prevented the deterioration of right ventricular (RV) function but promoted the decline of left ventricular (LV) function during aging. p66Shc-/- affects the aging process of the lung and the heart differently. While p66Shc-/- slightly accelerates lung aging and deteriorates LV function in aged mice, it seems to exert protective effects on RV function during aging.


Asunto(s)
Envejecimiento , Pulmón , Animales , Ratones , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/genética , Proteínas Adaptadoras de la Señalización Shc/genética , Microtomografía por Rayos X , Envejecimiento/genética , Pulmón/diagnóstico por imagen , Oxidación-Reducción
18.
J Pers Med ; 13(10)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37888057

RESUMEN

Pulmonary hypertension (PH) is a progressive and life-threatening disease characterized by increased pulmonary arterial pressure, which leads to right heart hypertrophy and eventually right heart failure [...].

19.
Pol Arch Intern Med ; 133(7-8)2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37387676

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive and life­threatening interstitial lung disease of familial or sporadic onset. The incidence and prevalence of IPF range from 0.09 to 1.3 and from 0.33 to 4.51 per 10 000 people, respectively. IPF has a poor prognosis, and death usually occurs within 2 to 5 years following the diagnosis due to secondary respiratory failure. Currently, there are 2 drugs available to treat IPF, pirfenidone and nintedanib. Both only slow the disease progression and, in addition, have unfavorable safety profiles. IPF bears the histology of usual interstitial pneumonia, which is characterized by bronchiolization of distal airspaces, honeycombing, fibroblastic foci, and abnormal epithelial hyperplasia. In the last years, alterations in metabolic pathways, in particular those associated with fatty acid (FA) metabolism have been linked with the pathogenesis of lung fibrosis. Changes in FA profiles have been reported in lung tissue, plasma, and bronchoalveolar lavage fluid of IPF patients, and have been found to correlate with the disease progression and outcome. In addition, they have been associated with the development of a profibrotic phenotype of epithelial cells, macrophages, and fibroblasts / myofibroblasts contributing to their (trans)differentiation and production of the disease­relevant mediators. Furthermore, strategies focusing on the correction of FA profiles in experimental models of lung fibrosis brought advances in understanding tissue scarring processes and contributed to the transition of new molecules into clinical development. This review highlights the role of FAs and their metabolites in IPF and provides evidence for therapeutic potential of lipidome manipulations in the treatment of this disease.


Asunto(s)
Fibrosis Pulmonar Idiopática , Enfermedades Pulmonares Intersticiales , Humanos , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/patología , Líquido del Lavado Bronquioalveolar , Progresión de la Enfermedad
20.
Cells ; 12(1)2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36611917

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide. In addition to chronic bronchitis and emphysema, patients often develop at least mild pulmonary hypertension (PH). We previously demonstrated that inhibition of inducible nitric oxide synthase (iNOS) prevents and reverses emphysema and PH in mice. Interestingly, strong iNOS upregulation was found in alveolar epithelial type II cells (AECII) in emphysematous murine lungs, and peroxynitrite, which can be formed from iNOS-derived NO, was shown to induce AECII apoptosis in vitro. However, the specific cell type(s) that drive(s) iNOS-dependent lung regeneration in emphysema/PH has (have) not been identified yet. AIM: we tested whether iNOS knockout in AECII affects established elastase-induced emphysema in mice. METHODS: four weeks after a single intratracheal instillation of porcine pancreatic elastase for the induction of emphysema and PH, we induced iNOS knockout in AECII in mice, and gave an additional twelve weeks for the potential recovery. RESULTS: iNOS knockout in AECII did not reduce elastase-induced functional and structural lung changes such as increased lung compliance, decreased mean linear intercept and increased airspace, decreased right ventricular function, increased right ventricular systolic pressure and increased pulmonary vascular muscularization. In vitro, iNOS inhibition did not reduce apoptosis of AECII following exposure to a noxious stimulus. CONCLUSION: taken together, our data demonstrate that iNOS deletion in AECII is not sufficient for the regeneration of emphysematous murine lungs, and suggest that iNOS expression in pulmonary vascular or stromal cells might be critically important in this regard.


Asunto(s)
Enfisema , Enfisema Pulmonar , Ratones , Porcinos , Animales , Elastasa Pancreática/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Enfisema Pulmonar/inducido químicamente , Enfisema Pulmonar/metabolismo , Epitelio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA