Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Methods Mol Biol ; 2713: 481-503, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37639143

RESUMEN

Macrophages represent a broad spectrum of distinct, but closely related tissue-resident immune cells. This presents a major challenge for the study of functional aspects of these cells using classical Cre recombinase-mediated conditional mutagenesis in mice, since single promoter-driven Cre transgenic models often display limited specificity toward their intended target. The advent of CRISPR/Cas9 technology has now provided a time- and cost-effective method to explore the full potential of binary transgenic, intersectional genetics. Specifically, the use of two promoters driving inactive Cre fragments that, when co-expressed, dimerize and only then gain recombinase activity allows the characterization and manipulation of genetically defined tissue macrophage subpopulations. Here, we will elaborate on the use of this protocol to capitalize on these recent technological advances in mouse genetics and discuss their strengths and pitfalls to improve the study of tissue macrophage subpopulations in physiology and pathophysiology.


Asunto(s)
Técnicas de Transferencia de Gen , Macrófagos , Animales , Ratones , Animales Modificados Genéticamente , Dimerización , Mutagénesis
2.
Comp Med ; 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796303

RESUMEN

An in-house genotyping facility should aim to be more cost-effective than outsourced service and more reliable than genotyping performed by short-term employees or students of individual research groups. Reliable genotyping allows efficient and economical management of mice colonies and promotes accurate and reproducible research results. Here we provide a detailed description of our approach to establishing a genotyping core facility, relying on automated PCR assembly and high-resolution melting (HRM) analysis (first derivative). The workflow we devised was tightly managed by purpose-designed applications developed using MATLAB App Designer that allowed straightforward work planning, ensured sample tracking throughout the process, and provided a platform for reliable data analysis and generation of genotyping reports. We successfully transitioned PCR product analysis of more than 250 different target genes from standard gel electrophoresis to the more advanced HRM analysis. About 23% of the target genes required a redesign of primers to adapt to our protocol. The process was highly universal, and only 2% of the target genes required deviation from the standard PCR method to a more restricted protocol that reduces the amplification of nonspecific products. We currently run more than 1,000 PCR reactions weekly, of samples taken at weaning or experimental endpoint, and assemble a large variety of target genes in every PCR plate. We also showed that genotyping of blastocytes instead of embryos can serve as quality control of cryopreservation. Thus, our genotyping protocol promotes the 3Rs (Replacement, Reduction, and Refinement) principles. Our refined genotyping process facilitates cost-effective colony management, replaces tissue types as well as traditional methods with advanced ones, and provides reliable results in a timely manner. MATLAB codes and related data are available in supplementary materials and online.

3.
Sci Immunol ; 9(91): eabq6930, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38215193

RESUMEN

The thymus is a primary lymphoid organ that is essential for the establishment of adaptive immunity through generation of immunocompetent T cells. In response to various stress signals, the thymus undergoes acute but reversible involution. However, the mechanisms governing its recovery are incompletely understood. Here, we used a dexamethasone-induced acute thymic involution mouse model to investigate how thymic hematopoietic cells (excluding T cells) contribute to thymic regeneration. scRNA-seq analysis revealed marked transcriptional and cellular changes in various thymic populations and highlighted thymus-resident innate lymphoid cells type 2 (ILC2) as a key cell type involved in the response to damage. We identified that ILC2 are activated by the alarmins IL-25 and IL-33 produced in response to tissue damage by thymic tuft cells and fibroblasts, respectively. Moreover, using mouse models deficient in either tuft cells and/or IL-33, we found that these alarmins are required for effective thymus regeneration after dexamethasone-induced damage. We also demonstrate that upon their damage-dependent activation, thymic ILC2 produce several effector molecules linked to tissue regeneration, such as amphiregulin and IL-13, which in turn promote thymic epithelial cell differentiation. Collectively, our study elucidates a previously undescribed role for thymic tuft cells and fibroblasts in thymus regeneration through activation of the type 2 immune response.


Asunto(s)
Inmunidad Innata , Interleucina-33 , Ratones , Animales , Linfocitos , Células en Penacho , Alarminas , Modelos Animales de Enfermedad , Fibroblastos , Dexametasona/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA