Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(D1): D762-D769, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37962425

RESUMEN

The Reference Sequence (RefSeq) project at the National Center for Biotechnology Information (NCBI) contains over 315 000 bacterial and archaeal genomes and 236 million proteins with up-to-date and consistent annotation. In the past 3 years, we have expanded the diversity of the RefSeq collection by including the best quality metagenome-assembled genomes (MAGs) submitted to INSDC (DDBJ, ENA and GenBank), while maintaining its quality by adding validation checks. Assemblies are now more stringently evaluated for contamination and for completeness of annotation prior to acceptance into RefSeq. MAGs now account for over 17000 assemblies in RefSeq, split over 165 orders and 362 families. Changes in the Prokaryotic Genome Annotation Pipeline (PGAP), which is used to annotate nearly all RefSeq assemblies include better detection of protein-coding genes. Nearly 83% of RefSeq proteins are now named by a curated Protein Family Model, a 4.7% increase in the past three years ago. In addition to literature citations, Enzyme Commission numbers, and gene symbols, Gene Ontology terms are now assigned to 48% of RefSeq proteins, allowing for easier multi-genome comparison. RefSeq is found at https://www.ncbi.nlm.nih.gov/refseq/. PGAP is available as a stand-alone tool able to produce GenBank-ready files at https://github.com/ncbi/pgap.


Asunto(s)
Archaea , Bacterias , Bases de Datos de Ácidos Nucleicos , Metagenoma , Archaea/genética , Bacterias/genética , Bases de Datos de Ácidos Nucleicos/normas , Bases de Datos de Ácidos Nucleicos/tendencias , Genoma Arqueal/genética , Genoma Bacteriano/genética , Internet , Anotación de Secuencia Molecular , Proteínas/genética
2.
Nucleic Acids Res ; 51(D1): D418-D427, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36350672

RESUMEN

The InterPro database (https://www.ebi.ac.uk/interpro/) provides an integrative classification of protein sequences into families, and identifies functionally important domains and conserved sites. Here, we report recent developments with InterPro (version 90.0) and its associated software, including updates to data content and to the website. These developments extend and enrich the information provided by InterPro, and provide a more user friendly access to the data. Additionally, we have worked on adding Pfam website features to the InterPro website, as the Pfam website will be retired in late 2022. We also show that InterPro's sequence coverage has kept pace with the growth of UniProtKB. Moreover, we report the development of a card game as a method of engaging the non-scientific community. Finally, we discuss the benefits and challenges brought by the use of artificial intelligence for protein structure prediction.


Asunto(s)
Bases de Datos de Proteínas , Humanos , Secuencia de Aminoácidos , Inteligencia Artificial , Internet , Proteínas/química , Programas Informáticos
3.
J Bacteriol ; 206(1): e0017323, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38084967

RESUMEN

The LPXTG protein-sorting signal, found in surface proteins of various Gram-positive pathogens, was the founding member of a growing panel of prokaryotic small C-terminal sorting domains. Sortase A cleaves LPXTG, exosortases (XrtA and XrtB) cleave the PEP-CTERM sorting signal, archaeosortase A cleaves PGF-CTERM, and rhombosortase cleaves GlyGly-CTERM domains. Four sorting signal domains without previously known processing proteases are the MYXO-CTERM, JDVT-CTERM, Synerg-CTERM, and CGP-CTERM domains. These exhibit the standard tripartite architecture of a short signature motif, a hydrophobic transmembrane segment, and an Arg-rich cluster. Each has an invariant cysteine in its signature motif. Computational evidence strongly suggests that each of these four Cys-containing sorting signals is processed, at least in part, by a cognate family of glutamic-type intramembrane endopeptidases related to the eukaryotic type II CAAX-processing protease Rce1. For the MYXO-CTERM sorting signals of different lineages, their sorting enzymes, called myxosortases, include MrtX (MXAN_2755 in Myxococcus xanthus), MrtC, and MrtP, all with radically different N-terminal domains but with a conserved core. Related predicted sorting enzymes were also identified for JDVT-CTERM (MrtJ), Synerg-CTERM (MrtS), and CGP-CTERM (MrtA). This work establishes a major new family of protein-sorting housekeeping endopeptidases contributing to the surface attachment of proteins in prokaryotes. IMPORTANCE Homologs of the eukaryotic type II CAAX-box protease Rce1, a membrane-embedded endopeptidase found in yeast and human ER and involved in sorting proteins to their proper cellular locations, are abundant in prokaryotes but not well understood there. This bioinformatics paper identifies several subgroups of the family as cognate endopeptidases for four protein-sorting signals processed by previously unknown machinery. Sorting signals with newly identified processing enzymes include three novel ones, but also MYXO-CTERM, which had been the focus of previous experimental work in the model fruiting and gliding bacterium Myxococcus xanthus. The new findings will substantially improve our understanding of Cys-containing C-terminal protein-sorting signals and of protein trafficking generally in bacteria and archaea.


Asunto(s)
Cisteína , Péptido Hidrolasas , Humanos , Cisteína/metabolismo , Transporte de Proteínas , Péptido Hidrolasas/metabolismo , Proteínas de la Membrana/metabolismo , Bacterias/metabolismo , Saccharomyces cerevisiae
4.
J Bacteriol ; 205(1): e0025922, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36598231

RESUMEN

The bioinformatics of a nine-gene locus, designated selenocysteine-assisted organometallic (SAO), was investigated after identifying six new selenoprotein families and constructing hidden Markov models (HMMs) that find and annotate members of those families. Four are selenoproteins in most SAO loci, including Clostridium difficile. They include two ABC transporter subunits, namely, permease SaoP, with selenocysteine (U) at the channel-gating position, and substrate-binding subunit SaoB. Cytosolic selenoproteins include SaoL, homologous to MerB organomercurial lyases from mercury resistance loci, and SaoT, related to thioredoxins. SaoL, SaoB, and surface protein SaoC (an occasional selenoprotein) share an unusual CU dipeptide motif, which is something rare in selenoproteins but found in selenoprotein variants of mercury resistance transporter subunit MerT. A nonselenoprotein, SaoE, shares homology with Cu/Zn efflux and arsenical efflux pumps. The organization of the SAO system suggests substrate interaction with surface-exposed selenoproteins, followed by import, metabolism that may cleave a carbon-to-heavy metal bond, and finally metal efflux. A novel type of mercury resistance is possible, but SAO instead may support fermentative metabolism, with selenocysteine-mediated formation of organometallic intermediates, followed by import, degradation, and metal efflux. Phylogenetic profiling shows SOA loci consistently co-occur with Stickland fermentation markers but even more consistently with 8Fe-9S cofactor-type double-cubane proteins. Hypothesizing that the SAO system forms organometallic intermediates, we investigated the known methylmercury formation protein families HgcA and HgcB. Both families contained overlooked selenoproteins. Most HgcAs have a CU motif N terminal to their previously accepted start sites. Seeking additional rare and overlooked selenoproteins may help reveal more cryptic aspects of microbial biochemistry. IMPORTANCE This work adds 8 novel prokaryotic selenoproteins to the 80 or so families previously known. It describes the SAO (selenocysteine-assisted organometallic) locus, with the most selenoproteins of any known system. The rare CU motif recurs throughout, suggesting the formation and degradation of organometallic compounds. That suggestion triggered a reexamination of HgcA and HcgB, which are methylmercury formation proteins that can adversely impact food safety. Both are selenoproteins, once corrected, with HgcA again showing a CU motif. The SAO system is plausibly a mercury resistance locus for selenium-dependent anaerobes. But instead, it may exploit heavy metals as cofactors in organometallic intermediate-forming pathways that circumvent high activation energies and facilitate the breakdown of otherwise poorly accessible nutrients. SAO could provide an edge that helps Clostridium difficile, an important pathogen, establish disease.


Asunto(s)
Clostridioides difficile , Mercurio , Compuestos de Metilmercurio , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Selenocisteína/metabolismo , Filogenia , Selenoproteínas/genética , Selenoproteínas/metabolismo
5.
Nucleic Acids Res ; 49(D1): D1020-D1028, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33270901

RESUMEN

The Reference Sequence (RefSeq) project at the National Center for Biotechnology Information (NCBI) contains nearly 200 000 bacterial and archaeal genomes and 150 million proteins with up-to-date annotation. Changes in the Prokaryotic Genome Annotation Pipeline (PGAP) since 2018 have resulted in a substantial reduction in spurious annotation. The hierarchical collection of protein family models (PFMs) used by PGAP as evidence for structural and functional annotation was expanded to over 35 000 protein profile hidden Markov models (HMMs), 12 300 BlastRules and 36 000 curated CDD architectures. As a result, >122 million or 79% of RefSeq proteins are now named based on a match to a curated PFM. Gene symbols, Enzyme Commission numbers or supporting publication attributes are available on over 40% of the PFMs and are inherited by the proteins and features they name, facilitating multi-genome analyses and connections to the literature. In adherence with the principles of FAIR (findable, accessible, interoperable, reusable), the PFMs are available in the Protein Family Models Entrez database to any user. Finally, the reference and representative genome set, a taxonomically diverse subset of RefSeq prokaryotic genomes, is now recalculated regularly and available for download and homology searches with BLAST. RefSeq is found at https://www.ncbi.nlm.nih.gov/refseq/.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Genoma Arqueal/genética , Genoma Bacteriano/genética , Anotación de Secuencia Molecular/métodos , Proteínas/genética , Curaduría de Datos/métodos , Minería de Datos/métodos , Genómica/métodos , Internet , Proteínas/clasificación , Interfaz Usuario-Computador
6.
Nucleic Acids Res ; 49(D1): D344-D354, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33156333

RESUMEN

The InterPro database (https://www.ebi.ac.uk/interpro/) provides an integrative classification of protein sequences into families, and identifies functionally important domains and conserved sites. InterProScan is the underlying software that allows protein and nucleic acid sequences to be searched against InterPro's signatures. Signatures are predictive models which describe protein families, domains or sites, and are provided by multiple databases. InterPro combines signatures representing equivalent families, domains or sites, and provides additional information such as descriptions, literature references and Gene Ontology (GO) terms, to produce a comprehensive resource for protein classification. Founded in 1999, InterPro has become one of the most widely used resources for protein family annotation. Here, we report the status of InterPro (version 81.0) in its 20th year of operation, and its associated software, including updates to database content, the release of a new website and REST API, and performance improvements in InterProScan.


Asunto(s)
Bases de Datos de Proteínas , Proteínas/química , Secuencia de Aminoácidos , COVID-19/metabolismo , Internet , Anotación de Secuencia Molecular , Dominios Proteicos , Mapas de Interacción de Proteínas , SARS-CoV-2/metabolismo , Alineación de Secuencia
7.
Antimicrob Agents Chemother ; 66(4): e0033322, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35380458

RESUMEN

Assigning names to ß-lactamase variants has been inconsistent and has led to confusion in the published literature. The common availability of whole genome sequencing has resulted in an exponential growth in the number of new ß-lactamase genes. In November 2021 an international group of ß-lactamase experts met virtually to develop a consensus for the way naturally-occurring ß-lactamase genes should be named. This document formalizes the process for naming novel ß-lactamases, followed by their subsequent publication.


Asunto(s)
Inhibidores de beta-Lactamasas , beta-Lactamasas , Consenso , beta-Lactamasas/genética
8.
Artículo en Inglés | MEDLINE | ID: mdl-31712217

RESUMEN

Unlike for classes A and B, a standardized amino acid numbering scheme has not been proposed for the class C (AmpC) ß-lactamases, which complicates communication in the field. Here, we propose a scheme developed through a collaborative approach that considers both sequence and structure, preserves traditional numbering of catalytically important residues (Ser64, Lys67, Tyr150, and Lys315), is adaptable to new variants or enzymes yet to be discovered and includes a variation for genetic and epidemiological applications.


Asunto(s)
Proteínas Bacterianas/clasificación , Bacterias Gramnegativas/genética , Bacterias Grampositivas/genética , Mutación , Terminología como Asunto , Resistencia betalactámica/genética , beta-Lactamasas/clasificación , Secuencia de Aminoácidos , Antibacterianos/química , Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Expresión Génica , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/enzimología , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/enzimología , Cooperación Internacional , Estructura Secundaria de Proteína , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Inhibidores de beta-Lactamasas/química , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , beta-Lactamas/química , beta-Lactamas/farmacología
9.
Nucleic Acids Res ; 46(D1): D851-D860, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29112715

RESUMEN

The Reference Sequence (RefSeq) project at the National Center for Biotechnology Information (NCBI) provides annotation for over 95 000 prokaryotic genomes that meet standards for sequence quality, completeness, and freedom from contamination. Genomes are annotated by a single Prokaryotic Genome Annotation Pipeline (PGAP) to provide users with a resource that is as consistent and accurate as possible. Notable recent changes include the development of a hierarchical evidence scheme, a new focus on curating annotation evidence sources, the addition and curation of protein profile hidden Markov models (HMMs), release of an updated pipeline (PGAP-4), and comprehensive re-annotation of RefSeq prokaryotic genomes. Antimicrobial resistance proteins have been reannotated comprehensively, improved structural annotation of insertion sequence transposases and selenoproteins is provided, curated complex domain architectures have given upgraded names to millions of multidomain proteins, and we introduce a new kind of annotation rule-BlastRules. Continual curation of supporting evidence, and propagation of improved names onto RefSeq proteins ensures that the functional annotation of genomes is kept current. An increasing share of our annotation now derives from HMMs and other sets of annotation rules that are portable by nature, and available for download and for reuse by other investigators. RefSeq is found at https://www.ncbi.nlm.nih.gov/refseq/.


Asunto(s)
Curaduría de Datos , Bases de Datos de Ácidos Nucleicos , Genoma , Anotación de Secuencia Molecular , Células Procariotas , Archaea/genética , Bacterias/genética , Bases de Datos de Proteínas , Eucariontes/genética , Predicción , Humanos , Homología de Secuencia , Programas Informáticos , Virus/genética
10.
Artículo en Inglés | MEDLINE | ID: mdl-31427293

RESUMEN

Antimicrobial resistance (AMR) is a major public health problem that requires publicly available tools for rapid analysis. To identify AMR genes in whole-genome sequences, the National Center for Biotechnology Information (NCBI) has produced AMRFinder, a tool that identifies AMR genes using a high-quality curated AMR gene reference database. The Bacterial Antimicrobial Resistance Reference Gene Database consists of up-to-date gene nomenclature, a set of hidden Markov models (HMMs), and a curated protein family hierarchy. Currently, it contains 4,579 antimicrobial resistance proteins and more than 560 HMMs. Here, we describe AMRFinder and its associated database. To assess the predictive ability of AMRFinder, we measured the consistency between predicted AMR genotypes from AMRFinder and resistance phenotypes of 6,242 isolates from the National Antimicrobial Resistance Monitoring System (NARMS). This included 5,425 Salmonella enterica, 770 Campylobacter spp., and 47 Escherichia coli isolates phenotypically tested against various antimicrobial agents. Of 87,679 susceptibility tests performed, 98.4% were consistent with predictions. To assess the accuracy of AMRFinder, we compared its gene symbol output with that of a 2017 version of ResFinder, another publicly available resistance gene detection system. Most gene calls were identical, but there were 1,229 gene symbol differences (8.8%) between them, with differences due to both algorithmic differences and database composition. AMRFinder missed 16 loci that ResFinder found, while ResFinder missed 216 loci that AMRFinder identified. Based on these results, AMRFinder appears to be a highly accurate AMR gene detection system.

11.
Environ Microbiol ; 20(5): 1677-1692, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29473278

RESUMEN

Bacterial floc formation plays a central role in the activated sludge (AS) process, which has been widely utilized for sewage and wastewater treatment. The formation of AS flocs has long been known to require exopolysaccharide biosynthesis. This study demonstrates an additional requirement for a PEP-CTERM protein in Zoogloea resiniphila, a dominant AS bacterium harboring a large exopolysaccharide biosynthesis gene cluster. Two members of a wide-spread family of high copy number-per-genome PEP-CTERM genes, transcriptionally regulated by the RpoN sigma factor and accessory PrsK-PrsR two-component system and at least one of these, pepA, must be expressed for Zoogloea to build the floc structures that allow gravitational sludge settling and recycling. Without PrsK or PrsR, Zoogloea cells were planktonic rather than flocculated and secreted exopolysaccharides were released into the growth broth in soluble form. Overexpression of PepA could circumvent the requirement of rpoN, prsK and prsR for the floc-forming phenotype by fixing the exopolysaccharides to bacterial cells. However, overexpression of PepA, which underwent post-translational modifications, could not rescue the long-rod morphology of the rpoN mutant. Consistently, PEP-CTERM genes and exopolysaccharide biosynthesis gene cluster are present in the genome of the floc-forming Nitrospira comammox and Mitsuaria strain as well as many other AS bacteria.


Asunto(s)
Aguas del Alcantarillado/microbiología , Aguas Residuales/microbiología , Zoogloea/fisiología , Proteínas Bacterianas/metabolismo , Floculación , Factor sigma/metabolismo , Eliminación de Residuos Líquidos , Aguas Residuales/química
12.
J Antimicrob Chemother ; 73(10): 2625-2630, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30053115

RESUMEN

The initial report of the mcr-1 (mobile colistin resistance) gene has led to many reports of mcr-1 variants and other mcr genes from different bacterial species originating from human, animal and environmental samples in different geographical locations. Resistance gene nomenclature is complex and unfortunately problems such as different names being used for the same gene/protein or the same name being used for different genes/proteins are not uncommon. Registries exist for some families, such as bla (ß-lactamase) genes, but there is as yet no agreed nomenclature scheme for mcr genes. The National Center for Biotechnology Information (NCBI) recently took over assigning bla allele numbers from the longstanding Lahey ß-lactamase website and has agreed to do the same for mcr genes. Here, we propose a nomenclature scheme that we hope will be acceptable to researchers in this area and that will reduce future confusion.


Asunto(s)
Alelos , Antibacterianos/farmacología , Bacterias/genética , Colistina/farmacología , Farmacorresistencia Bacteriana/genética , Genes MDR , Bacterias/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/genética , Pruebas de Sensibilidad Microbiana , Terminología como Asunto , Secuenciación Completa del Genoma , beta-Lactamasas/genética
13.
Nucleic Acids Res ; 42(14): e111, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24914053

RESUMEN

Toward achieving rapid and large scale genome modification directly in a target organism, we have developed a new genome engineering strategy that uses a combination of bioinformatics aided design, large synthetic DNA and site-specific recombinases. Using Cre recombinase we swapped a target 126-kb segment of the Escherichia coli genome with a 72-kb synthetic DNA cassette, thereby effectively eliminating over 54 kb of genomic DNA from three non-contiguous regions in a single recombination event. We observed complete replacement of the native sequence with the modified synthetic sequence through the action of the Cre recombinase and no competition from homologous recombination. Because of the versatility and high-efficiency of the Cre-lox system, this method can be used in any organism where this system is functional as well as adapted to use with other highly precise genome engineering systems. Compared to present-day iterative approaches in genome engineering, we anticipate this method will greatly speed up the creation of reduced, modularized and optimized genomes through the integration of deletion analyses data, transcriptomics, synthetic biology and site-specific recombination.


Asunto(s)
Ingeniería Genética/métodos , Recombinación Genética , Deleción Cromosómica , ADN/biosíntesis , Escherichia coli/genética , Genoma Bacteriano , Genómica/métodos , Integrasas/metabolismo , Biología Sintética/métodos
14.
J Bacteriol ; 198(5): 808-15, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26712937

RESUMEN

UNLABELLED: For years, the S-layer glycoprotein (SLG), the sole component of many archaeal cell walls, was thought to be anchored to the cell surface by a C-terminal transmembrane segment. Recently, however, we demonstrated that the Haloferax volcanii SLG C terminus is removed by an archaeosortase (ArtA), a novel peptidase. SLG, which was previously shown to be lipid modified, contains a C-terminal tripartite structure, including a highly conserved proline-glycine-phenylalanine (PGF) motif. Here, we demonstrate that ArtA does not process an SLG variant where the PGF motif is replaced with a PFG motif (slg(G796F,F797G)). Furthermore, using radiolabeling, we show that SLG lipid modification requires the PGF motif and is ArtA dependent, lending confirmation to the use of a novel C-terminal lipid-mediated protein-anchoring mechanism by prokaryotes. Similar to the case for the ΔartA strain, the growth, cellular morphology, and cell wall of the slg(G796F,F797G) strain, in which modifications of additional H. volcanii ArtA substrates should not be altered, are adversely affected, demonstrating the importance of these posttranslational SLG modifications. Our data suggest that ArtA is either directly or indirectly involved in a novel proteolysis-coupled, covalent lipid-mediated anchoring mechanism. Given that archaeosortase homologs are encoded by a broad range of prokaryotes, it is likely that this anchoring mechanism is widely conserved. IMPORTANCE: Prokaryotic proteins bound to cell surfaces through intercalation, covalent attachment, or protein-protein interactions play critical roles in essential cellular processes. Unfortunately, the molecular mechanisms that anchor proteins to archaeal cell surfaces remain poorly characterized. Here, using the archaeon H. volcanii as a model system, we report the first in vivo studies of a novel protein-anchoring pathway involving lipid modification of a peptidase-processed C terminus. Our findings not only yield important insights into poorly understood aspects of archaeal biology but also have important implications for key bacterial species, including those of the human microbiome. Additionally, insights may facilitate industrial applications, given that photosynthetic cyanobacteria encode uncharacterized homologs of this evolutionarily conserved enzyme, or may spur development of unique drug delivery systems.


Asunto(s)
Proteínas Arqueales/metabolismo , Haloferax volcanii/metabolismo , Lípidos/química , Glicoproteínas de Membrana/metabolismo , Péptido Hidrolasas/metabolismo , Secuencias de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/genética , Membrana Celular , Regulación de la Expresión Génica Arqueal/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Glicina/química , Haloferax volcanii/citología , Haloferax volcanii/genética , Metabolismo de los Lípidos , Glicoproteínas de Membrana/genética , Fenilalanina/química , Prolina/química
16.
Nucleic Acids Res ; 41(Database issue): D387-95, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23197656

RESUMEN

TIGRFAMs, available online at http://www.jcvi.org/tigrfams is a database of protein family definitions. Each entry features a seed alignment of trusted representative sequences, a hidden Markov model (HMM) built from that alignment, cutoff scores that let automated annotation pipelines decide which proteins are members, and annotations for transfer onto member proteins. Most TIGRFAMs models are designated equivalog, meaning they assign a specific name to proteins conserved in function from a common ancestral sequence. Models describing more functionally heterogeneous families are designated subfamily or domain, and assign less specific but more widely applicable annotations. The Genome Properties database, available at http://www.jcvi.org/genome-properties, specifies how computed evidence, including TIGRFAMs HMM results, should be used to judge whether an enzymatic pathway, a protein complex or another type of molecular subsystem is encoded in a genome. TIGRFAMs and Genome Properties content are developed in concert because subsystems reconstruction for large numbers of genomes guides selection of seed alignment sequences and cutoff values during protein family construction. Both databases specialize heavily in bacterial and archaeal subsystems. At present, 4284 models appear in TIGRFAMs, while 628 systems are described by Genome Properties. Content derives both from subsystem discovery work and from biocuration of the scientific literature.


Asunto(s)
Bases de Datos de Proteínas , Proteínas/clasificación , Proteínas/genética , Genoma Arqueal , Genoma Bacteriano , Genómica/métodos , Internet , Cadenas de Markov , Anotación de Secuencia Molecular , Proteínas/fisiología , Alineación de Secuencia
17.
PLoS Genet ; 8(4): e1002626, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22511878

RESUMEN

Biofilms are dense microbial communities. Although widely distributed and medically important, how biofilm cells interact with one another is poorly understood. Recently, we described a novel process whereby myxobacterial biofilm cells exchange their outer membrane (OM) lipoproteins. For the first time we report here the identification of two host proteins, TraAB, required for transfer. These proteins are predicted to localize in the cell envelope; and TraA encodes a distant PA14 lectin-like domain, a cysteine-rich tandem repeat region, and a putative C-terminal protein sorting tag named MYXO-CTERM, while TraB encodes an OmpA-like domain. Importantly, TraAB are required in donors and recipients, suggesting bidirectional transfer. By use of a lipophilic fluorescent dye, we also discovered that OM lipids are exchanged. Similar to lipoproteins, dye transfer requires TraAB function, gliding motility and a structured biofilm. Importantly, OM exchange was found to regulate swarming and development behaviors, suggesting a new role in cell-cell communication. A working model proposes TraA is a cell surface receptor that mediates cell-cell adhesion for OM fusion, in which lipoproteins/lipids are transferred by lateral diffusion. We further hypothesize that cell contact-dependent exchange helps myxobacteria to coordinate their social behaviors.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Comunicación Celular , Membrana Celular , Metabolismo de los Lípidos , Myxococcus xanthus/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Adhesión Celular/genética , Comunicación Celular/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Metabolismo de los Lípidos/genética , Proteínas Motoras Moleculares/genética , Myxococcus xanthus/citología , Conformación Proteica , Transporte de Proteínas/genética
18.
Nat Prod Rep ; 30(1): 108-60, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23165928

RESUMEN

This review presents recommended nomenclature for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), a rapidly growing class of natural products. The current knowledge regarding the biosynthesis of the >20 distinct compound classes is also reviewed, and commonalities are discussed.


Asunto(s)
Productos Biológicos , Péptidos , Ribosomas/metabolismo , Secuencia de Aminoácidos , Productos Biológicos/síntesis química , Productos Biológicos/química , Productos Biológicos/clasificación , Productos Biológicos/farmacología , Humanos , Datos de Secuencia Molecular , Estructura Molecular , Péptidos/síntesis química , Péptidos/química , Péptidos/clasificación , Péptidos/farmacología , Procesamiento Proteico-Postraduccional , Ribosomas/genética
19.
Environ Microbiol ; 15(11): 3077-86, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23682956

RESUMEN

Biological oxidation of methane to methanol by aerobic bacteria is catalysed by two different enzymes, the cytoplasmic or soluble methane monooxygenase (sMMO) and the membrane-bound or particulate methane monooxygenase (pMMO). Expression of MMOs is controlled by a 'copper-switch', i.e. sMMO is only expressed at very low copper : biomass ratios, while pMMO expression increases as this ratio increases. Methanotrophs synthesize a chalkophore, methanobactin, for the binding and import of copper. Previous work suggested that methanobactin was formed from a polypeptide precursor. Here we report that deletion of the gene suspected to encode for this precursor, mbnA, in Methylosinus trichosporium OB3b, abolishes methanobactin production. Further, gene expression assays indicate that methanobactin, together with another polypeptide of previously unknown function, MmoD, play key roles in regulating expression of MMOs. Based on these data, we propose a general model explaining how expression of the MMO operons is regulated by copper, methanobactin and MmoD. The basis of the 'copper-switch' is MmoD, and methanobactin amplifies the magnitude of the switch. Bioinformatic analysis of bacterial genomes indicates that the production of methanobactin-like compounds is not confined to methanotrophs, suggesting that its use as a metal-binding agent and/or role in gene regulation may be widespread in nature.


Asunto(s)
Cobre/metabolismo , Imidazoles/metabolismo , Methylosinus trichosporium/genética , Oligopéptidos/metabolismo , Oxigenasas/genética , Oxigenasas/metabolismo , Transporte Biológico , Eliminación de Gen , Expresión Génica , Regulación Bacteriana de la Expresión Génica , Metano/metabolismo , Metanol/metabolismo , Methylosinus trichosporium/metabolismo , Oligopéptidos/biosíntesis , Operón , Oxidación-Reducción , Oxigenasas/biosíntesis
20.
J Bacteriol ; 194(1): 36-48, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22037399

RESUMEN

Multiple new prokaryotic C-terminal protein-sorting signals were found that reprise the tripartite architecture shared by LPXTG and PEP-CTERM: motif, TM helix, basic cluster. Defining hidden Markov models were constructed for all. PGF-CTERM occurs in 29 archaeal species, some of which have more than 50 proteins that share the domain. PGF-CTERM proteins include the major cell surface protein in Halobacterium, a glycoprotein with a partially characterized diphytanylglyceryl phosphate linkage near its C terminus. Comparative genomics identifies a distant exosortase homolog, designated archaeosortase A (ArtA), as the likely protein-processing enzyme for PGF-CTERM. Proteomics suggests that the PGF-CTERM region is removed. Additional systems include VPXXXP-CTERM/archeaosortase B in two of the same archaea and PEF-CTERM/archaeosortase C in four others. Bacterial exosortases often fall into subfamilies that partner with very different cohorts of extracellular polymeric substance biosynthesis proteins; several species have multiple systems. Variant systems include the VPDSG-CTERM/exosortase C system unique to certain members of the phylum Verrucomicrobia, VPLPA-CTERM/exosortase D in several alpha- and deltaproteobacterial species, and a dedicated (single-target) VPEID-CTERM/exosortase E system in alphaproteobacteria. Exosortase-related families XrtF in the class Flavobacteria and XrtG in Gram-positive bacteria mark distinctive conserved gene neighborhoods. A picture emerges of an ancient and now well-differentiated superfamily of deeply membrane-embedded protein-processing enzymes. Their target proteins are destined to transit cellular membranes during their biosynthesis, during which most undergo additional posttranslational modifications such as glycosylation.


Asunto(s)
Aminoaciltransferasas/metabolismo , Proteínas Arqueales/metabolismo , Proteínas Bacterianas/metabolismo , Cisteína Endopeptidasas/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Secuencia de Aminoácidos , Aminoaciltransferasas/genética , Proteínas Arqueales/genética , Proteínas Bacterianas/genética , Membrana Celular , Cisteína Endopeptidasas/genética , Regulación de la Expresión Génica Arqueal/fisiología , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA