RESUMEN
BACKGROUND: CRIPTO is a multi-functional signaling protein that promotes stemness and oncogenesis. We previously developed a CRIPTO antagonist, ALK4L75A-Fc, and showed that it causes loss of the stem cell phenotype in normal mammary epithelia suggesting it may similarly inhibit CRIPTO-dependent plasticity in breast cancer cells. METHODS: We focused on two triple negative breast cancer cell lines (MDA-MB-231 and MDA-MB-468) to measure the effects of ALK4L75A-Fc on cancer cell behavior under nutrient deprivation and endoplasmic reticulum stress. We characterized the proliferation and migration of these cells in vitro using time-lapse microscopy and characterized stress-dependent changes in the levels and distribution of CRIPTO signaling mediators and cancer stem cell markers. We also assessed the effects of ALK4L75A-Fc on proliferation, EMT, and stem cell markers in vivo as well as on tumor growth and metastasis using inducible lentiviral delivery or systemic administration of purified ALK4L75A-Fc, which represents a candidate therapeutic approach. RESULTS: ALK4L75A-Fc inhibited adaptive responses of breast cancer cells under conditions of nutrient and ER stress and reduced their proliferation, migration, clonogenicity, and expression of EMT and cancer stem cell markers. ALK4L75A-Fc also inhibited proliferation of human breast cancer cells in stressed tumor microenvironments in xenografts and reduced both primary tumor size and metastatic burden. CONCLUSIONS: Cancer cell adaptation to stresses such as nutrient deprivation, hypoxia, and chemotherapy can critically contribute to dormancy, metastasis, therapy resistance, and recurrence. Identifying mechanisms that govern cellular adaptation, plasticity, and the emergence of stem-like cancer cells may be key to effective anticancer therapies. Results presented here indicate that targeting CRIPTO with ALK4L75A-Fc may have potential as such a therapy since it inhibits breast cancer cell adaptation to microenvironmental challenges and associated stem-like and EMT phenotypes.
Asunto(s)
Proteínas Ligadas a GPI/antagonistas & inhibidores , Proteínas de Neoplasias/antagonistas & inhibidores , Células Madre Neoplásicas/efectos de los fármacos , Proteínas Recombinantes de Fusión/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Receptores de Activinas Tipo I/genética , Animales , Línea Celular Tumoral , Plasticidad de la Célula/efectos de los fármacos , Estrés del Retículo Endoplásmico , Femenino , Humanos , Fragmentos Fc de Inmunoglobulinas/genética , Péptidos y Proteínas de Señalización Intercelular , Ratones , Recurrencia Local de Neoplasia , Células Madre Neoplásicas/patología , Mutación Puntual , Unión Proteica/genética , Dominios Proteicos/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/uso terapéutico , Neoplasias de la Mama Triple Negativas/patología , Hipoxia Tumoral , Microambiente Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Breast cancers are categorized into subtypes with distinctive therapeutic vulnerabilities and prognoses based on their expression of clinically targetable receptors and gene expression patterns mimicking different cell types of the normal gland. Here, we tested the role of Mcam in breast cancer cell state control and tumorigenicity in a luminal progenitor-like murine tumor cell line (Py230) that exhibits lineage and tumor subtype plasticity. Mcam knockdown Py230 cells show augmented Stat3 and Pi3K/Akt activation associated with a lineage state switch away from a hormone-sensing/luminal progenitor state toward alveolar and basal cell related phenotypes that were refractory to growth inhibition by the anti-estrogen therapeutic, tamoxifen. Inhibition of Stat3, or the upstream activator Ck2, reversed these cell state changes. Mcam binds Ck2 and acts as a regulator of Ck2 substrate utilization across multiple mammary tumor cell lines. In Py230 cells this activity manifests as increased mesenchymal morphology, migration, and Src/Fak/Mapk/Paxillin adhesion complex signaling in vitro, in contrast to Mcam's reported roles in promoting mesenchymal phenotypes. In vivo, Mcam knockdown reduced tumor growth and take rate and inhibited cell state transition to Sox10+/neural crest like cells previously been associated with tumor aggressiveness. This contrasts with human luminal breast cancers where MCAM copy number loss is highly coupled to Cyclin D amplification, increased proliferation, and the more aggressive Luminal B subtype. Together these data indicate a critical role for Mcam and its regulation of Ck2 in control of breast cancer cell state plasticity with implications for progression, evasion of targeted therapies and combination therapy design.
RESUMEN
Cell state control is crucial for normal tissue development and cancer cell mimicry of stem/progenitor states, contributing to tumor heterogeneity, therapy resistance, and progression. Here, we demonstrate that the cell surface glycoprotein Mcam maintains the tumorigenic luminal progenitor (LP)-like epithelial cell state, leading to Basal-like mammary cancers. In the Py230 mouse mammary carcinoma model, Mcam knockdown (KD) destabilized the LP state by deregulating the Ck2/Stat3 axis, causing a switch to alveolar and basal states, loss of an estrogen-sensing subpopulation, and resistance to tamoxifen-an effect reversed by Ck2 and Stat3 inhibitors. In vivo, Mcam KD blocked generation of Basal-like tumors and Sox10+Krt14+ cells. In human tumors, MCAM loss was largely exclusive of the Basal-like subtype, linked instead to proliferative Luminal subtypes, including often endocrine-resistant Luminal B cancers. This study has implications for developing therapies targeting MCAM, CK2, and STAT3 and their likely effective contexts.
RESUMEN
The mammary gland consists of cells with gene expression patterns reflecting their cellular origins, function, and spatiotemporal context. However, knowledge of developmental kinetics and mechanisms of lineage specification is lacking. We address this significant knowledge gap by generating a single-cell transcriptome atlas encompassing embryonic, postnatal, and adult mouse mammary development. From these data, we map the chronology of transcriptionally and epigenetically distinct cell states and distinguish fetal mammary stem cells (fMaSCs) from their precursors and progeny. fMaSCs show balanced co-expression of factors associated with discrete adult lineages and a metabolic gene signature that subsides during maturation but reemerges in some human breast cancers and metastases. These data provide a useful resource for illuminating mammary cell heterogeneity, the kinetics of differentiation, and developmental correlates of tumorigenesis.