Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(1): 419-429, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38155363

RESUMEN

Currently, hydrogen peroxide (H2O2) manufacturing involves an energy-intensive anthraquinone technique that demands expensive solvent extraction and a multistep process with substantial energy consumption. In this work, we synthesized Pd-N4-CO, Pd-S4-NCO, and Pd-N2O2-C single-atom catalysts via an in situ synthesis approach involving heteroatom-rich ligands and activated carbon under mild reaction conditions. It reveals that palladium atoms interact strongly with heteroatom-rich ligands, which provide well-defined and uniform active sites for oxygen (O2) electrochemically reduced to hydrogen peroxide. Interestingly, the Pd-N4-CO electrocatalyst shows excellent performance for the electrocatalytic reduction of O2 to H2O2 via a two-electron transfer process in a base electrolyte, exhibiting a negligible amount of onset overpotential and >95% selectivity within a wide range of applied potentials. The electrocatalysts based on the activity and selectivity toward 2e- ORR follow the order Pd-N4-CO > Pd-N2O2-C > Pd-S4-NCO in agreement with the pull-push mechanism, which is the Pd center strongly coordinated with high electronegativity donor atoms (N and O atoms) and weakly coordinated with the intermediate *OOH to excellent selectivity and sustainable production of H2O2. According to density functional theory, Pd-N4 is the active site for selectivity toward H2O2 generation. This work provides an emerging technique for designing high-performance H2O2 electrosynthesis catalysts and the rational integration of several active sites for green and sustainable chemical synthesis via electrochemical processes.

2.
ACS Appl Mater Interfaces ; 16(14): 17422-17431, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38557067

RESUMEN

The use of the "Holy Grail" lithium metal anode is pivotal to achieve superior energy density. However, the practice of a lithium metal anode faces practical challenges due to the thermodynamic instability of lithium metal and dendrite growth. Herein, an artificial stabilization of lithium metal was carried out via the thermal pyrolysis of the NH4F salt, which generates HF(g) and NH3(g). An exposure of lithium metal to the generated gas induces a spontaneous reaction that forms multiple solid electrolyte interface (SEI) components, such as LiF, Li3N, Li2NH, LiNH2, and LiH, from a single salt. The artificially multilayered protection on lithium metal (AF-Li) sustains stable lithium stripping/plating. It suppresses the Li dendrite under the Li||Li symmetric cell. The half-cell Li||Cu and Li||MCMB systems depicted the attributions of the protective layer. We demonstrate that the desirable protective layer in AF-Li exhibited remarkable capacity retention (CR) results. LiFePO4 (LFP) showed a CR of 90.6% at 0.5 mA cm-2 after 280 cycles, and LiNi0.5Mn0.3Co0.2O2 (NCM523) showed 58.7% at 3 mA cm-2 after 410 cycles. Formulating the multilayered protection, with the simultaneous formation of multiple SEI components in a facile and cost-effective approach from NH4F as a single salt, made the system competent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA