Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Appl Earth Obs Geoinf ; 116: 103168, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36644684

RESUMEN

Quantifying biophysical and biochemical vegetation variables is of great importance in precision agriculture. Here, the ability of artificial neural networks (ANNs) to generate multiple outputs is exploited to simultaneously retrieve Leaf area index (LAI), leaf sheath moisture (LSM), leaf chlorophyll content (LCC), and leaf nitrogen concentration (LNC) of sugarcane from Sentinel-2 spectra. We apply a type of ANNs, Bayesian Regularized ANN (BRANN), which incorporates the Bayes' theorem into a regularization scheme to tackle the overfitting problem of ANN and improve its generalizability. Quantitatively assessing the result accuracy indicated RMSE values of 0.48 (m2/m2) for LAI, 2.36 (% wb) for LSM, 5.85 (µg/cm2) for LCC, and 0.23 (%) for LNC, applying simultaneous retrieval. It was demonstrated that simultaneous retrievals of the variables outperformed the individual retrievals. The superiority of the proposed BRANN over a conventional ANN trained with the Levenberg-Marquardt algorithm was confirmed through statistical comparison of their results. The model was applied over the entire Sentinel-2 images to map the considered variables. The maps were probed to qualitatively evaluate the model performance. The results indicated that the retrievals reasonably represent spatial and temporal variations of the variables. Generally, this study demonstrated that the BRANN simultaneous retrieval model can provide faster and more accurate retrievals than those obtained from conventional ANNs and individual retrievals.

2.
Graefes Arch Clin Exp Ophthalmol ; 250(11): 1607-14, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22760960

RESUMEN

INTRODUCTION: Diabetes disturbs many parts of the body. One of the most common and serious complications of this disease is Diabetic Retinopathy (DR). In this process, blood vessels of the retina are damaged and leak into the retina. In later stages, DR affects the fovea. In these cases, the shape and size of the Foveal Avascular Zone (FAZ), which is responsible for central vision, can become abnormal and contribute to loss of vision. METHODS: In this paper, appropriate features are extracted from the FAZ by means of Digital Curvelet Transform (DCUT) and used to grade of retina images into normal and abnormal classes. For this reason, DCUT is applied on enhanced color fundus images and its coefficients are modified to highlight vessels and the optic disc (OD). Through the use of this information about the anatomical location of the FAZ related to the OD and detected end points of segmented vessels, the FAZ is extracted. Then, the area and regularity of the extracted FAZ is determined and used for DR grading. RESULTS: Our method was tested on a database including 45 normal and 30 abnormal color fundus images, and showed sensitivity of 93 % for DR grading and specificity of 86 % for distinguishing between normal and abnormal cases. CONCLUSIONS: This technique showed high reproducibility in characterizing the size and contour of the FAZ in diabetic maculopathy, thus it has the potential to serve as a powerful tool in the automated assessment and grading of images in a routine clinical setting.


Asunto(s)
Retinopatía Diabética/clasificación , Retinopatía Diabética/diagnóstico , Técnicas de Diagnóstico Oftalmológico/instrumentación , Fóvea Central/irrigación sanguínea , Interpretación de Imagen Asistida por Computador , Vasos Retinianos/patología , Angiografía con Fluoresceína , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
3.
Electron Physician ; 9(7): 4872-4879, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28894548

RESUMEN

BACKGROUND AND AIM: Merging multimodal images is a useful tool for accurate and efficient diagnosis and analysis in medical applications. The acquired data are a high-quality fused image that contains more information than an individual image. In this paper, we focus on the fusion of MRI gray scale images and PET color images. METHODS: For the fusion of MRI gray scale images and PET color images, we used lesion region extracting based on the digital Curvelet transform (DCT) method. As curvelet transform has a better performance in detecting the edges, regions in each image are perfectly segmented. Curvelet decomposes each image into several low- and high-frequency sub-bands. Then, the entropy of each sub-band is calculated. By comparing the entropies and coefficients of the extracted regions, the best coefficients for the fused image are chosen. The fused image is obtained via inverse Curvelet transform. In order to assess the performance, the proposed method was compared with different fusion algorithms, both visually and statistically. RESULT: The analysis of the results showed that our proposed algorithm has high spectral and spatial resolution. According to the results of the quantitative fusion metrics, this method achieves an entropy value of 6.23, an MI of 1.88, and an SSIM of 0.6779. Comparison of these experiments with experiments of four other common fusion algorithms showed that our method is effective. CONCLUSION: The fusion of MRI and PET images is used to gather the useful information of both source images into one image, which is called the fused image. This study introduces a new fusion algorithm based on the digital Curvelet transform. Experiments show that our method has a high fusion effect.

4.
Comput Math Methods Med ; 2012: 761901, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23056148

RESUMEN

One of the major complications of diabetes is diabetic retinopathy. As manual analysis and diagnosis of large amount of images are time consuming, automatic detection and grading of diabetic retinopathy are desired. In this paper, we use fundus fluorescein angiography and color fundus images simultaneously, extract 6 features employing curvelet transform, and feed them to support vector machine in order to determine diabetic retinopathy severity stages. These features are area of blood vessels, area, regularity of foveal avascular zone, and the number of micro-aneurisms therein, total number of micro-aneurisms, and area of exudates. In order to extract exudates and vessels, we respectively modify curvelet coefficients of color fundus images and angiograms. The end points of extracted vessels in predefined region of interest based on optic disk are connected together to segment foveal avascular zone region. To extract micro-aneurisms from angiogram, first extracted vessels are subtracted from original image, and after removing detected background by morphological operators and enhancing bright small pixels, micro-aneurisms are detected. 70 patients were involved in this study to classify diabetic retinopathy into 3 groups, that is, (1) no diabetic retinopathy, (2) mild/moderate nonproliferative diabetic retinopathy, (3) severe nonproliferative/proliferative diabetic retinopathy, and our simulations show that the proposed system has sensitivity and specificity of 100% for grading.


Asunto(s)
Retinopatía Diabética/diagnóstico , Diagnóstico por Imagen/métodos , Algoritmos , Angiografía/métodos , Biofisica/métodos , Proliferación Celular , Color , Simulación por Computador , Medios de Contraste/farmacología , Retinopatía Diabética/clasificación , Retinopatía Diabética/patología , Femenino , Fluoresceína/química , Fondo de Ojo , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador , Distribución Normal , Fotograbar , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA