Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Semin Cell Dev Biol ; 78: 107-115, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29107475

RESUMEN

Accumulating evidence has reinforced that the habenular region of the vertebrate dorsal forebrain is an essential integrating center, and a region strongly implicated in neurological disorders and addiction. Despite the important and diverse neuromodulatory roles the habenular nuclei play, their development has been understudied. The emphasis of this review is on the dorsal habenular nuclei of zebrafish, homologous to the medial nuclei of mammals, as recent work has revealed new information about the signaling pathways that regulate their formation. Additionally, the zebrafish dorsal habenulae have become a valuable model for probing how left-right differences are established in a vertebrate brain. Sonic hedgehog, fibroblast growth factors and Wingless-INT proteins are all involved in the generation of progenitor cells and ultimately, along with Notch signaling, influence habenular neurogenesis and left-right asymmetry. Intriguingly, a genetic network has emerged that leads to the differentiation of dorsal habenular neurons and, through localized chemokine signaling, directs the posterior outgrowth of their newly emerging axons towards their postsynaptic target, the midbrain interpeduncular nucleus.


Asunto(s)
Diferenciación Celular/fisiología , Habénula/fisiología , Neurogénesis/fisiología , Vía de Señalización Wnt/fisiología , Pez Cebra/crecimiento & desarrollo , Pez Cebra/fisiología , Animales , Axones/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Núcleo Interpeduncular/fisiología , Neuronas/citología , Proteínas Wnt/metabolismo , Proteínas de Pez Cebra/metabolismo
2.
Development ; 144(14): 2652-2662, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28619821

RESUMEN

The habenular nuclei are a conserved integrating center in the vertebrate epithalamus, where they modulate diverse behaviors. Despite their importance, our understanding of habenular development is incomplete. Time-lapse imaging and fate mapping demonstrate that the dorsal habenulae (dHb) of zebrafish are derived from dbx1b-expressing (dbx1b+ ) progenitors, which transition into cxcr4b-expressing neuronal precursors. The precursors give rise to differentiated neurons, the axons of which innervate the midbrain interpeduncular nucleus (IPN). Formation of the dbx1b+ progenitor population relies on the activity of the Shh, Wnt and Fgf signaling pathways. Wnt and Fgf function additively to generate dHb progenitors. Surprisingly, Wnt signaling also negatively regulates fgf8a, confining expression to a discrete dorsal diencephalic domain. Moreover, the Wnt and Fgf pathways have opposing roles in transcriptional regulation of components of the Cxcr4-chemokine signaling pathway. The chemokine pathway, in turn, directs the posterior outgrowth of dHb efferents toward the IPN and, when disrupted, results in ectopic, anteriorly directed axonal projections. The results define a signaling network underlying the generation of dHb neurons and connectivity with their midbrain target.


Asunto(s)
Habénula/embriología , Habénula/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Axones/metabolismo , Quimiocinas/genética , Quimiocinas/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Mutación , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Neurogénesis/fisiología , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vía de Señalización Wnt , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
3.
Dev Biol ; 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37407371
4.
J Neurosci ; 35(48): 15847-59, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26631467

RESUMEN

Differences between the left and right sides of the brain are found throughout the animal kingdom, but the consequences of altered neural asymmetry are not well understood. In the zebrafish epithalamus, the parapineal is located on the left side of the brain where it influences development of the adjacent dorsal habenular (dHb) nucleus, causing the left and right dHb to differ in their organization, gene expression, and connectivity. Left-right (L-R) reversal of parapineal position and dHb asymmetry occurs spontaneously in a small percentage of the population, whereas the dHb develop symmetrically following experimental ablation of the parapineal. The habenular region was previously implicated in modulating fear in both mice and zebrafish, but the relevance of its L-R asymmetry is unclear. We now demonstrate that disrupting directionality of the zebrafish epithalamus causes reduced exploratory behavior and increased cortisol levels, indicative of enhanced anxiety. Accordingly, exposure to buspirone, an anxiolytic agent, significantly suppresses atypical behavior. Axonal projections from the parapineal to the dHb are more variable when it is located on the right side of the brain, revealing that L-R reversals do not necessarily represent a neuroanatomical mirror image. The results highlight the importance of directional asymmetry of the epithalamus in the regulation of stress responses in zebrafish.


Asunto(s)
Ansiedad/patología , Epitálamo/patología , Lateralidad Funcional/fisiología , Adaptación Biológica , Animales , Animales Modificados Genéticamente , Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Ansiedad/tratamiento farmacológico , Ansiedad/genética , Buspirona/farmacología , Buspirona/uso terapéutico , Señales (Psicología) , Modelos Animales de Enfermedad , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Hidrocortisona/metabolismo , Conducta Imitativa/efectos de los fármacos , Conducta Imitativa/fisiología , Larva , Locomoción , Estimulación Luminosa , Glándula Pineal/fisiología , Glándula Pineal/cirugía , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
5.
Dev Biol ; 406(2): 117-128, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26116173

RESUMEN

Secreted Wnt proteins play pivotal roles in development, including regulation of cell proliferation, differentiation, progenitor maintenance and tissue patterning. The transmembrane protein Wntless (Wls) is necessary for secretion of most Wnts and essential for effective Wnt signaling. During a mutagenesis screen to identify genes important for development of the habenular nuclei in the dorsal forebrain, we isolated a mutation in the sole wls gene of zebrafish and confirmed its identity with a second, independent allele. Early embryonic development appears normal in homozygous wls mutants, but they later lack the ventral habenular nuclei, form smaller dorsal habenulae and otic vesicles, have truncated jaw and fin cartilages and lack swim bladders. Activation of a reporter for ß-catenin-dependent transcription is decreased in wls mutants, indicative of impaired signaling by the canonical Wnt pathway, and expression of Wnt-responsive genes is reduced in the dorsal diencephalon. Wnt signaling was previously implicated in patterning of the zebrafish brain and in the generation of left-right (L-R) differences between the bilaterally paired dorsal habenular nuclei. Outside of the epithalamic region, development of the brain is largely normal in wls mutants and, despite their reduced size, the dorsal habenulae retain L-R asymmetry. We find that homozygous wls mutants show a reduction in two cell populations that contribute to the presumptive dorsal habenulae. The results support distinct temporal requirements for Wls in habenular development and reveal a new role for Wnt signaling in the regulation of dorsal habenular progenitors.


Asunto(s)
Habénula/embriología , Fenotipo , Receptores Acoplados a Proteínas G/genética , Vía de Señalización Wnt/fisiología , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Pez Cebra/genética , Azul Alcián , Animales , Biología Computacional , Análisis Mutacional de ADN , Cartilla de ADN/genética , Técnica del Anticuerpo Fluorescente , Genotipo , Habénula/anatomía & histología , Hibridación in Situ , Microscopía Confocal , Mutagénesis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Vía de Señalización Wnt/genética
6.
Proc Natl Acad Sci U S A ; 110(52): 21171-6, 2013 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-24327734

RESUMEN

The habenulo-interpeduncular pathway, a highly conserved cholinergic system, has emerged as a valuable model to study left-right asymmetry in the brain. In larval zebrafish, the bilaterally paired dorsal habenular nuclei (dHb) exhibit prominent left-right differences in their organization, gene expression, and connectivity, but their cholinergic nature was unclear. Through the discovery of a duplicated cholinergic gene locus, we now show that choline acetyltransferase and vesicular acetylcholine transporter homologs are preferentially expressed in the right dHb of larval zebrafish. Genes encoding the nicotinic acetylcholine receptor subunits α2 and ß4 are transcribed in the target interpeduncular nucleus (IPN), suggesting that the asymmetrical cholinergic pathway is functional. To confirm this, we activated channelrhodopsin-2 specifically in the larval dHb and performed whole-cell patch-clamp recording of IPN neurons. The response to optogenetic or electrical stimulation of the right dHb consisted of an initial fast glutamatergic excitatory postsynaptic current followed by a slow-rising cholinergic current. In adult zebrafish, the dHb are divided into discrete cholinergic and peptidergic subnuclei that differ in size between the left and right sides of the brain. After exposing adults to nicotine, fos expression was activated in subregions of the IPN enriched for specific nicotinic acetylcholine receptor subunits. Our studies of the newly identified cholinergic gene locus resolve the neurotransmitter identity of the zebrafish habenular nuclei and reveal functional asymmetry in a major cholinergic neuromodulatory pathway of the vertebrate brain.


Asunto(s)
Lateralidad Funcional/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Habénula/fisiología , Modelos Animales , Tegmento Mesencefálico/fisiología , Acetilcolina/metabolismo , Animales , Secuencia de Bases , Colina O-Acetiltransferasa/genética , Colina O-Acetiltransferasa/metabolismo , Cartilla de ADN/genética , Estimulación Eléctrica , Habénula/metabolismo , Hibridación in Situ , Larva/fisiología , Datos de Secuencia Molecular , Vías Nerviosas/fisiología , Optogenética , Técnicas de Placa-Clamp , Receptores Nicotínicos/metabolismo , Análisis de Secuencia de ARN , Tegmento Mesencefálico/metabolismo , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo , Pez Cebra
7.
Methods ; 66(3): 433-40, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23792917

RESUMEN

The Gal4-UAS regulatory system of yeast is widely used to modulate gene expression in Drosophila; however, there are limitations to its usefulness in transgenic zebrafish, owing to progressive methylation and silencing of the CpG-rich multicopy upstream activation sequence. Although a modified, less repetitive UAS construct may overcome this problem, it is highly desirable to have additional transcriptional regulatory systems that can be applied independently or in combination with the Gal4/UAS system for intersectional gene expression. The Q transcriptional regulatory system of Neurospora crassa functions similarly to Gal4/UAS. QF is a transcriptional activator that binds to the QUAS upstream regulatory sequence to drive reporter gene expression. Unlike Gal4, the QF binding site does not contain essential CpG dinucleotide sequences that are subject to DNA methylation. The QS protein is a repressor of QF mediated transcriptional activation akin to Gal80. The functionality of the Q system has been demonstrated in Drosophila and Caenorhabditis elegans and we now report its successful application to a vertebrate model, the zebrafish, Danio rerio. Several tissue-specific promoters were used to drive QF expression in stable transgenic lines, as assessed by activation of a QUAS:GFP transgene. The QS repressor was found to dramatically reduce QF activity in injected zebrafish embryos; however, a similar repression has not yet been achieved in transgenic animals expressing QS under the control of ubiquitous promoters. A dual reporter construct containing both QUAS and UAS, each upstream of different fluorescent proteins was also generated and tested in transient assays, demonstrating that the two systems can work in parallel within the same cell. The adoption of the Q system should greatly increase the versatility and power of transgenic approaches for regulating gene expression in zebrafish.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Ingeniería Genética/métodos , Pez Cebra/genética , Animales , Animales Modificados Genéticamente/metabolismo , Regulación de la Expresión Génica/genética , Genes Fúngicos , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Neurospora crassa/genética , Factores de Transcripción/genética , Activación Transcripcional
8.
Genesis ; 52(6): 636-55, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24753112

RESUMEN

The role of the habenular nuclei in modulating fear and reward pathways has sparked a renewed interest in this conserved forebrain region. The bilaterally paired habenular nuclei, each consisting of a medial/dorsal and lateral/ventral nucleus, can be further divided into discrete subdomains whose neuronal populations, precise connectivity, and specific functions are not well understood. An added complexity is that the left and right habenulae show pronounced morphological differences in many non-mammalian species. Notably, the dorsal habenulae of larval zebrafish provide a vertebrate genetic model to probe the development and functional significance of brain asymmetry. Previous reports have described a number of genes that are expressed in the zebrafish habenulae, either in bilaterally symmetric patterns or more extensively on one side of the brain than the other. The goal of our study was to generate a comprehensive map of the zebrafish dorsal habenular nuclei, by delineating the relationship between gene expression domains, comparing the extent of left-right asymmetry at larval and adult stages, and identifying potentially functional subnuclear regions as defined by neurotransmitter phenotype. Although many aspects of habenular organization appear conserved with rodents, the zebrafish habenulae also possess unique properties that may underlie lateralization of their functions.


Asunto(s)
Habénula/embriología , Neurotransmisores/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Expresión Génica , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Habénula/metabolismo , Inmunohistoquímica , Neuronas/metabolismo , Neurotransmisores/genética , Especificidad de Órganos/genética , Fenotipo , Pez Cebra/genética
9.
Biochemistry ; 53(16): 2644-9, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24678795

RESUMEN

Light-activated opsins undergo carboxy-terminal phosphorylation, which contributes to the deactivation of their photoresponse. The photopigment melanopsin possesses an unusually long carboxy tail containing 37 serine and threonine sites that are potential sites for phosphorylation by a G-protein dependent kinase (GRK). Here, we show that a small cluster of six to seven sites is sufficient for deactivation of light-activated mouse melanopsin. Surprisingly, these sites are distinct from those that regulate deactivation of rhodopsin. In zebrafish, there are five different melanopsin genes that encode proteins with distinct carboxy-terminal domains. Naturally occurring changes in the same cluster of phosphorylatable amino acids provides diversity in the deactivation kinetics of the zebrafish proteins. These results suggest that variation in phosphorylation sites provides flexibility in the duration and kinetics of melanopsin-mediated light responses.


Asunto(s)
Opsinas de Bastones/metabolismo , Proteínas de Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Células HEK293 , Humanos , Cinética , Luz , Ratones , Datos de Secuencia Molecular , Familia de Multigenes , Mutación , Fosforilación , Estructura Terciaria de Proteína , Opsinas de Bastones/genética , Proteínas de Pez Cebra/genética
10.
Elife ; 122024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819436

RESUMEN

The nucleus incertus (NI), a conserved hindbrain structure implicated in the stress response, arousal, and memory, is a major site for production of the neuropeptide relaxin-3. On the basis of goosecoid homeobox 2 (gsc2) expression, we identified a neuronal cluster that lies adjacent to relaxin 3a (rln3a) neurons in the zebrafish analogue of the NI. To delineate the characteristics of the gsc2 and rln3a NI neurons, we used CRISPR/Cas9 targeted integration to drive gene expression specifically in each neuronal group, and found that they differ in their efferent and afferent connectivity, spontaneous activity, and functional properties. gsc2 and rln3a NI neurons have widely divergent projection patterns and innervate distinct subregions of the midbrain interpeduncular nucleus (IPN). Whereas gsc2 neurons are activated more robustly by electric shock, rln3a neurons exhibit spontaneous fluctuations in calcium signaling and regulate locomotor activity. Our findings define heterogeneous neurons in the NI and provide new tools to probe its diverse functions.


Asunto(s)
Neuronas , Pez Cebra , Animales , Neuronas/fisiología , Neuronas/metabolismo , Relaxina/metabolismo , Relaxina/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Sistemas CRISPR-Cas , Rombencéfalo/fisiología , Rombencéfalo/metabolismo
11.
Proc Natl Acad Sci U S A ; 107(19): 8689-94, 2010 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-20395551

RESUMEN

Cytosine DNA methylation is a heritable epigenetic mark present in many eukaryotic organisms. Although DNA methylation likely has a conserved role in gene silencing, the levels and patterns of DNA methylation appear to vary drastically among different organisms. Here we used shotgun genomic bisulfite sequencing (BS-Seq) to compare DNA methylation in eight diverse plant and animal genomes. We found that patterns of methylation are very similar in flowering plants with methylated cytosines detected in all sequence contexts, whereas CG methylation predominates in animals. Vertebrates have methylation throughout the genome except for CpG islands. Gene body methylation is conserved with clear preference for exons in most organisms. Furthermore, genes appear to be the major target of methylation in Ciona and honey bee. Among the eight organisms, the green alga Chlamydomonas has the most unusual pattern of methylation, having non-CG methylation enriched in exons of genes rather than in repeats and transposons. In addition, the Dnmt1 cofactor Uhrf1 has a conserved function in maintaining CG methylation in both transposons and gene bodies in the mouse, Arabidopsis, and zebrafish genomes.


Asunto(s)
Metilación de ADN/genética , Evolución Molecular , Plantas/genética , Animales , Arabidopsis/genética , Exones/genética , Intrones/genética , Mutación/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Sistemas de Lectura Abierta/genética , Filogenia , Secuencias Repetitivas de Ácidos Nucleicos/genética , Transactivadores/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
12.
Nat Genet ; 30(1): 117-21, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11753388

RESUMEN

The photoneuroendocrine system translates environmental light conditions into the circadian production of endocrine and neuroendocrine signals. Central to this process is the pineal organ, which has a conserved role in the cyclical synthesis and release of melatonin to influence sleep patterns and seasonal reproduction. In lower vertebrates, the pineal organ contains photoreceptors whose activity entrains an endogenous circadian clock and regulates transcription in pinealocytes. In mammals, pineal function is influenced by retinal photoreceptors that project to the suprachiasmatic nucleus-the site of the endogenous circadian clock. A multisynaptic pathway then relays information about circadian rhythmicity and photoperiod to the pineal organ. The gene cone rod homeobox (crx), a member of the orthodenticle homeobox (otx) family, is thought to regulate pineal circadian activity. In the mouse, targeted inactivation of Crx causes a reduction in pineal gene expression and attenuated entrainment to light/dark cycles. Here we show that crx and otx5 orthologs are expressed in both the pineal organ and the asymmetrically positioned parapineal of larval zebrafish. Circadian gene expression is unaffected by a reduction in Crx expression but is inhibited specifically by depletion of Otx5. Our results indicate that Otx5 rather than Crx regulates genes that show circadian expression in the zebrafish pineal complex.


Asunto(s)
Ritmo Circadiano/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/fisiología , Glándula Pineal/fisiología , Proteínas de Pez Cebra , Pez Cebra/fisiología , Secuencia de Aminoácidos , Animales , Proteínas del Ojo/biosíntesis , Proteínas del Ojo/genética , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/genética , Larva , Ratones , Datos de Secuencia Molecular , Oligonucleótidos Antisentido/farmacología , Factores de Transcripción Otx , Células Fotorreceptoras/efectos de la radiación , Glándula Pineal/efectos de la radiación , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/biosíntesis , Retina/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Transactivadores/biosíntesis , Transactivadores/genética , Transactivadores/fisiología , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Xenopus laevis/genética , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
13.
bioRxiv ; 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37066422

RESUMEN

Deciphering the connectome, the ensemble of synaptic connections that underlie brain function is a central goal of neuroscience research. The trans-Tango genetic approach, initially developed for anterograde transsynaptic tracing in Drosophila, can be used to map connections between presynaptic and postsynaptic partners and to drive gene expression in target neurons. Here, we describe the successful adaptation of trans-Tango to visualize neural connections in a living vertebrate nervous system, that of the zebrafish. Connections were validated between synaptic partners in the larval retina and brain. Results were corroborated by functional experiments in which optogenetic activation of retinal ganglion cells elicited responses in neurons of the optic tectum, as measured by trans-Tango-dependent expression of a genetically encoded calcium indicator. Transsynaptic signaling through trans-Tango reveals predicted as well as previously undescribed synaptic connections, providing a valuable in vivo tool to monitor and interrogate neural circuits over time.

14.
Dev Biol ; 352(2): 191-201, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21223961

RESUMEN

The yeast Gal4/UAS transcriptional activation system is a powerful tool for regulating gene expression in Drosophila and has been increasing in popularity for developmental studies in zebrafish. It is also useful for studying the basis of de novo transcriptional silencing. Fluorescent reporter genes under the control of multiple tandem copies of the upstream activator sequence (UAS) often show evidence of variegated expression and DNA methylation in transgenic zebrafish embryos. To characterize this systematically, we monitored the progression of transcriptional silencing of UAS-regulated transgenes that differ in their integration sites and in the repetitive nature of the UAS. Transgenic larvae were examined in three generations for tissue-specific expression of a green fluorescent protein (GFP) reporter and DNA methylation at the UAS. Single insertions containing four distinct upstream activator sequences were far less susceptible to methylation than insertions containing fourteen copies of the same UAS. In addition, transgenes that integrated in or adjacent to transposon sequence exhibited silencing regardless of the number of UAS sites included in the transgene. Placement of promoter-driven Gal4 upstream of UAS-regulated responder genes in a single bicistronic construct also appeared to accelerate silencing and methylation. The results demonstrate the utility of the zebrafish for efficient tracking of gene silencing mechanisms across several generations, as well as provide useful guidelines for optimal Gal4-regulated gene expression in organisms subject to DNA methylation.


Asunto(s)
Pez Cebra/crecimiento & desarrollo , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Metilación de ADN , Cartilla de ADN/genética , Proteínas de Unión al ADN/genética , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Recombinantes/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Activación Transcripcional
15.
Dev Biol ; 360(1): 44-57, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21945073

RESUMEN

The dorsal habenular nuclei (Dh) of the zebrafish are characterized by significant left-right differences in gene expression, anatomy, and connectivity. Notably, the lateral subnucleus of the Dh (LsDh) is larger on the left side of the brain than on the right, while the medial subnucleus (MsDh) is larger on the right compared to the left. A screen for mutations that affect habenular laterality led to the identification of the sec61a-like 1(sec61al1) gene. In sec61al1(c163) mutants, more neurons in the LsDh and fewer in the MsDh develop on both sides of the brain. Generation of neurons in the LsDh occurs more rapidly and continues for a longer time period in mutants than in WT. Expression of Nodal pathway genes on the left side of the embryos is unaffected in mutants, as is the left sided placement of the parapineal organ, which promotes neurogenesis in the LsDh of WT embryos. Ultrastructural analysis of the epithalamus indicates that ventricular precursor cells, which form an epithelium in WT embryos, lose apical-basal polarity in sec61al1(c163) mutants. Our results show that in the absence of sec61al1, an excess of precursor cells for the LsDh exit the ventricular region and differentiate, resulting in formation of bilaterally symmetric habenular nuclei.


Asunto(s)
Habénula/embriología , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Animales , Secuencia de Bases , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Cartilla de ADN/genética , Retículo Endoplásmico/fisiología , Habénula/citología , Habénula/fisiología , Modelos Neurológicos , Mutación , Neurogénesis/genética , Neurogénesis/fisiología , Neuronas/citología , Ligandos de Señalización Nodal/genética , Ligandos de Señalización Nodal/fisiología , Fenotipo , Canales de Translocación SEC , Pez Cebra/genética , Pez Cebra/fisiología
16.
Elife ; 102021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34878403

RESUMEN

Hemispheric specializations are well studied at the functional level but less is known about the underlying neural mechanisms. We identified a small cluster of cholinergic neurons in the dorsal habenula (dHb) of zebrafish, defined by their expression of the lecithin retinol acyltransferase domain containing 2 a (lratd2a) gene and their efferent connections with a subregion of the ventral interpeduncular nucleus (vIPN). The lratd2a-expressing neurons in the right dHb are innervated by a subset of mitral cells from both the left and right olfactory bulb and are activated upon exposure to the odorant cadaverine that is repellent to adult zebrafish. Using an intersectional strategy to drive expression of the botulinum neurotoxin specifically in these neurons, we find that adults no longer show aversion to cadaverine. Mutants with left-isomerized dHb that lack these neurons are also less repelled by cadaverine and their behavioral response to alarm substance, a potent aversive cue, is diminished. However, mutants in which both dHb have right identity appear more reactive to alarm substance. The results implicate an asymmetric dHb-vIPN neural circuit in the processing of repulsive olfactory cues and in modulating the resultant behavioral response.


Asunto(s)
Reacción de Prevención , Habénula/fisiología , Neuronas/fisiología , Odorantes/análisis , Olfato , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Señales (Psicología) , Femenino , Masculino
17.
Curr Biol ; 31(21): 4762-4772.e5, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34529937

RESUMEN

Survival of animals is dependent on the correct selection of an appropriate behavioral response to competing external stimuli. Theoretical models have been proposed and underlying mechanisms are emerging to explain how one circuit is selected among competing neural circuits. The evolutionarily conserved forebrain to midbrain habenulo-interpeduncular nucleus (Hb-IPN) pathway consists of cholinergic and non-cholinergic neurons, which mediate different aversive behaviors. Simultaneous calcium imaging of neuronal cell bodies and of the population dynamics of their axon terminals reveals that signals in the cell bodies are not reflective of terminal activity. We find that axon terminals of cholinergic and non-cholinergic habenular neurons exhibit stereotypic patterns of spontaneous activity that are negatively correlated and localize to discrete subregions of the target IPN. Patch-clamp recordings show that calcium bursts in cholinergic terminals at the ventral IPN trigger excitatory currents in IPN neurons, which precede inhibition of non-cholinergic terminals at the adjacent dorsal IPN. Inhibition is mediated through presynaptic GABAB receptors activated in non-cholinergic habenular neurons upon GABA release from the target IPN. Together, the results reveal a hardwired mode of competition at the terminals of two excitatory neuronal populations, providing a physiological framework to explore the relationship between different aversive responses.


Asunto(s)
Habénula , Terminales Presinápticos , Animales , Calcio/metabolismo , Colinérgicos/metabolismo , Habénula/fisiología , Terminales Presinápticos/metabolismo , Ácido gamma-Aminobutírico/metabolismo
18.
Genetics ; 182(3): 747-55, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19433629

RESUMEN

Epigenetic regulation of transcriptional silencing is essential for normal development. Despite its importance, in vivo systems for examining gene silencing at cellular resolution have been lacking in developing vertebrates. We describe a transgenic approach that allows monitoring of an epigenetically regulated fluorescent reporter in developing zebrafish and their progeny. Using a self-reporting Gal4-VP16 gene/enhancer trap vector, we isolated tissue-specific drivers that regulate expression of the green fluorescent protein (GFP) gene through a multicopy, upstream activator sequence (UAS). Transgenic larvae initially exhibit robust fluorescence (GFP(high)); however, in subsequent generations, gfp expression is mosaic (GFP(low)) or entirely absent (GFP(off)), despite continued Gal4-VP16 activity. We find that transcriptional repression is heritable and correlated with methylation of the multicopy UAS. Silenced transgenes can be reactivated by increasing Gal4-VP16 levels or in DNA methyltransferase-1 (dnmt1) mutants. Strikingly, in dnmt1 homozygous mutants, reactivation of gfp expression occurs in a reproducible subset of cells, raising the possibility of different sensitivities or alternative silencing mechanisms in discrete cell populations. The results demonstrate the power of the zebrafish system for in vivo monitoring of epigenetic processes using a genetic approach.


Asunto(s)
Silenciador del Gen , Proteínas Fluorescentes Verdes/genética , Activación Transcripcional , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Epigénesis Genética , Femenino , Dosificación de Gen , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Larva/genética , Larva/metabolismo , Masculino , Microscopía Fluorescente , Mutación , Transactivadores/genética , Transactivadores/metabolismo , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
19.
Mol Cell Neurosci ; 40(4): 401-9, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19041397

RESUMEN

The Nogo/Nogo66 receptor signaling pathway has been characterized as inhibitory for axon growth, regeneration, and structural plasticity in the adult mammalian central nervous system. Nogo and its receptor are highly expressed when axon growth is abundant, however, the function of this pathway in neural development is unclear. We have characterized zebrafish Nogo pathway members and examined their role in the developing nervous system using anti-sense morpholinos that inhibit protein synthesis. Depletion of the Nogo66 receptor or a Nogo isoform causes truncated outgrowth of peripheral nervous system (PNS) axons of the head and lateral line. PNS nerves also show increased defasciculation and numerous guidance defects, including axons invading regions along the body flank that are normally avoided. We propose that localized Nogo expression defines inhibitory territories that through repulsion restrict axon growth to permissive regions.


Asunto(s)
Axones/metabolismo , Movimiento Celular/fisiología , Proteínas de la Mielina/metabolismo , Sistema Nervioso Periférico , Receptores de Superficie Celular/metabolismo , Transducción de Señal/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra , Empalme Alternativo , Animales , Nervios Craneales/anatomía & histología , Nervios Craneales/embriología , Regulación del Desarrollo de la Expresión Génica , Humanos , Proteínas de la Mielina/genética , Proteínas Nogo , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Sistema Nervioso Periférico/anatomía & histología , Sistema Nervioso Periférico/embriología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Superficie Celular/genética , Pez Cebra/anatomía & histología , Pez Cebra/embriología , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA