RESUMEN
Marine protected areas (MPAs) have gained attention as a conservation tool for enhancing ecosystem resilience to climate change. However, empirical evidence explicitly linking MPAs to enhanced ecological resilience is limited and mixed. To better understand whether MPAs can buffer climate impacts, we tested the resistance and recovery of marine communities to the 2014-2016 Northeast Pacific heatwave in the largest scientifically designed MPA network in the world off the coast of California, United States. The network consists of 124 MPAs (48 no-take state marine reserves, and 76 partial-take or special regulation conservation areas) implemented at different times, with full implementation completed in 2012. We compared fish, benthic invertebrate, and macroalgal community structure inside and outside of 13 no-take MPAs across rocky intertidal, kelp forest, shallow reef, and deep reef nearshore habitats in California's Central Coast region from 2007 to 2020. We also explored whether MPA features, including age, size, depth, proportion rock, historic fishing pressure, habitat diversity and richness, connectivity, and fish biomass response ratios (proxy for ecological performance), conferred climate resilience for kelp forest and rocky intertidal habitats spanning 28 MPAs across the full network. Ecological communities dramatically shifted due to the marine heatwave across all four nearshore habitats, and MPAs did not facilitate habitat-wide resistance or recovery. Only in protected rocky intertidal habitats did community structure significantly resist marine heatwave impacts. Community shifts were associated with a pronounced decline in the relative proportion of cold water species and an increase in warm water species. MPA features did not explain resistance or recovery to the marine heatwave. Collectively, our findings suggest that MPAs have limited ability to mitigate the impacts of marine heatwaves on community structure. Given that mechanisms of resilience to climate perturbations are complex, there is a clear need to expand assessments of ecosystem-wide consequences resulting from acute climate-driven perturbations, and the potential role of regulatory protection in mitigating community structure changes.
Asunto(s)
Ecosistema , Kelp , Animales , Conservación de los Recursos Naturales/métodos , Biomasa , Invertebrados , Bosques , PecesRESUMEN
Understanding species' responses to upwelling may be especially important in light of ongoing environmental change. Upwelling frequency and intensity are expected to increase in the future, while ocean acidification and deoxygenation are expected to decrease the pH and dissolved oxygen (DO) of upwelled waters. However, the acute effects of a single upwelling event and the integrated effects of multiple upwelling events on marine organisms are poorly understood. Here, we use in situ measurements of pH, temperature, and DO to characterize the covariance of environmental conditions within upwelling-dominated kelp forest ecosystems. We then test the effects of acute (0-3 days) and chronic (1-3 months) upwelling on the performance of two species of kelp forest grazers, the echinoderm, Mesocentrotus franciscanus, and the gastropod, Promartynia pulligo. We exposed organisms to static conditions in a regression design to determine the shape of the relationship between upwelling and performance and provide insights into the potential effects in a variable environment. We found that respiration, grazing, growth, and net calcification decline linearly with increasing upwelling intensity for M. francicanus over both acute and chronic timescales. Promartynia pulligo exhibited decreased respiration, grazing, and net calcification with increased upwelling intensity after chronic exposure, but we did not detect an effect over acute timescales or on growth after chronic exposure. Given the highly correlated nature of pH, temperature, and DO in the California Current, our results suggest the relationship between upwelling intensity and growth in the 3-month trial could potentially be used to estimate growth integrated over long-term dynamic oceanographic conditions for M. franciscanus. Together, these results indicate current exposure to upwelling may reduce species performance and predicted future increases in upwelling frequency and intensity could affect ecosystem function by modifying the ecological roles of key species.
Asunto(s)
Kelp , Ecosistema , Bosques , Concentración de Iones de Hidrógeno , Oxígeno , Agua de Mar/química , TemperaturaRESUMEN
Global climate changes, such as warming and ocean acidification (OA), are likely to negatively impact calcifying marine taxa. Abundant and ecologically important coralline algae may be particularly susceptible to OA; however, multi-stressor studies and those on articulated morphotypes are lacking. Here, we use field observations and laboratory experiments to elucidate the impacts of warming and acidification on growth, calcification, mineralogy, and photophysiology of the temperate articulated coralline alga, Calliarthron tuberculosum. We conducted a 4-week fully factorial mesocosm experiment exposing individuals from a southern CA kelp forest to current and future temperature and pH/pCO2 conditions (+2°C, -0.5 pH units). Calcification was reduced under warming (70%) and further reduced by high pCO2 or high pCO2 x warming (~150%). Growth (change in linear extension and surface area) was reduced by warming (40% and 50%, respectively), high pCO2 (20% and 40%, respectively), and high pCO2 x warming (50% and 75%, respectively). The maximum photosynthetic rate (Pmax ) increased by 100% under high pCO2 conditions, but we did not detect an effect of pCO2 or warming on photosynthetic efficiency (α). We also did not detect the effect of warming or pCO2 on mineralogy. However, variation in Mg incorporation in cell walls of different cell types (i.e., higher mol % Mg in cortical vs. medullary) was documented for the first time in this species. These results support findings from a growing body of literature suggesting that coralline algae are often more negatively impacted by warming than OA, with the potential for antagonistic effects when factors are combined.
Asunto(s)
Rhodophyta , Agua de Mar , Cambio Climático , Concentración de Iones de Hidrógeno , Océanos y Mares , Fotosíntesis/fisiología , Rhodophyta/fisiologíaRESUMEN
Forecasts from climate models and oceanographic observations indicate increasing deoxygenation in the global oceans and an elevated frequency and intensity of hypoxic events in the coastal zone, which have the potential to affect marine biodiversity and fisheries. Exposure to low dissolved oxygen (DO) conditions may have deleterious effects on early life stages in fishes. This study aims to identify thresholds to hypoxia while testing behavioral and physiological responses of two congeneric species of kelp forest fish to four DO levels, ranging from normoxic to hypoxic (8.7, 6.0, 4.1, and 2.2 mg O2 /L). Behavioral tests identified changes in exploratory behavior and turning bias (lateralization), whereas physiological tests focused on determining changes in hypoxia tolerance (pCrit), ventilation rates, and metabolic rates, with impacts on the resulting capacity for aerobic activity. Our findings indicated that copper rockfish (Sebastes caurinus) and blue rockfish (Sebastes mystinus) express sensitivity to hypoxia; however, the strength of the response differed between species. Copper rockfish exhibited reduced absolute lateralization and increased escape time at the lowest DO levels, whereas behavioral metrics for blue rockfish did not vary with oxygen level. Both species exhibited decreases in aerobic scope (as a function of reduced maximum metabolic rate) and increases in ventilation rates to compensate for decreasing oxygen levels. Blue rockfish had a lower pCrit and stronger acclimation response compared to copper rockfish. The differences expressed by each species suggest that acclimatization to changing ocean conditions may vary, even among related species that recruit to the same kelp forest habitat, leading to winners and losers under future ocean conditions. Exposure to hypoxia can decrease individual physiological fitness through metabolic and aerobic depression and changes to anti-predator behavior, with implications for the outcome of ecological interactions and the management of fish stocks in the face of climate change.
Asunto(s)
Kelp , Animales , Peces , Bosques , Hipoxia , Océanos y MaresRESUMEN
The changing global climate is having profound effects on coastal marine ecosystems around the world. Structure, functioning, and resilience, however, can vary geographically, depending on species composition, local oceanographic forcing, and other pressures from human activities and use. Understanding ecological responses to environmental change and predicting changes in the structure and functioning of whole ecosystems require large-scale, long-term studies, yet most studies trade spatial extent for temporal duration. We address this shortfall by integrating multiple long-term kelp forest monitoring datasets to evaluate biogeographic patterns and rates of change of key functional groups (FG) along the west coast of North America. Analysis of data from 469 sites spanning Alaska, USA, to Baja California, Mexico, and 373 species (assigned to 18 FG) reveals regional variation in responses to both long-term (2006-2016) change and a recent marine heatwave (2014-2016) associated with two atmospheric and oceanographic anomalies, the "Blob" and extreme El Niño Southern Oscillation (ENSO). Canopy-forming kelps appeared most sensitive to warming throughout their range. Other FGs varied in their responses among trophic levels, ecoregions, and in their sensitivity to heatwaves. Changes in community structure were most evident within the southern and northern California ecoregions, while communities in the center of the range were more resilient. We report a poleward shift in abundance of some key FGs. These results reveal major, ongoing region-wide changes in productive coastal marine ecosystems in response to large-scale climate variability, and the potential loss of foundation species. In particular, our results suggest that coastal communities that are dependent on kelp forests will be more impacted in the southern portion of the California Current region, highlighting the urgency of implementing adaptive strategies to sustain livelihoods and ensure food security. The results also highlight the value of multiregional integration and coordination of monitoring programs for improving our understanding of marine ecosystems, with the goal of informing policy and resource management in the future.
Asunto(s)
Kelp , Alaska , California , Ecosistema , Bosques , Humanos , MéxicoRESUMEN
Global climate change is predicted to increase the co-occurrence of high pCO2 and hypoxia in coastal upwelling zones worldwide. Yet, few studies have examined the effects of these stressors on economically and ecologically important fishes. Here, we investigated short-term responses of juvenile blue rockfish (Sebastes mystinus) to independent and combined high pCO2 and hypoxia at the molecular level, using changes in gene expression and metabolic enzymatic activity to investigate potential shifts in energy metabolism. Fish were experimentally exposed to conditions associated with intensified upwelling under climate change: high pCO2 (1200 µatm, pH~7.6), hypoxia (4.0â¯mg O2/L), and a combined high pCO2/hypoxia treatment for 12â¯h, 24â¯h, or two weeks. Muscle transcriptome profiles varied significantly among the three treatments, with limited overlap among genes responsive to the single and combined stressors. Under elevated pCO2, blue rockfish increased expression of genes encoding proteins involved in the electron transport chain and muscle contraction. Under hypoxia, blue rockfish up-regulated genes involved in oxygen and ion transport and down-regulated transcriptional machinery. Under combined stressors, blue rockfish induced a unique set of ionoregulatory and hypoxia-responsive genes not expressed under the single stressors. Thus, high pCO2 and hypoxia exposure appears to induce a non-additive transcriptomic response that cannot be predicted from single stressor exposures alone, further highlighting the need for multiple stressor studies at the molecular level. Overall, lack of a shift towards anaerobic metabolism or induction of a cellular stress response under multiple stressors suggests that blue rockfish may be relatively resistant to intensified upwelling conditions in the short term.
Asunto(s)
Perciformes/fisiología , Estrés Fisiológico/genética , Animales , Dióxido de Carbono/metabolismo , Cambio Climático , Metabolismo Energético , Concentración de Iones de Hidrógeno , Hipoxia/genética , Hipoxia/metabolismo , Oxígeno/metabolismo , Perciformes/genética , Agua de Mar , Análisis de Secuencia de ARN/métodos , TranscriptomaRESUMEN
We take advantage of a natural gradient of human exploitation and oceanic primary production across five central Pacific coral reefs to examine foraging patterns in common coral reef fishes. Using stomach content and stable isotope (δ15N and δ13C) analyses, we examined consistency across islands in estimated foraging patterns. Surprisingly, species within the piscivore-invertivore group exhibited the clearest pattern of foraging consistency across all five islands despite there being a considerable difference in mean body mass (14 g-1.4 kg) and prey size (0.03-3.8 g). In contrast, the diets and isotopic values of the grazer-detritivores varied considerably and exhibited no consistent patterns across islands. When examining foraging patterns across environmental contexts, we found that δ15N values of species of piscivore-invertivore and planktivore closely tracked gradients in oceanic primary production; again, no comparable patterns existed for the grazer-detritivores. The inter-island consistency in foraging patterns within the species of piscivore-invertivore and planktivore and the lack of consistency among species of grazer-detritivores suggests a linkage to different sources of primary production among reef fish functional groups. Our findings suggest that piscivore-invertivores and planktivores are likely linked to well-mixed and isotopically constrained allochthonous oceanic primary production, while grazer-detritivores are likely linked to sources of benthic primary production and autochthonous recycling. Further, our findings suggest that species of piscivore-invertivore, independent of body size, converge toward consuming low trophic level prey, with a hypothesized result of reducing the number of steps between trophic levels and increasing the trophic efficiency at a community level.
Asunto(s)
Arrecifes de Coral , Peces , Animales , Tamaño Corporal , Humanos , Islas , Océanos y MaresRESUMEN
Where predator-prey interactions are size-dependent, reductions in predator size owing to fishing has the potential to disrupt the ecological role of top predators in marine ecosystems. In southern California kelp forests, we investigated the size-dependence of the interaction between herbivorous sea urchins and one of their predators, California sheephead (Semicossyphus pulcher). Empirical tests examined how differences in predator size structure between reserve and fished areas affected size-specific urchin mortality. Sites inside marine reserves had greater sheephead size and biomass, while empirical feeding trials indicated that larger sheephead were required to successfully consume urchins of increasing test diameter. Evaluations of the selectivity of sheephead for two urchin species indicated that shorter-spined purple urchins were attacked more frequently and successfully than longer-spined red urchins of the same size class, particularly at the largest test diameters. As a result of these size-specific interactions and the higher biomass of large sheephead inside reserves, urchin mortality rates were three times higher inside the reserve for both species. In addition, urchin mortality rates decreased with urchin size, and very few large urchins were successfully consumed in fished areas. The truncation of sheephead size structure that commonly occurs owing to fishing will probably result in reductions in urchin mortality, which may reduce the resilience of kelp beds to urchin barren formation. By contrast, the recovery of predator size structure in marine reserves may restore this resilience, but may be delayed until fish grow to sizes capable of consuming larger urchins.
Asunto(s)
Ecosistema , Peces , Cadena Alimentaria , Kelp , Erizos de Mar , Animales , CaliforniaRESUMEN
Size-structured predator-prey interactions can be altered by the history of exploitation, if that exploitation is itself size-selective. For example, selective harvesting of larger sized predators can release prey populations in cases where only large individuals are capable of consuming a particular prey species. In this study, we examined how the history of exploitation and recovery (inside marine reserves and due to fisheries management) of California sheephead (Semicossyphus pulcher) has affected size-structured interactions with sea urchin prey in southern California. We show that fishing changes size structure by reducing sizes and alters life histories of sheephead, while management measures that lessen or remove fishing impacts (e.g. marine reserves, effort restrictions) reverse these effects and result in increases in density, size and biomass. We show that predation on sea urchins is size-dependent, such that the diet of larger sheephead is composed of more and larger sized urchins than the diet of smaller fish. These results have implications for kelp forest resilience, because urchins can overgraze kelp in the absence of top-down control. From surveys in a network of marine reserves, we report negative relationships between the abundance of sheephead and urchins and the abundance of urchins and fleshy macroalgae (including giant kelp), indicating the potential for cascading indirect positive effects of top predators on the abundance of primary producers. Management measures such as increased minimum size limits and marine reserves may serve to restore historical trophic roles of key predators and thereby enhance the resilience of marine ecosystems.
Asunto(s)
Conservación de los Recursos Naturales , Peces/fisiología , Kelp/fisiología , Erizos de Mar/fisiología , Animales , California , Ecosistema , Cadena Alimentaria , Densidad de Población , Dinámica Poblacional , Conducta PredatoriaRESUMEN
Marine ecosystems are increasingly at risk from overexploitation and fisheries collapse. As managers implement recovery plans, shifts in species interactions may occur broadly with potential consequences for ecosystem structure and function. In kelp forests off San Nicolas Island, California, USA, we describe striking changes in size structure and life history traits (e.g., size at maturation and sex change) of a heavily fished, ecologically important predator, the California sheephead (Semicossyphus pulcher). These changes occurred in two phases: (1) after intense commercial fishery exploitation in the late 1990s and (2) following recovery in the late 2000s, nearly a decade after management intervention. Using gut contents and stable-isotope values of sheephead and their prey, we found evidence for a dietary niche expansion upon recovery of population size structure to include increased consumption of sea urchins and other mobile invertebrate grazers by larger sized fish. By examining historical diet data and a time series of benthic community composition, we conclude that changes in dietary niche breadth are more likely due to the recovery of size structure from fishing than major shifts in prey availability. Size-dependent predator-prey interactions may have ecosystem consequences and management measures that preserve or restore size structure, and therefore historical trophic roles of key predators, could be vital for maintaining kelp forest ecosystem health.
Asunto(s)
Ecosistema , Explotaciones Pesqueras , Peces/fisiología , Herbivoria , Kelp/fisiología , Animales , Invertebrados/fisiología , Modelos Biológicos , Dinámica Poblacional , Análisis de Componente Principal , Factores de TiempoRESUMEN
Networks of marine reserves are increasingly a major component of many ecosystem-based management plans designed to conserve biodiversity, protect the structure and function of ecosystems, and rebuild and sustain fisheries. There is a growing need for scientific guidance in the design of network-wide monitoring programs to evaluate the efficacy of reserves at meeting their conservation and management goals. Here, we present an evaluation of the Channel Islands reserve network, which was established in 2003 off the coast of southern California. This reserve network spans a major environmental and biogeographic gradient, making it a challenge to assess network-wide responses of many species. Using fish community structure data from a long-term, large-scale monitoring program, we first identified persistent geographic patterns of community structure and the scale at which sites should be grouped for analysis. Fish communities differed most among islands with densities of individual species varying from 3- to 250-fold. Habitat structure differed among islands but not based on reserve status. Across the network, we found that, after 5 years, species targeted by fishing had higher densities (1.5×) and biomass (1.8×) inside reserves, whereas nontargeted species showed no significant differences. Examining trophic groups, piscivore and carnivore biomass was significantly greater inside reserves (1.8× and 1.3× more, respectively), whereas the biomass of planktivores and herbivores was similar inside and out. A framework for incorporating biogeographic variation into reserve network assessments is critical as we move from the evaluation of single reserves to networks of reserves.
Asunto(s)
Conservación de los Recursos Naturales , Peces , Biología Marina , Animales , Biomasa , California , Ecosistema , Explotaciones Pesqueras , Geografía , Modelos Biológicos , Océano Pacífico , Dinámica PoblacionalRESUMEN
Anthropogenic stressors from climate change can affect individual species, community structure, and ecosystem function. Marine heatwaves (MHWs) are intense thermal anomalies where water temperature is significantly elevated for five or more days. Climate projections suggest an increase in the frequency and severity of MHWs in the coming decades. While there is evidence that marine protected areas (MPAs) may be able to buffer individual species from climate impacts, there is not sufficient evidence to support the idea that MPAs can mitigate large-scale changes in marine communities in response to MHWs. California experienced an intense MHW and subsequent El Niño Southern Oscillation event from 2014 to 2016. We sought to examine changes in rocky reef fish communities at four MPAs and associated reference sites in relation to the MHW. We observed a decline in taxonomic diversity and a profound shift in trophic diversity inside and outside MPAs following the MHW. However, MPAs seemed to dampen the loss of trophic diversity and in the four years following the MHW, taxonomic diversity recovered 75% faster in the MPAs compared to reference sites. Our results suggest that MPAs may contribute to long-term resilience of nearshore fish communities through both resistance to change and recovery from warming events.
Asunto(s)
Ecosistema , Peces , AnimalesRESUMEN
There is a growing realization that the scale and degree of population connectivity are crucial to the dynamics and persistence of spatially structured populations. For marine organisms with complex life cycles, experiences during larval life may influence phenotypic traits, performance, and the probability of postsettlement survival. For a Caribbean reef fish (Thalassoma bifasciatum) on an oceanic island, we used otolith (ear stone) elemental profiles of lead (Pb) to assign recent settlers to a group that developed in waters elevated in Pb concentrations throughout larval life (i.e., nearshore signature) and a group that developed in waters depleted in Pb (i.e., offshore signature), potentially dispersing from upstream sources across oceanic waters. Larval history influenced early life history traits: offshore developers initially grew slowly but compensated with fast growth upon entering nearshore waters and metamorphosed in better condition with higher energy reserves. As shown in previous studies, local production contributed heavily to settlement: at least 45% of settlers developed nearshore. However, only 23% of survivors after the first month displayed a nearshore otolith profile. Therefore, settlers with different larval histories suffered differential mortality. Importantly, selective mortality was mediated by larval history, in that the postsettlement intensity of selection was much greater for fish that developed nearshore, potentially because they had developed in a less selectively intense larval environment. Given the potential for asymmetrical postsettlement source-based survival, successful spatial management of marine populations may require knowledge of "realized connectivity" on ecological scales, which takes into account the postsettlement fitness of individuals from different sources.
Asunto(s)
Ecología , Biología Marina , Perciformes/crecimiento & desarrollo , Animales , Explotaciones Pesqueras , Larva/crecimiento & desarrollo , PoblaciónRESUMEN
The unusual blue color polymorphism of lingcod (Ophiodon elongatus) is the subject of much speculation but little empirical research; ~20% of lingcod individuals exhibit this striking blue color morph, which is discrete from and found within the same populations as the more common brown morph. In other species, color polymorphisms are intimately linked with host-parasite interactions, which led us to ask whether blue coloration in lingcod might be associated with parasitism, either as cause or effect. To test how color and parasitism are related in this host species, we performed parasitological dissection of 89 lingcod individuals collected across more than 26 degrees of latitude from Alaska, Washington, and California, USA. We found that male lingcod carried 1.89 times more parasites if they were blue than if they were brown, whereas there was no difference in parasite burden between blue and brown female lingcod. Blue individuals of both sexes had lower hepatosomatic index (i.e., relative liver weight) values than did brown individuals, indicating that blueness is associated with poor body condition. The immune systems of male vertebrates are typically less effective than those of females, due to the immunocompromising properties of male sex hormones; this might explain why blueness is associated with elevated parasite burdens in males but not in females. What remains to be determined is whether parasites induce physiological damage that produces blueness or if both blue coloration and parasite burden are driven by some unmeasured variable, such as starvation. Although our study cannot discriminate between these possibilities, our data suggest that the immune system could be involved in the blue color polymorphism-an exciting jumping-off point for future research to definitively identify the cause of lingcod blueness and a hint that immunocompetence and parasitism may play a role in lingcod population dynamics.
Asunto(s)
Parásitos/fisiología , Perciformes/genética , Perciformes/parasitología , Pigmentación/genética , Polimorfismo Genético , Animales , Femenino , Geografía , Modelos Lineales , Masculino , Estados UnidosRESUMEN
Coral and rocky reef fish populations are widely used as model systems for the experimental exploration of density-dependent vital rates, but patterns of density-dependent mortality in these systems are not yet fully understood. In particular, the paradigm for strong, directly density-dependent (DDD) postsettlement mortality stands in contrast to recent evidence for inversely density-dependent (IDD) mortality. We review the processes responsible for DDD and IDD per capita mortality in reef fishes, noting that the pattern observed depends on predator and prey behavior, the spatial configuration of the reef habitat, and the spatial and temporal scales of observation. Specifically, predators tend to produce DDD prey mortality at their characteristic spatial scale of foraging, but prey mortality is IDD at smaller spatial scales due to attack-abatement effects (e.g., risk dilution). As a result, DDD mortality may be more common than IDD mortality on patch reefs, which tend to constrain predator foraging to the same scale as prey aggregation, eliminating attack-abatement effects. Additionally, adjacent groups of prey on continuous reefs may share a subset of refuges, increasing per capita refuge availability and relaxing DDD mortality relative to prey on patch reefs, where the patch edge could prevent such refuge sharing. These hypotheses lead to a synthetic framework to predict expected mortality patterns for a variety of scenarios. For nonsocial, nonaggregating species and species that aggregate in order to take advantage of spatially clumped refuges, IDD mortality is possible but likely superseded by DDD refuge competition, especially on patch reefs. By contrast, for species that aggregate socially, mortality should be IDD at the scale of individual aggregations but DDD at larger scales. The results of nearly all prior reef fish studies fit within this framework, although additional work is needed to test many of the predicted outcomes. This synthesis reconciles some apparent contradictions in the recent reef fish literature and suggests the importance of accounting for the scale-sensitive details of predator and prey behavior in any study system.
Asunto(s)
Conducta Animal , Ecosistema , Peces/fisiología , Animales , Antozoos , Longevidad , Densidad de PoblaciónRESUMEN
Tristan da Cunha Islands, an archipelago of four rocky volcanic islands situated in the South Atlantic Ocean and part of the United Kingdom Overseas Territories (UKOTs), present a rare example of a relatively unimpacted temperate marine ecosystem. We conducted the first quantitative surveys of nearshore kelp forests, offshore pelagic waters and deep sea habitats. Kelp forests had very low biodiversity and species richness, but high biomass and abundance of those species present. Spatial variation in assemblage structure for both nearshore fish and invertebrates/algae was greatest between the three northern islands and the southern island of Gough, where sea temperatures were on average 3-4o colder. Despite a lobster fishery that provides the bulk of the income to the Tristan islands, lobster abundance and biomass are comparable to or greater than many Marine Protected Areas in other parts of the world. Pelagic camera surveys documented a rich biodiversity offshore, including large numbers of juvenile blue sharks, Prionace glauca. Species richness and abundance in the deep sea is positively related to hard rocky substrate and biogenic habitats such as sea pens, crinoids, whip corals, and gorgonians were present at 40% of the deep camera deployments. We observed distinct differences in the deep fish community above and below ~750 m depth. Concurrent oceanographic sampling showed a discontinuity in temperature and salinity at this depth. While currently healthy, Tristan's marine ecosystem is not without potential threats: shipping traffic leading to wrecks and species introductions, pressure to increase fishing effort beyond sustainable levels and the impacts of climate change all could potentially increase in the coming years. The United Kingdom has committed to protection of marine environments across the UKOTs, including Tristan da Cunha and these results can be used to inform future management decisions as well as provide a baseline against which future monitoring can be based.
Asunto(s)
Organismos Acuáticos/fisiología , Biodiversidad , Ecosistema , Bosques , Animales , Océano Atlántico , Islas , OceanografíaRESUMEN
Selective mortality, whether caused naturally by predation or through the influence of harvest practices, initiates changes within populations when individuals possessing certain heritable traits have increased fitness. Theory predicts that increased mortality rates will select for changes in a number of different life history characteristics. For example, fishing often targets larger individuals and has been shown repeatedly to alter population size structure and growth rates, and the timing of maturation. For sex-changing species, selective fishing practices can affect additional traits such as the mature population sex ratio and the timing of sexual transformation. Using historical comparisons, we examined the effects of exploitation on life history characteristics of California sheephead, Semicossyphus pulcher, a temperate protogynous (female-male sex changer) labrid that inhabits nearshore rocky environments from central California, USA, to southern Baja California, Mexico. Recreational fishing intensified and an unregulated commercial live-fish fishery developed rapidly in southern California between the historical and current studies. Collections of S. pulcher from three locations (Bahia Tortugas, Catalina Island, and San Nicolas Island) in 1998 were compared with data collected 20-30 years previously to ascertain fishery-induced changes in life history traits. At Bahia Tortugas, where fishing by the artisanal community remained light and annual survivorship stayed high, we observed no changes in size structure or shifts in the timing of maturation or the timing of sex change. In contrast, where recreational (Catalina) and commercial (San Nicolas) fishing intensified and annual survivorship correspondingly declined, males and females shifted significantly to smaller body sizes, females matured earlier and changed sex into males at both smaller sizes and younger ages and appeared to have a reduced maximum lifespan. Mature sex ratios (female:male) increased at San Nicolas, despite a twofold reduction in the mean time spent as a mature female. Proper fisheries management requires measures to prevent sex ratio skew, sperm limitation, and reproductive failure because populations of sequential hermaphrodites are more sensitive to size-selective harvest than separate-sex species. This is especially true for S. pulcher, where different segments of the fishery (commercial vs. recreational) selectively target distinct sizes and therefore sexes in different locations.
Asunto(s)
Explotaciones Pesqueras , Peces/fisiología , Animales , Tamaño Corporal , California , Conservación de los Recursos Naturales , Femenino , Masculino , Dinámica PoblacionalRESUMEN
The intensive commercial exploitation of California sheephead (Semicossyphus pulcher) has become a complex, multimillion-dollar industry. The fishery is of concern because of high harvest levels and potential indirect impacts of sheephead removals on the structure and function of kelp forest ecosystems. California sheephead are protogynous hermaphrodites that, as predators of sea urchins and other invertebrates, are critical components of kelp forest ecosystems in the northeast Pacific. Overfishing can trigger trophic cascades and widespread ecological dysfunction when other urchin predators are also lost from the system. Little is known about the ecology and abundance of sheephead before commercial exploitation. Lack of a historical perspective creates a gap for evaluating fisheries management measures and marine reserves that seek to rebuild sheephead populations to historical baseline conditions. We use population abundance and size structure data from the zooarchaeological record, in concert with isotopic data, to evaluate the long-term health and viability of sheephead fisheries in southern California. Our results indicate that the importance of sheephead to the diet of native Chumash people varied spatially across the Channel Islands, reflecting modern biogeographic patterns. Comparing ancient (~10,000 calibrated years before the present to 1825 CE) and modern samples, we observed variability and significant declines in the relative abundance of sheephead, reductions in size frequency distributions, and shifts in the dietary niche between ancient and modern collections. These results highlight how size-selective fishing can alter the ecological role of key predators and how zooarchaeological data can inform fisheries management by establishing historical baselines that aid future conservation.
Asunto(s)
Ecosistema , Peces/fisiología , Kelp/fisiología , Animales , California , Conservación de los Recursos Naturales , Explotaciones Pesqueras/historia , Cadena Alimentaria , Historia del Siglo XX , Océano Pacífico , Dinámica Poblacional , Erizos de Mar/fisiologíaRESUMEN
In the California Current ecosystem, global climate change is predicted to trigger large-scale changes in ocean chemistry within this century. Ocean acidification-which occurs when increased levels of atmospheric CO2 dissolve into the ocean-is one of the biggest potential threats to marine life. In a coastal upwelling system, we compared the effects of chronic exposure to low pH (elevated pCO2) at four treatment levels (i.e., pCO2 = ambient [500], moderate [750], high [1900], and extreme [2800 µatm]) on behavior, physiology, and patterns of gene expression in white muscle tissue of juvenile rockfish (genus Sebastes), integrating responses from the transcriptome to the whole organism level. Experiments were conducted simultaneously on two closely related species that both inhabit kelp forests, yet differ in early life history traits, to compare high-CO2 tolerance among species. Our findings indicate that these congeners express different sensitivities to elevated CO2 levels. Copper rockfish (S. caurinus) exhibited changes in behavioral lateralization, reduced critical swimming speed, depressed aerobic scope, changes in metabolic enzyme activity, and increases in the expression of transcription factors and regulatory genes at high pCO2 exposure. Blue rockfish (S. mystinus), in contrast, showed no significant changes in behavior, swimming physiology, or aerobic capacity, but did exhibit significant changes in the expression of muscle structural genes as a function of pCO2, indicating acclimatization potential. The capacity of long-lived, late to mature, commercially important fish to acclimatize and adapt to changing ocean chemistry over the next 50-100 years is likely dependent on species-specific physiological tolerances.
Asunto(s)
Dióxido de Carbono/análisis , Genómica/métodos , Perciformes/metabolismo , Animales , Conducta Animal , Dióxido de Carbono/metabolismo , Perciformes/fisiología , Análisis de Componente Principal , Factores de Transcripción/metabolismoRESUMEN
Oceans currently face a variety of threats, requiring ecosystem-based approaches to management such as networks of marine protected areas (MPAs). We evaluated changes in fish biomass on temperate rocky reefs over the decade following implementation of a network of MPAs in the northern Channel Islands, California. We found that the biomass of targeted (i.e. fished) species has increased consistently inside all MPAs in the network, with an effect of geography on the strength of the response. More interesting, biomass of targeted fish species also increased outside MPAs, although only 27% as rapidly as in the protected areas, indicating that redistribution of fishing effort has not severely affected unprotected populations. Whether the increase outside of MPAs is due to changes in fishing pressure, fisheries management actions, adult spillover, favorable environmental conditions, or a combination of all four remains unknown. We evaluated methods of controlling for biogeographic or environmental variation across networks of protected areas and found similar performance of models incorporating empirical sea surface temperature versus a simple geographic blocking term based on assemblage structure. The patterns observed are promising indicators of the success of this network, but more work is needed to understand how ecological and physical contexts affect MPA performance.