Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Pediatr ; 271: 114042, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38570031

RESUMEN

OBJECTIVE: The objective of this study was to examine the association of cardiorespiratory events, including apnea, periodic breathing, intermittent hypoxemia (IH), and bradycardia, with late-onset sepsis for extremely preterm infants (<29 weeks of gestational age) on vs off invasive mechanical ventilation. STUDY DESIGN: This is a retrospective analysis of data from infants enrolled in Pre-Vent (ClinicalTrials.gov identifier NCT03174301), an observational study in 5 level IV neonatal intensive care units. Clinical data were analyzed for 737 infants (mean gestational age: 26.4 weeks, SD 1.71). Monitoring data were available and analyzed for 719 infants (47 512 patient-days); of whom, 109 had 123 sepsis events. Using continuous monitoring data, we quantified apnea, periodic breathing, bradycardia, and IH. We analyzed the relationships between these daily measures and late-onset sepsis (positive blood culture >72 hours after birth and ≥5-day antibiotics). RESULTS: For infants not on a ventilator, apnea, periodic breathing, and bradycardia increased before sepsis diagnosis. During times on a ventilator, increased sepsis risk was associated with longer events with oxygen saturation <80% (IH80) and more bradycardia events before sepsis. IH events were associated with higher sepsis risk but did not dynamically increase before sepsis, regardless of ventilator status. A multivariable model including postmenstrual age, cardiorespiratory variables (apnea, periodic breathing, IH80, and bradycardia), and ventilator status predicted sepsis with an area under the receiver operator characteristic curve of 0.783. CONCLUSION: We identified cardiorespiratory signatures of late-onset sepsis. Longer IH events were associated with increased sepsis risk but did not change temporally near diagnosis. Increases in bradycardia, apnea, and periodic breathing preceded the clinical diagnosis of sepsis.

2.
Pediatr Res ; 95(4): 1060-1069, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37857848

RESUMEN

BACKGROUND: In extremely preterm infants, persistence of cardioventilatory events is associated with long-term morbidity. Therefore, the objective was to characterize physiologic growth curves of apnea, periodic breathing, intermittent hypoxemia, and bradycardia in extremely preterm infants during the first few months of life. METHODS: The Prematurity-Related Ventilatory Control study included 717 preterm infants <29 weeks gestation. Waveforms were downloaded from bedside monitors with a novel sharing analytics strategy utilized to run software locally, with summary data sent to the Data Coordinating Center for compilation. RESULTS: Apnea, periodic breathing, and intermittent hypoxemia events rose from day 3 of life then fell to near-resolution by 8-12 weeks of age. Apnea/intermittent hypoxemia were inversely correlated with gestational age, peaking at 3-4 weeks of age. Periodic breathing was positively correlated with gestational age peaking at 31-33 weeks postmenstrual age. Females had more periodic breathing but less intermittent hypoxemia/bradycardia. White infants had more apnea/periodic breathing/intermittent hypoxemia. Infants never receiving mechanical ventilation followed similar postnatal trajectories but with less apnea and intermittent hypoxemia, and more periodic breathing. CONCLUSIONS: Cardioventilatory events peak during the first month of life but the actual postnatal trajectory is dependent on the type of event, race, sex and use of mechanical ventilation. IMPACT: Physiologic curves of cardiorespiratory events in extremely preterm-born infants offer (1) objective measures to assess individual patient courses and (2) guides for research into control of ventilation, biomarkers and outcomes. Presented are updated maturational trajectories of apnea, periodic breathing, intermittent hypoxemia, and bradycardia in 717 infants born <29 weeks gestation from the multi-site NHLBI-funded Pre-Vent study. Cardioventilatory events peak during the first month of life but the actual postnatal trajectory is dependent on the type of event, race, sex and use of mechanical ventilation. Different time courses for apnea and periodic breathing suggest different maturational mechanisms.


Asunto(s)
Enfermedades del Prematuro , Trastornos Respiratorios , Lactante , Femenino , Recién Nacido , Humanos , Recien Nacido Extremadamente Prematuro , Apnea , Bradicardia/terapia , Respiración , Hipoxia
3.
Am J Respir Crit Care Med ; 208(1): 79-97, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37219236

RESUMEN

Rationale: Immature control of breathing is associated with apnea, periodic breathing, intermittent hypoxemia, and bradycardia in extremely preterm infants. However, it is not clear if such events independently predict worse respiratory outcome. Objectives: To determine if analysis of cardiorespiratory monitoring data can predict unfavorable respiratory outcomes at 40 weeks postmenstrual age (PMA) and other outcomes, such as bronchopulmonary dysplasia at 36 weeks PMA. Methods: The Prematurity-related Ventilatory Control (Pre-Vent) study was an observational multicenter prospective cohort study including infants born at <29 weeks of gestation with continuous cardiorespiratory monitoring. The primary outcome was either "favorable" (alive and previously discharged or inpatient and off respiratory medications/O2/support at 40 wk PMA) or "unfavorable" (either deceased or inpatient/previously discharged on respiratory medications/O2/support at 40 wk PMA). Measurements and Main Results: A total of 717 infants were evaluated (median birth weight, 850 g; gestation, 26.4 wk), 53.7% of whom had a favorable outcome and 46.3% of whom had an unfavorable outcome. Physiologic data predicted unfavorable outcome, with accuracy improving with advancing age (area under the curve, 0.79 at Day 7, 0.85 at Day 28 and 32 wk PMA). The physiologic variable that contributed most to prediction was intermittent hypoxemia with oxygen saturation as measured by pulse oximetry <90%. Models with clinical data alone or combining physiologic and clinical data also had good accuracy, with areas under the curve of 0.84-0.85 at Days 7 and 14 and 0.86-0.88 at Day 28 and 32 weeks PMA. Intermittent hypoxemia with oxygen saturation as measured by pulse oximetry <80% was the major physiologic predictor of severe bronchopulmonary dysplasia and death or mechanical ventilation at 40 weeks PMA. Conclusions: Physiologic data are independently associated with unfavorable respiratory outcome in extremely preterm infants.


Asunto(s)
Displasia Broncopulmonar , Recien Nacido Extremadamente Prematuro , Lactante , Recién Nacido , Humanos , Estudios Prospectivos , Respiración Artificial , Hipoxia
4.
J Pediatr ; 259: 113478, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37182664

RESUMEN

OBJECTIVE: To test the hypothesis that nailfold capillaroscopy can noninvasively detect dysregulated retinal angiogenesis and predict retinopathy of prematurity (ROP) in infants born premature before its development. METHODS: In a cohort of 32 infants born <33 weeks of gestation, 1386 nailfold capillary network images of the 3 middle fingers of each hand were taken during the first month of life. From these, 25 infants had paired data taken 2 weeks apart during the first month of life. Images were analyzed for metrics of peripheral microvascular density using a machine learning-based segmentation approach and a previously validated microvascular quantification platform (REAVER vascular analysis). Results were correlated with subsequent development of ROP based on a published consensus ROP severity scale. RESULTS: In total, 18 of 32 (56%) (entire cohort) and 13 of 25 (52%) (2-time point subgroup) developed ROP. Peripheral vascular density decreased significantly during the first month of life. In the paired time point analysis, vessel length density, a key metric of peripheral vascular density, was significantly greater at both time points among infants who later developed ROP (15 563 and 11 996 µm/mm2, respectively) compared with infants who did not (12 252 and 8845 µm/mm2, respectively) (P < .001, both time points). A vessel length density cutoff of >15 100 at T1 or at T2 correctly detected 3 of 3 infants requiring ROP therapy. In a mixed-effects linear regression model, peripheral vascular density metrics were significantly correlated with ROP severity. CONCLUSIONS: Nailfold microvascular density assessed during the first month of life is a promising, noninvasive biomarker to identify premature infants at highest risk for ROP before detection on eye exam.


Asunto(s)
Retinopatía de la Prematuridad , Recién Nacido , Lactante , Humanos , Retinopatía de la Prematuridad/diagnóstico , Retinopatía de la Prematuridad/terapia , Angioscopía Microscópica , Recien Nacido Prematuro , Retina , Edad Gestacional , Factores de Riesgo
5.
Am J Physiol Lung Cell Mol Physiol ; 321(2): L291-L307, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34132118

RESUMEN

ATP-binding cassette class A3 (ABCA3) is a lipid transporter that plays a critical role in pulmonary surfactant function. The substitution of valine for glutamic acid at codon 292 (E292V) produces a hypomorphic variant that accounts for a significant portion of ABCA3 mutations associated with lung disorders spanning from neonatal respiratory distress syndrome and childhood interstitial lung disease to diffuse parenchymal lung disease (DPLD) in adults including pulmonary fibrosis. The mechanisms by which this and similar ABCA3 mutations disrupt alveolar type 2 (AT2) cell homeostasis and cause DPLD are largely unclear. The present study, informed by a patient homozygous for the E292V variant, used an in vitro and a preclinical murine model to evaluate the mechanisms by which E292V expression promotes aberrant lung injury and parenchymal remodeling. Cell lines stably expressing enhanced green fluorescent protein (EGFP)-tagged ABCA3 isoforms show a functional deficiency of the ABCA3E292V variant as a lipid transporter. AT2 cells isolated from mice constitutively homozygous for ABCA3E292V demonstrate the presence of small electron-dense lamellar bodies, time-dependent alterations in macroautophagy, and induction of apoptosis. These changes in AT2 cell homeostasis are accompanied by a spontaneous lung phenotype consisting of both age-dependent inflammation and fibrillary collagen deposition in alveolar septa. Older ABCA3E292V mice exhibit increased vulnerability to exogenous lung injury by bleomycin. Collectively, these findings support the hypothesis that the ABCA3E292V variant is a susceptibility factor for lung injury through effects on surfactant deficiency and impaired AT2 cell autophagy.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Células Epiteliales Alveolares , Autofagia , Regulación de la Expresión Génica , Lesión Pulmonar , Mutación Missense , Transportadoras de Casetes de Unión a ATP/biosíntesis , Transportadoras de Casetes de Unión a ATP/genética , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Sustitución de Aminoácidos , Animales , Lesión Pulmonar/genética , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Ratones , Ratones Mutantes , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Síndrome de Dificultad Respiratoria del Recién Nacido/metabolismo , Síndrome de Dificultad Respiratoria del Recién Nacido/patología
6.
Cardiol Young ; 30(9): 1238-1246, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32665043

RESUMEN

BACKGROUND: Pre-mature birth impacts left ventricular development, predisposing this population to long-term cardiovascular risk. The aims of this study were to investigate maturational changes in rotational properties from the neonatal period through 1 year of age and to discern the impact of cardiopulmonary complications of pre-maturity on these measures. METHODS: Pre-term infants (<29 weeks at birth, n = 117) were prospectively enrolled and followed to 1-year corrected age. Left ventricular basal and apical rotation, twist, and torsion were measured by two-dimensional speckle-tracking echocardiography and analysed at 32 and 36 weeks post-menstrual age and 1-year corrected age. A mixed random effects model with repeated measures analysis was used to compare rotational mechanics over time. Torsion was compared in infants with and without complications of cardiopulmonary diseases of pre-maturity, specifically bronchopulmonary dysplasia, pulmonary hypertension, and patent ductus arteriosus. RESULTS: Torsion decreased from 32 weeks post-menstrual age to 1-year corrected age in all pre-term infants (p < 0.001). The decline from 32 to 36 weeks post-menstrual age was more pronounced in infants with cardiopulmonary complications, but was similar to healthy pre-term infants from 36 weeks post-menstrual age to 1-year corrected age. The decline was due to directional and magnitude changes in apical rotation over time (p < 0.05). CONCLUSION: This study tracks maturational patterns of rotational mechanics in pre-term infants and reveals torsion declines from the neonatal period through 1 year. Cardiopulmonary diseases of pre-maturity may negatively impact rotational mechanics during the neonatal period, but the myocardium recovers by 1-year corrected age.


Asunto(s)
Displasia Broncopulmonar , Conducto Arterioso Permeable , Ventrículos Cardíacos , Hipertensión Pulmonar , Displasia Broncopulmonar/diagnóstico por imagen , Conducto Arterioso Permeable/diagnóstico por imagen , Ecocardiografía , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Lactante , Recién Nacido , Función Ventricular Izquierda
7.
Pediatr Res ; 85(6): 769-776, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30733614

RESUMEN

BACKGROUND: The increasing incidence of bronchopulmonary dysplasia in premature babies may be due in part to immature ventilatory control, contributing to hypoxemia. The latter responds to ventilation and/or oxygen therapy, treatments associated with adverse sequelae. This is an overview of the Prematurity-Related Ventilatory Control Study which aims to analyze the under-utilized cardiorespiratory continuous waveform monitoring data to delineate mechanisms of immature ventilatory control in preterm infants and identify predictive markers. METHODS: Continuous ECG, heart rate, respiratory, and oxygen saturation data will be collected throughout the NICU stay in 500 infants < 29 wks gestation across 5 centers. Mild permissive hypercapnia, and hyperoxia and/or hypoxia assessments will be conducted in a subcohort of infants along with inpatient questionnaires, urine, serum, and DNA samples. RESULTS: Primary outcomes will be respiratory status at 40 wks and quantitative measures of immature breathing plotted on a standard curve for infants matched at 36-37 wks. Physiologic and/or biologic determinants will be collected to enhance the predictive model linking ventilatory control to outcomes. CONCLUSIONS: By incorporating bedside monitoring variables along with biomarkers that predict respiratory outcomes we aim to elucidate individualized cardiopulmonary phenotypes and mechanisms of ventilatory control contributing to adverse respiratory outcomes in premature infants.


Asunto(s)
Displasia Broncopulmonar/fisiopatología , Protocolos Clínicos , Femenino , Humanos , Recién Nacido , Recien Nacido Prematuro , Masculino , Monitoreo Fisiológico , Estudios Prospectivos , Proyectos de Investigación , Fenómenos Fisiológicos Respiratorios
8.
Cardiol Young ; 29(7): 945-953, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31287038

RESUMEN

INTRODUCTION: Prematurity impacts myocardial development and may determine long-term outcomes. The objective of this study was to test the hypothesis that preterm neonates develop right ventricle dysfunction and adaptive remodelling by 32 weeks post-menstrual age that persists through 1 year corrected age. MATERIALS AND METHODS: A subset of 80 preterm infants (born <29 weeks) was selected retrospectively from a prospectively enrolled cohort and measures of right ventricle systolic function and morphology by two-dimensional echocardiography were assessed at 32 weeks post-menstrual age and at 1 year of corrected age. Comparisons were made to 50 term infants at 1 month and 1 year of age. Sub-analyses were performed in preterm-born infants with bronchopulmonary dysplasia and/or pulmonary hypertension. RESULT: In both term and preterm infants, right ventricle function and morphology increased over the first year (p < 0.01). The magnitudes of right ventricle function measures were lower in preterm-born infants at each time period (p < 0.01 for all) and right ventricle morphology indices were wider in all preterm infants by 1 year corrected age, irrespective of lung disease. Measures of a) right ventricle function were further decreased and b) morphology increased through 1 year in preterm infants with bronchopulmonary dysplasia and/or pulmonary hypertension (p < 0.01). CONCLUSION: Preterm infants exhibit abnormal right ventricle performance with remodelling at 32 weeks post-menstrual age that persists through 1 year corrected age, suggesting a less developed intrinsic myocardial function response following preterm birth. The development of bronchopulmonary dysplasia and pulmonary hypertension leave a further negative impact on right ventricle mechanics over the first year of age.


Asunto(s)
Displasia Broncopulmonar/complicaciones , Hipertensión Pulmonar/complicaciones , Enfermedades del Prematuro/patología , Disfunción Ventricular Derecha/etiología , Disfunción Ventricular Derecha/patología , Remodelación Ventricular , Displasia Broncopulmonar/patología , Ecocardiografía , Femenino , Humanos , Hipertensión Pulmonar/patología , Lactante , Recién Nacido , Recien Nacido Prematuro , Enfermedades del Prematuro/diagnóstico por imagen , Enfermedades del Prematuro/etiología , Masculino , Estudios Retrospectivos , Disfunción Ventricular Derecha/diagnóstico por imagen
9.
J Pediatr ; 197: 48-56.e2, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29625733

RESUMEN

OBJECTIVE: To test the hypothesis that echocardiographic markers of pulmonary vascular disease (PVD) exist in asymptomatic infants born preterm at 1-year corrected age. STUDY DESIGN: We conducted a prospective cohort study of 80 infants born preterm (<29 weeks of gestation) and 100 age- and weight-matched infants born at term and compared broad-based conventional and quantitative echocardiographic measures of pulmonary hemodynamics at 1-year corrected age. Pulmonary artery acceleration time (PAAT), a validated index of pulmonary vascular resistance, arterial pressure, and compliance, was used to assess pulmonary hemodynamics. Lower PAAT is indicative of PVD. Subanalyses were performed in infants with bronchopulmonary dysplasia (BPD, n = 48, 59%) and/or late-onset pulmonary hypertension (n = 12, 15%). RESULTS: At 1 year, there were no differences between conventional measures of pulmonary hypertension in the infants born at term and preterm. All infants born preterm had significantly lower values of PAAT than infants born at term (73 ± 8 milliseconds vs 98 ± 5 milliseconds, P < .001). Infants born preterm with BPD had even lower PAAT than those without BPD (69 ± 5 milliseconds vs 79 ± 4 milliseconds, P < .01). The degree of PVD at 1-year corrected age was inversely related to gestation in all infants born preterm. Data analysis included adjustment for ventricular function and other confounding factors. CONCLUSIONS: In comparison with infants born at term, infants born preterm exhibit abnormal PAAT at 1-year corrected age irrespective of neonatal lung disease status, suggesting the existence of PVD beyond infancy. PAAT measurements offer a reliable, noninvasive tool for screening and longitudinal monitoring of pulmonary hemodynamics in infants.


Asunto(s)
Displasia Broncopulmonar/complicaciones , Ecocardiografía/métodos , Hipertensión Pulmonar/diagnóstico por imagen , Arteria Pulmonar/diagnóstico por imagen , Resistencia Vascular/fisiología , Biomarcadores , Estudios de Cohortes , Femenino , Hemodinámica/fisiología , Humanos , Hipertensión Pulmonar/fisiopatología , Recién Nacido , Recien Nacido Prematuro , Estudios Longitudinales , Masculino , Estudios Prospectivos , Arteria Pulmonar/fisiopatología , Circulación Pulmonar/fisiología
10.
J Pediatr ; 194: 158-164.e1, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29198536

RESUMEN

OBJECTIVE: To describe disease course, histopathology, and outcomes for infants with atypical presentations of alveolar capillary dysplasia with misalignment of the pulmonary veins (ACDMPV) who underwent bilateral lung transplantation. STUDY DESIGN: We reviewed clinical history, diagnostic studies, explant histology, genetic sequence results, and post-transplant course for 6 infants with atypical ACDMPV who underwent bilateral lung transplantation at St. Louis Children's Hospital. We compared their histology with infants with classic ACDMPV and compared their outcomes with infants transplanted for other indications. RESULTS: In contrast with neonates with classic ACDPMV who present with severe hypoxemia and refractory pulmonary hypertension within hours of birth, none of the infants with atypical ACDMPV presented with progressive neonatal respiratory failure. Three infants had mild neonatal respiratory distress and received nasal cannula oxygen. Three other infants had no respiratory symptoms at birth and presented with hypoxemia and pulmonary hypertension at 2-3 months of age. Bilateral lung transplantation was performed at 4-20 months of age. Unlike in classic ACDMPV, histopathologic findings were not distributed uniformly and were not diffuse. Three subjects had apparent nonmosaic genetic defects involving FOXF1. Two infants had extrapulmonary anomalies (posterior urethral valves, inguinal hernia). Three transplanted children are alive at 5-16 years of age, similar to outcomes for infants transplanted for other indications. Lung explants from infants with atypical ACDMPV demonstrated diagnostic but nonuniform histopathologic findings. CONCLUSIONS: The 1- and 5-year survival rates for infants with atypical ACDMPV are similar to infants transplanted for other indications. Given the clinical and histopathologic spectra, ACDMPV should be considered in infants with hypoxemia and pulmonary hypertension, even beyond the newborn period.


Asunto(s)
Trasplante de Pulmón/métodos , Síndrome de Circulación Fetal Persistente/diagnóstico , Alveolos Pulmonares/anomalías , Femenino , Factores de Transcripción Forkhead/genética , Humanos , Lactante , Recién Nacido , Pulmón/patología , Masculino , Mutación , Síndrome de Circulación Fetal Persistente/complicaciones , Síndrome de Circulación Fetal Persistente/cirugía , Alveolos Pulmonares/cirugía , Venas Pulmonares/anomalías , Tasa de Supervivencia
11.
BMC Genet ; 19(1): 94, 2018 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-30342483

RESUMEN

BACKGROUND: Previous studies have identified genetic variants associated with bronchopulmonary dysplasia (BPD) in extremely preterm infants. However, findings with genome-wide significance have been rare, and not replicated. We hypothesized that whole exome sequencing (WES) of premature subjects with extremely divergent phenotypic outcomes could facilitate the identification of genetic variants or gene networks contributing disease risk. RESULTS: The Prematurity and Respiratory Outcomes Program (PROP) recruited a cohort of > 765 extremely preterm infants for the identification of markers of respiratory morbidity. We completed WES on 146 PROP subjects (85 affected, 61 unaffected) representing extreme phenotypes of early respiratory morbidity. We tested for association between disease status and individual common variants, screened for rare variants exclusive to either affected or unaffected subjects, and tested the combined association of variants across gene loci. Pathway analysis was performed and disease-related expression patterns were assessed. Marginal association with BPD was observed for numerous common and rare variants. We identified 345 genes with variants unique to BPD-affected preterm subjects, and 292 genes with variants unique to our unaffected preterm subjects. Of these unique variants, 28 (19 in the affected cohort and 9 in unaffected cohort) replicate a prior WES study of BPD-associated variants. Pathway analysis of sets of variants, informed by disease-related gene expression, implicated protein kinase A, MAPK and Neuregulin/epidermal growth factor receptor signaling. CONCLUSIONS: We identified novel genes and associated pathways that may play an important role in susceptibility/resilience for the development of lung disease in preterm infants.


Asunto(s)
Displasia Broncopulmonar/diagnóstico , Variación Genética , Displasia Broncopulmonar/genética , Estudios de Casos y Controles , ADN/química , ADN/metabolismo , Femenino , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Edad Gestacional , Humanos , Recién Nacido , Recien Nacido Prematuro , Masculino , Secuenciación del Exoma
12.
Pediatr Res ; 84(3): 419-425, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29538355

RESUMEN

BACKGROUND: Mutations in the NK2 homeobox 1 (NKX2-1) gene are associated with lung disease in infants and children. We hypothesize that disruption of normal surfactant gene expression with these mutations contributes to the respiratory phenotypes observed. METHODS: To assess transactivational activity, cotransfection of luciferase reporter vectors containing surfactant protein B or C (SFTPB or SFTPC) promoters with NKX2-1 plasmids was performed and luciferase activity was measured. To assess the binding of mutated proteins to target DNA, electrophoretic mobility shift assays (EMSA) were performed using nuclear protein labeled with oligonucleotide probes representing NKX2-1 consensus binding sequences followed by gel electrophoresis. The effect of overexpression of wild-type (WT) and mutant NKX2-1 on SFTPB and SFTPC was evaluated with quantitative real-time PCR. RESULTS: Decreased transactivation of the SFTPB promoter by both mutants and decreased transactivation of the SFTPC promoter by the L197P mutation was observed. EMSA demonstrated decreased DNA binding of both mutations to NKX2-1 consensus binding sequences. Transfection of A549 cells with NKX2-1 expression vectors demonstrated decreased stimulation of SFTPB and SFTPC expression by mutant proteins compared with that of WT. CONCLUSION: Disruption of transcriptional activation of surfactant protein genes by these DNA-binding domain mutations is a plausible biological mechanism for disruption of surfactant function and subsequent respiratory distress.


Asunto(s)
Mutación , Regiones Promotoras Genéticas , Proteína B Asociada a Surfactante Pulmonar/genética , Proteína C Asociada a Surfactante Pulmonar/genética , Factor Nuclear Tiroideo 1/genética , Células A549 , Adolescente , Línea Celular Tumoral , Preescolar , Exones , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genes Homeobox , Humanos , Masculino , Mutagénesis Sitio-Dirigida , Fenotipo , Unión Proteica , Estudios Retrospectivos , Activación Transcripcional
13.
Lancet ; 387(10031): 1928-36, 2016 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-26969089

RESUMEN

BACKGROUND: Gut bacteria might predispose to or protect from necrotising enterocolitis, a severe illness linked to prematurity. In this observational prospective study we aimed to assess whether one or more bacterial taxa in the gut differ between infants who subsequently develop necrotising enterocolitis (cases) and those who do not (controls). METHODS: We enrolled very low birthweight (1500 g and lower) infants in the primary cohort (St Louis Children's Hospital) between July 7, 2009, and Sept 16, 2013, and in the secondary cohorts (Kosair Children's Hospital and Children's Hospital at Oklahoma University) between Sept 12, 2011 and May 25, 2013. We prospectively collected and then froze stool samples for all infants. Cases were defined as infants whose clinical courses were consistent with necrotising enterocolitis and whose radiographs fulfilled criteria for Bell's stage 2 or 3 necrotising enterocolitis. Control infants (one to four per case; not fixed ratios) with similar gestational ages, birthweight, and birth dates were selected from the population after cases were identified. Using primers specific for bacterial 16S rRNA genes, we amplified and then pyrosequenced faecal DNA from stool samples. With use of Dirichlet multinomial analysis and mixed models to account for repeated measures, we identified host factors, including development of necrotising enterocolitis, associated with gut bacterial populations. FINDINGS: We studied 2492 stool samples from 122 infants in the primary cohort, of whom 28 developed necrotising enterocolitis; 94 infants were used as controls. The microbial community structure in case stools differed significantly from those in control stools. These differences emerged only after the first month of age. In mixed models, the time-by-necrotising-enterocolitis interaction was positively associated with Gammaproteobacteria (p=0·0010) and negatively associated with strictly anaerobic bacteria, especially Negativicutes (p=0·0019). We studied 1094 stool samples from 44 infants in the secondary cohorts. 18 infants developed necrotising enterocolitis (cases) and 26 were controls. After combining data from all cohorts (166 infants, 3586 stools, 46 cases of necrotising enterocolitis), there were increased proportions of Gammaproteobacteria (p=0·0011) and lower proportions of both Negativicutes (p=0·0013) and the combined Clostridia-Negativicutes class (p=0·0051) in infants who went on to develop necrotising enterocolitis compared with controls. These associations were strongest in both the primary cohort and the overall cohort for infants born at less than 27 weeks' gestation. INTERPRETATION: A relative abundance of Gammaproteobacteria (ie, Gram-negative facultative bacilli) and relative paucity of strict anaerobic bacteria (especially Negativicutes) precede necrotising enterocolitis in very low birthweight infants. These data offer candidate targets for interventions to prevent necrotising enterocolitis, at least among infants born at less than 27 weeks' gestation. FUNDING: National Institutes of Health (NIH), Foundation for the NIH, the Children's Discovery Institute.


Asunto(s)
Disbiosis/microbiología , Enterocolitis Necrotizante/microbiología , Infecciones por Bacterias Gramnegativas , Infecciones por Bacterias Grampositivas , Estudios de Casos y Controles , Heces/microbiología , Femenino , Edad Gestacional , Bacterias Gramnegativas/aislamiento & purificación , Bacterias Grampositivas/aislamiento & purificación , Humanos , Lactante , Recién Nacido , Recién Nacido de muy Bajo Peso , Masculino , Estudios Prospectivos
14.
J Pediatr ; 184: 157-164.e2, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28215425

RESUMEN

OBJECTIVE: To compare outcomes of infants and children who underwent lung transplantation for genetic disorders of surfactant metabolism (SFTPB, SFTPC, ABCA3, and NKX2-1) over 2 epochs (1993-2003 and 2004-2015) at St Louis Children's Hospital. STUDY DESIGN: We retrospectively reviewed clinical characteristics, mortality, and short- and long-term morbidities of infants (transplanted at <1 year; n = 28) and children (transplanted >1 year; n = 16) and compared outcomes by age at transplantation (infants vs children) and by epoch of transplantation. RESULTS: Infants underwent transplantation more frequently for surfactant protein-B deficiency, whereas children underwent transplantation more frequently for SFTPC mutations. Both infants and children underwent transplantation for ABCA3 deficiency. Compared with children, infants experienced shorter times from listing to transplantation (P = .014), were more likely to be mechanically ventilated at the time of transplantation (P < .0001), were less likely to develop bronchiolitis obliterans post-transplantation (P = .021), and were more likely to have speech and motor delays (P ≤ .0001). Despite advances in genetic diagnosis, immunosuppressive therapies, and supportive respiratory and nutritional therapies, mortality did not differ between infants and children (P = .076) or between epochs. Kaplan-Meier analyses demonstrated that children transplanted in epoch 1 (1993-2003) were more likely to develop systemic hypertension (P = .049) and less likely to develop post-transplantation lymphoproliferative disorder compared with children transplanted in epoch 2 (2004-2015) (P = .051). CONCLUSION: Post-lung transplantation morbidities and mortality remain substantial for infants and children with genetic disorders of surfactant metabolism.


Asunto(s)
Enfermedades Pulmonares Intersticiales/cirugía , Trasplante de Pulmón , Niño , Preescolar , Femenino , Humanos , Lactante , Enfermedades Pulmonares Intersticiales/genética , Masculino , Surfactantes Pulmonares , Estudios Retrospectivos
15.
Proc Natl Acad Sci U S A ; 111(34): 12522-7, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25114261

RESUMEN

In the weeks after birth, the gut acquires a nascent microbiome, and starts its transition to bacterial population equilibrium. This early-in-life microbial population quite likely influences later-in-life host biology. However, we know little about the governance of community development: does the gut serve as a passive incubator where the first organisms randomly encountered gain entry and predominate, or is there an orderly progression of members joining the community of bacteria? We used fine interval enumeration of microbes in stools from multiple subjects to answer this question. We demonstrate via 16S rRNA gene pyrosequencing of 922 specimens from 58 subjects that the gut microbiota of premature infants residing in a tightly controlled microbial environment progresses through a choreographed succession of bacterial classes from Bacilli to Gammaproteobacteria to Clostridia, interrupted by abrupt population changes. As infants approach 33-36 wk postconceptional age (corresponding to the third to the twelfth weeks of life depending on gestational age at birth), the gut is well colonized by anaerobes. Antibiotics, vaginal vs. Caesarian birth, diet, and age of the infants when sampled influence the pace, but not the sequence, of progression. Our results suggest that in infants in a microbiologically constrained ecosphere of a neonatal intensive care unit, gut bacterial communities have an overall nonrandom assembly that is punctuated by microbial population abruptions. The possibility that the pace of this assembly depends more on host biology (chiefly gestational age at birth) than identifiable exogenous factors warrants further consideration.


Asunto(s)
Tracto Gastrointestinal/microbiología , Recien Nacido Prematuro , Microbiota , Factores de Edad , Clostridium/genética , Clostridium/aislamiento & purificación , Estudios de Cohortes , Heces/microbiología , Humanos , Recién Nacido , Unidades de Cuidado Intensivo Neonatal , Masculino , Microbiota/genética , Estudios Prospectivos , ARN Bacteriano/genética , ARN Ribosómico 16S/genética
16.
Am J Respir Cell Mol Biol ; 55(5): 716-721, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27374344

RESUMEN

Mutations in the ATP-binding cassette transporter A3 gene (ABCA3) result in severe neonatal respiratory distress syndrome and childhood interstitial lung disease. As most ABCA3 mutations are rare or private, determination of mutation pathogenicity is often based on results from in silico prediction tools, identification in unrelated diseased individuals, statistical association studies, or expert opinion. Functional biologic studies of ABCA3 mutations are needed to confirm mutation pathogenicity and inform clinical decision making. Our objective was to functionally characterize two ABCA3 mutations (p.R288K and p.R1474W) identified among term and late-preterm infants with respiratory distress syndrome with unclear pathogenicity in a genetically versatile model system. We performed transient transfection of HEK293T cells with wild-type or mutant ABCA3 alleles to assess protein processing with immunoblotting. We used transduction of A549 cells with adenoviral vectors, which concurrently silenced endogenous ABCA3 and expressed either wild-type or mutant ABCA3 alleles (p.R288K and p.R1474W) to assess immunofluorescent localization, ATPase activity, and organelle ultrastructure. Both ABCA3 mutations (p.R288K and p.R1474W) encoded proteins with reduced ATPase activity but with normal intracellular localization and protein processing. Ultrastructural phenotypes of lamellar body-like vesicles in A549 cells transduced with mutant alleles were similar to wild type. Mutant proteins encoded by ABCA3 mutations p.R288K and p.R1474W had reduced ATPase activity, a biologically plausible explanation for disruption of surfactant metabolism by impaired phospholipid transport into the lamellar body. These results also demonstrate the usefulness of a genetically versatile, human model system for functional characterization of ABCA3 mutations with unclear pathogenicity.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Mutación/genética , Síndrome de Dificultad Respiratoria del Recién Nacido/genética , Células A549 , Adenosina Trifosfatasas/metabolismo , Adenoviridae/metabolismo , Técnica del Anticuerpo Fluorescente , Células HEK293 , Humanos , Immunoblotting , Lactante , Proteínas Mutantes/metabolismo , Orgánulos/metabolismo , Orgánulos/ultraestructura , Fracciones Subcelulares/metabolismo
17.
Am J Respir Crit Care Med ; 189(12): 1538-43, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24871971

RESUMEN

RATIONALE: Recessive mutations in the ATP-binding cassette transporter A3 (ABCA3) cause lethal neonatal respiratory failure and childhood interstitial lung disease. Most ABCA3 mutations are private. OBJECTIVES: To determine genotype-phenotype correlations for recessive ABCA3 mutations. METHODS: We reviewed all published and unpublished ABCA3 sequence and phenotype data from our prospective genetic studies of symptomatic infants and children at Washington and Johns Hopkins Universities. Mutations were classified based on their predicted disruption of protein function: frameshift and nonsense mutations were classified as "null," whereas missense, predicted splice site mutations, and insertion/deletions were classified as "other." We compared age of presentation and outcomes for the three genotypes: null/null, null/other, and other/other. MEASUREMENTS AND MAIN RESULTS: We identified 185 infants and children with homozygous or compound heterozygous ABCA3 mutations and lung disease. All of the null/null infants presented with respiratory failure at birth compared with 75% of infants with null/other or other/other genotypes (P = 0.00011). By 1 year of age, all of the null/null infants had died or undergone lung transplantation compared with 62% of the null/other and other/other children (P < 0.0001). CONCLUSIONS: Genotype-phenotype correlations exist for homozygous or compound heterozygous mutations in ABCA3. Frameshift or nonsense ABCA3 mutations are predictive of neonatal presentation and poor outcome, whereas missense, splice site, and insertion/deletions are less reliably associated with age of presentation and prognosis. Counseling and clinical decision making should acknowledge these correlations.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/deficiencia , Estudios de Asociación Genética , Enfermedades Pulmonares Intersticiales/genética , Mutación , Síndrome de Dificultad Respiratoria del Recién Nacido/genética , Transportadoras de Casetes de Unión a ATP/genética , Niño , Preescolar , Femenino , Marcadores Genéticos , Heterocigoto , Homocigoto , Humanos , Lactante , Recién Nacido , Enfermedades Pulmonares Intersticiales/mortalidad , Enfermedades Pulmonares Intersticiales/cirugía , Trasplante de Pulmón , Masculino , Síndrome de Dificultad Respiratoria del Recién Nacido/mortalidad , Síndrome de Dificultad Respiratoria del Recién Nacido/cirugía , Análisis de Secuencia de ADN
18.
BMC Pediatr ; 15: 37, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25886363

RESUMEN

BACKGROUND: With improved survival rates, short- and long-term respiratory complications of premature birth are increasing, adding significantly to financial and health burdens in the United States. In response, in May 2010, the National Institutes of Health (NIH) and the National Heart, Lung, and Blood Institute (NHLBI) funded a 5-year $18.5 million research initiative to ultimately improve strategies for managing the respiratory complications of preterm and low birth weight infants. Using a collaborative, multi-disciplinary structure, the resulting Prematurity and Respiratory Outcomes Program (PROP) seeks to understand factors that correlate with future risk for respiratory morbidity. METHODS/DESIGN: The PROP is an observational prospective cohort study performed by a consortium of six clinical centers (incorporating tertiary neonatal intensive care units [NICU] at 13 sites) and a data-coordinating center working in collaboration with the NHLBI. Each clinical center contributes subjects to the study, enrolling infants with gestational ages 23 0/7 to 28 6/7 weeks with an anticipated target of 750 survivors at 36 weeks post-menstrual age. In addition, each center brings specific areas of scientific focus to the Program. The primary study hypothesis is that in survivors of extreme prematurity specific biologic, physiologic and clinical data predicts respiratory morbidity between discharge and 1 year corrected age. Analytic statistical methodology includes model-based and non-model-based analyses, descriptive analyses and generalized linear mixed models. DISCUSSION: PROP incorporates aspects of NICU care to develop objective biomarkers and outcome measures of respiratory morbidity in the <29 week gestation population beyond just the NICU hospitalization, thereby leading to novel understanding of the nature and natural history of neonatal lung disease and of potential mechanistic and therapeutic targets in at-risk subjects. TRIAL REGISTRATION: Clinical Trials.gov NCT01435187.


Asunto(s)
Enfermedades del Prematuro/diagnóstico , Enfermedades Respiratorias/diagnóstico , Biomarcadores , Humanos , Recién Nacido de Bajo Peso , Recién Nacido , Recien Nacido Prematuro , Cuidado Intensivo Neonatal , Examen Físico , Pronóstico , Estudios Prospectivos , Pruebas de Función Respiratoria
19.
Echocardiography ; 32(5): 839-47, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25109389

RESUMEN

BACKGROUND: Frame rate (FR) of image acquisition is an important determinant of the reliability of 2-dimensional speckle tracking echocardiography (2DSTE)-derived myocardial strain. Premature infants have relatively high heart rates (HR). The aim was to analyze the effects of varying FR on the reproducibility of 2DSTE-derived right ventricle (RV) and left ventricle (LV) longitudinal strain (LS) and strain rate (LSR) in premature infants. METHODS: RV and LV LS and LSR were measured by 2DSTE in the apical four-chamber view in 20 premature infants (26 ± 1 weeks) with HR 163 ± 13 bpm. For each subject, 4 sets of cine loops were acquired at FR of <90, 90-110, 110-130, and >130 frames/sec. Two observers measured LS and LSR. Inter- and intra-observer reproducibility was assessed using Bland-Altman analysis, coefficient of variation, and linear regression. RESULTS: Intra-observer reproducibility for RV and LV LS was higher at FR >110 frames/sec, and optimum at FR >130 frames/sec. The highest inter-observer reproducibility for RV and LV LS were at FR >130 and >110 frames/s, respectively. The highest reproducibility for RV and LV systolic and early diastolic LSR was at FR >110 frames/sec. FR/HR ratio >0.7 frames/sec per bpm yielded optimum reproducibility for RV and LV deformation imaging. CONCLUSIONS: The reliability of 2DSTE-derived RV and LV deformation imaging in premature infants is affected by the FR of image acquisition. Reproducibility is most robust when cine loops are obtained with FR/HR ratio between 0.7 and 0.9 frames/sec per bpm, which likely results from optimal myocardial speckle tracking and mechanical event timing.


Asunto(s)
Cardiopatías Congénitas/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Recien Nacido Prematuro , Femenino , Humanos , Recién Nacido , Masculino , Variaciones Dependientes del Observador , Estudios Prospectivos , Reproducibilidad de los Resultados , Ultrasonografía
20.
Proc Natl Acad Sci U S A ; 109(7): 2325-9, 2012 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-22308375

RESUMEN

BRICHOS domains are encoded in > 30 human genes, which are associated with cancer, neurodegeneration, and interstitial lung disease (ILD). The BRICHOS domain from lung surfactant protein C proprotein (proSP-C) is required for membrane insertion of SP-C and has anti-amyloid activity in vitro. Here, we report the 2.1 Å crystal structure of the human proSP-C BRICHOS domain, which, together with molecular dynamics simulations and hydrogen-deuterium exchange mass spectrometry, reveals how BRICHOS domains may mediate chaperone activity. Observation of amyloid deposits composed of mature SP-C in lung tissue samples from ILD patients with mutations in the BRICHOS domain or in its peptide-binding linker region supports the in vivo relevance of the proposed mechanism. The results indicate that ILD mutations interfering with proSP-C BRICHOS activity cause amyloid disease secondary to intramolecular chaperone malfunction.


Asunto(s)
Amiloide/antagonistas & inhibidores , Pulmón/metabolismo , Chaperonas Moleculares/metabolismo , Proteína C Asociada a Surfactante Pulmonar/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Modelos Moleculares , Chaperonas Moleculares/química , Datos de Secuencia Molecular , Conformación Proteica , Proteína C Asociada a Surfactante Pulmonar/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA