Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 610(7933): 768-774, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36261532

RESUMEN

Haem is an iron-containing tetrapyrrole that is critical for a variety of cellular and physiological processes1-3. Haem binding proteins are present in almost all cellular compartments, but the molecular mechanisms that regulate the transport and use of haem within the cell remain poorly understood2,3. Here we show that haem-responsive gene 9 (HRG-9) (also known as transport and Golgi organization 2 (TANGO2)) is an evolutionarily conserved haem chaperone with a crucial role in trafficking haem out of haem storage or synthesis sites in eukaryotic cells. Loss of Caenorhabditis elegans hrg-9 and its paralogue hrg-10 results in the accumulation of haem in lysosome-related organelles, the haem storage site in worms. Similarly, deletion of the hrg-9 homologue TANGO2 in yeast and mammalian cells induces haem overload in mitochondria, the site of haem synthesis. We demonstrate that TANGO2 binds haem and transfers it from cellular membranes to apo-haemoproteins. Notably, homozygous tango2-/- zebrafish larvae develop pleiotropic symptoms including encephalopathy, cardiac arrhythmia and myopathy, and die during early development. These defects partially resemble the symptoms of human TANGO2-related metabolic encephalopathy and arrhythmias, a hereditary disease caused by mutations in TANGO24-8. Thus, the identification of HRG-9 as an intracellular haem chaperone provides a biological basis for exploring the aetiology and treatment of TANGO2-related disorders.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Hemo , Animales , Humanos , Arritmias Cardíacas/metabolismo , Encefalopatías/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Hemo/metabolismo , Mitocondrias/metabolismo , Chaperonas Moleculares/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
2.
Cell ; 145(5): 720-31, 2011 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-21620137

RESUMEN

Extracellular free heme can intercalate into membranes and promote damage to cellular macromolecules. Thus it is likely that specific intercellular pathways exist for the directed transport, trafficking, and delivery of heme to cellular destinations, although none have been found to date. Here we show that Caenorhabditis elegans HRG-3 is required for the delivery of maternal heme to developing embryos. HRG-3 binds heme and is exclusively secreted by maternal intestinal cells into the interstitial fluid for transport of heme to extraintestinal cells, including oocytes. HRG-3 deficiency results either in death during embryogenesis or in developmental arrest immediately post-hatching-phenotypes that are fully suppressed by maternal but not zygotic hrg-3 expression. Our results establish a role for HRG-3 as an intercellular heme-trafficking protein.


Asunto(s)
Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Hemo/metabolismo , Hemoproteínas/metabolismo , Animales , Animales Modificados Genéticamente , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Hemo/deficiencia , Hemoproteínas/química , Hemoproteínas/genética , Mucosa Intestinal/metabolismo , Mutación , Fenotipo , Transporte de Proteínas , Vías Secretoras
3.
Immunity ; 44(3): 492-504, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26982356

RESUMEN

Iron is a transition metal that due to its inherent ability to exchange electrons with a variety of molecules is essential to support life. In mammals, iron exists mostly in the form of heme, enclosed within an organic protoporphyrin ring and functioning primarily as a prosthetic group in proteins. Paradoxically, free iron also has the potential to become cytotoxic when electron exchange with oxygen is unrestricted and catalyzes the production of reactive oxygen species. These biological properties demand that iron metabolism is tightly regulated such that iron is available for core biological functions while preventing its cytotoxic effects. Macrophages play a central role in establishing this delicate balance. Here, we review the impact of macrophages on heme-iron metabolism and, reciprocally, how heme-iron modulates macrophage function.


Asunto(s)
Hemo/metabolismo , Hierro/metabolismo , Macrófagos/fisiología , Protoporfirinas/metabolismo , Animales , Humanos , Especies Reactivas de Oxígeno/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35121660

RESUMEN

Multidrug Resistance Proteins (MRPs) are transporters that play critical roles in cancer even though the physiological substrates of these enigmatic transporters are poorly elucidated. In Caenorhabditis elegans, MRP5/ABCC5 is an essential heme exporter because mrp-5 mutants are unviable due to their inability to export heme from the intestine to extraintestinal tissues. Heme supplementation restores viability of these mutants but fails to restore male reproductive deficits. Correspondingly, cell biological studies show that MRP5 regulates heme levels in the mammalian secretory pathway even though MRP5 knockout (KO) mice do not show reproductive phenotypes. The closest homolog of MRP5 is MRP9/ABCC12, which is absent in C. elegans, raising the possibility that MRP9 may genetically compensate for MRP5. Here, we show that MRP5 and MRP9 double KO (DKO) mice are viable but reveal significant male reproductive deficits. Although MRP9 is highly expressed in sperm, MRP9 KO mice show reproductive phenotypes only when MRP5 is absent. Both ABCC transporters localize to mitochondrial-associated membranes, dynamic scaffolds that associate the mitochondria and endoplasmic reticulum. Consequently, DKO mice reveal abnormal sperm mitochondria with reduced mitochondrial membrane potential and fertilization rates. Metabolomics show striking differences in metabolite profiles in the DKO testes, and RNA sequencing shows significant alterations in genes related to mitochondrial function and retinoic acid metabolism. Targeted functional metabolomics reveal lower retinoic acid levels in the DKO testes and higher levels of triglycerides in the mitochondria. These findings establish a model in which MRP5 and MRP9 play a concerted role in regulating male reproductive functions and mitochondrial sufficiency.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Mitocondrias/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Reproducción/fisiología , Subfamilia B de Transportador de Casetes de Unión a ATP , Animales , Transporte Biológico/fisiología , Caenorhabditis elegans/metabolismo , Hemo/metabolismo , Masculino , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Espermatozoides/metabolismo , Testículo/metabolismo
5.
Liver Int ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888238

RESUMEN

Heme is a primordial macrocycle upon which most aerobic life on Earth depends. It is essential to the survival and health of nearly all cells, functioning as a prosthetic group for oxygen-carrying proteins and enzymes involved in oxidation/reduction and electron transport reactions. Heme is essential for the function of numerous hemoproteins and has numerous other roles in the biochemistry of life. In mammals, heme is synthesised from glycine, succinyl-CoA, and ferrous iron in a series of eight steps. The first and normally rate-controlling step is catalysed by 5-aminolevulinate synthase (ALAS), which has two forms: ALAS1 is the housekeeping form with highly variable expression, depending upon the supply of the end-product heme, which acts to repress its activity; ALAS2 is the erythroid form, which is regulated chiefly by the adequacy of iron for erythroid haemoglobin synthesis. Abnormalities in the several enzymes of the heme synthetic pathway, most of which are inherited partial enzyme deficiencies, give rise to rare diseases called porphyrias. The existence and role of heme importers and exporters in mammals have been debated. Recent evidence established the presence of heme transporters. Such transporters are important for the transfer of heme from mitochondria, where the penultimate and ultimate steps of heme synthesis occur, and for the transfer of heme from cytoplasm to other cellular organelles. Several chaperones of heme and iron are known and important for cell health. Heme and iron, although promoters of oxidative stress and potentially toxic, are essential cofactors for cellular energy production and oxygenation.

6.
J Biol Chem ; 298(2): 101549, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34973332

RESUMEN

Heme oxygenases (HOs) detoxify heme by oxidatively degrading it into carbon monoxide, iron, and biliverdin, which is reduced to bilirubin and excreted. Humans express two isoforms of HO: the inducible HO-1, which is upregulated in response to excess heme and other stressors, and the constitutive HO-2. Much is known about the regulation and physiological function of HO-1, whereas comparatively little is known about the role of HO-2 in regulating heme homeostasis. The biochemical necessity for expressing constitutive HO-2 is dependent on whether heme is sufficiently abundant and accessible as a substrate under conditions in which HO-1 is not induced. By measuring labile heme, total heme, and bilirubin in human embryonic kidney HEK293 cells with silenced or overexpressed HO-2, as well as various HO-2 mutant alleles, we found that endogenous heme is too limiting a substrate to observe HO-2-dependent heme degradation. Rather, we discovered a novel role for HO-2 in the binding and buffering of heme. Taken together, in the absence of excess heme, we propose that HO-2 regulates heme homeostasis by acting as a heme buffering factor that controls heme bioavailability. When heme is in excess, HO-1 is induced, and both HO-2 and HO-1 can provide protection from heme toxicity via enzymatic degradation. Our results explain why catalytically inactive mutants of HO-2 are cytoprotective against oxidative stress. Moreover, the change in bioavailable heme due to HO-2 overexpression, which selectively binds ferric over ferrous heme, is consistent with labile heme being oxidized, thereby providing new insights into heme trafficking and signaling.


Asunto(s)
Hemo Oxigenasa (Desciclizante) , Hemo , Biliverdina , Células HEK293 , Hemo/metabolismo , Hemo Oxigenasa (Desciclizante)/genética , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Humanos , Hierro/metabolismo , Riñón/metabolismo
7.
Annu Rev Nutr ; 42: 311-335, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35508203

RESUMEN

An abundant metal in the human body, iron is essential for key biological pathways including oxygen transport, DNA metabolism, and mitochondrial function. Most iron is bound to heme but it can also be incorporated into iron-sulfur clusters or bind directly to proteins. Iron's capacity to cycle between Fe2+ and Fe3+ contributes to its biological utility but also renders it toxic in excess. Heme is an iron-containing tetrapyrrole essential for diverse biological functions including gas transport and sensing, oxidative metabolism, and xenobiotic detoxification. Like iron, heme is essential yet toxic in excess. As such, both iron and heme homeostasis are tightly regulated. Here we discuss molecular and physiologic aspects of iron and heme metabolism. We focus on dietary absorption; cellular import; utilization; and export, recycling, and elimination, emphasizing studies published in recent years. We end with a discussion on current challenges and needs in the field of iron and heme biology.


Asunto(s)
Hemo , Hierro , Transporte Biológico , Hemo/metabolismo , Homeostasis/fisiología , Humanos , Hierro/metabolismo , Mitocondrias/metabolismo
8.
PLoS Pathog ; 16(5): e1008499, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32407406

RESUMEN

Heme, an iron-containing organic ring, is essential for virtually all living organisms by serving as a prosthetic group in proteins that function in diverse cellular activities ranging from diatomic gas transport and sensing, to mitochondrial respiration, to detoxification. Cellular heme levels in microbial pathogens can be a composite of endogenous de novo synthesis or exogenous uptake of heme or heme synthesis intermediates. Intracellular pathogenic microbes switch routes for heme supply when heme availability fluctuates in their replicative environment throughout infection. Here, we show that Toxoplasma gondii, an obligate intracellular human pathogen, encodes a functional heme biosynthesis pathway. A chloroplast-derived organelle, termed apicoplast, is involved in heme production. Genetic and chemical manipulation revealed that de novo heme production is essential for T. gondii intracellular growth and pathogenesis. Surprisingly, the herbicide oxadiazon significantly impaired Toxoplasma growth, consistent with phylogenetic analyses that show T. gondii protoporphyrinogen oxidase is more closely related to plants than mammals. This inhibition can be enhanced by 15- to 25-fold with two oxadiazon derivatives, lending therapeutic proof that Toxoplasma heme biosynthesis is a druggable target. As T. gondii has been used to model other apicomplexan parasites, our study underscores the utility of targeting heme biosynthesis in other pathogenic apicomplexans, such as Plasmodium spp., Cystoisospora, Eimeria, Neospora, and Sarcocystis.


Asunto(s)
Hemo/genética , Filogenia , Protoporfirinógeno-Oxidasa/genética , Proteínas Protozoarias/genética , Toxoplasma/genética , Toxoplasmosis/genética , Hemo/biosíntesis , Humanos , Proteínas de Plantas/metabolismo , Plantas/enzimología , Plantas/genética , Protoporfirinógeno-Oxidasa/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/enzimología , Toxoplasmosis/enzimología
9.
PLoS Genet ; 14(9): e1007665, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30248094

RESUMEN

Heme-iron recycling from senescent red blood cells (erythrophagocytosis) accounts for the majority of total body iron in humans. Studies in cultured cells have ascribed a role for HRG1/SLC48A1 in heme-iron transport but the in vivo function of this heme transporter is unclear. Here we present genetic evidence in a zebrafish model that Hrg1 is essential for macrophage-mediated heme-iron recycling during erythrophagocytosis in the kidney. Furthermore, we show that zebrafish Hrg1a and its paralog Hrg1b are functional heme transporters, and genetic ablation of both transporters in double knockout (DKO) animals shows lower iron accumulation concomitant with higher amounts of heme sequestered in kidney macrophages. RNA-seq analyses of DKO kidney revealed large-scale perturbation in genes related to heme, iron metabolism and immune functions. Taken together, our results establish the kidney as the major organ for erythrophagocytosis and identify Hrg1 as an important regulator of heme-iron recycling by macrophages in the adult zebrafish.


Asunto(s)
Citofagocitosis/fisiología , Eritrocitos/fisiología , Riñón Cefálico/metabolismo , Hemoproteínas/metabolismo , Proteínas Transportadoras de Solutos/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Femenino , Técnicas de Inactivación de Genes , Hematopoyesis/fisiología , Hemo/metabolismo , Hemoproteínas/genética , Hierro/metabolismo , Macrófagos/metabolismo , Masculino , Modelos Animales , Proteínas Transportadoras de Solutos/genética , Proteínas de Pez Cebra/genética
10.
PLoS Pathog ; 14(6): e1007140, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29906288

RESUMEN

Iron is essential for many cellular processes, but can generate highly toxic hydroxyl radicals in the presence of oxygen. Therefore, intracellular iron accumulation must be tightly regulated, by balancing uptake with storage or export. Iron uptake in Leishmania is mediated by the coordinated action of two plasma membrane proteins, the ferric iron reductase LFR1 and the ferrous iron transporter LIT1. However, how these parasites regulate their cytosolic iron concentration to prevent toxicity remains unknown. Here we characterize Leishmania Iron Regulator 1 (LIR1), an iron responsive protein with similarity to membrane transporters of the major facilitator superfamily (MFS) and plant nodulin-like proteins. LIR1 localizes on the plasma membrane of L. amazonensis promastigotes and intracellular amastigotes. After heterologous expression in Arabidopsis thaliana, LIR1 decreases the iron content of leaves and worsens the chlorotic phenotype of plants lacking the iron importer IRT1. Consistent with a role in iron efflux, LIR1 deficiency does not affect iron uptake by L. amazonensis but significantly increases the amount of iron retained intracellularly in the parasites. LIR1 null parasites are more sensitive to iron toxicity and have drastically impaired infectivity, phenotypes that are reversed by LIR1 complementation. We conclude that LIR1 functions as a plasma membrane iron exporter with a critical role in maintaining iron homeostasis and promoting infectivity in L. amazonensis.


Asunto(s)
Membrana Celular/metabolismo , Hierro/farmacología , Leishmania/efectos de los fármacos , Leishmaniasis/prevención & control , Proteínas Protozoarias/metabolismo , Virulencia/efectos de los fármacos , Animales , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Arabidopsis/parasitología , Transporte Biológico , Células Cultivadas , Femenino , Homeostasis , Hierro/toxicidad , Leishmaniasis/metabolismo , Leishmaniasis/parasitología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/parasitología , Ratones , Ratones Endogámicos C57BL , Proteínas Protozoarias/genética
11.
Mol Genet Metab ; 128(3): 204-212, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30626549

RESUMEN

Coordination of iron acquisition and heme synthesis is required for effective erythropoiesis. The small teleost zebrafish (Danio rerio) is an ideal vertebrate animal model to replicate various aspects of human physiology and provides an efficient and cost-effective way to model human pathophysiology. Importantly, zebrafish erythropoiesis largely resembles mammalian erythropoiesis. Gene discovery by large-scale forward mutagenesis screening has identified key components in heme and iron metabolism. Reverse genetic screens, using morpholino-knockdown and CRISPR/Cas9, coupled with the genetic tractability of the developing embryo have further accelerated functional studies. Ultimately, the ex utero development of zebrafish embryos combined with their transparency and developmental plasticity could provide a deeper understanding of the role of iron and heme metabolism during early vertebrate embryonic development.


Asunto(s)
Modelos Animales de Enfermedad , Eritropoyesis , Hemo/metabolismo , Hierro/metabolismo , Pez Cebra/embriología , Animales , Desarrollo Embrionario , Humanos , Ratones
12.
Proc Natl Acad Sci U S A ; 113(27): 7539-44, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27247412

RESUMEN

Heme is an essential cofactor and signaling molecule. Heme acquisition by proteins and heme signaling are ultimately reliant on the ability to mobilize labile heme (LH). However, the properties of LH pools, including concentration, oxidation state, distribution, speciation, and dynamics, are poorly understood. Herein, we elucidate the nature and dynamics of LH using genetically encoded ratiometric fluorescent heme sensors in the unicellular eukaryote Saccharomyces cerevisiae We find that the subcellular distribution of LH is heterogeneous; the cytosol maintains LH at ∼20-40 nM, whereas the mitochondria and nucleus maintain it at concentrations below 2.5 nM. Further, we find that the signaling molecule nitric oxide can initiate the rapid mobilization of heme in the cytosol and nucleus from certain thiol-containing factors. We also find that the glycolytic enzyme glyceraldehyde phosphate dehydrogenase constitutes a major cellular heme buffer, and is responsible for maintaining the activity of the heme-dependent nuclear transcription factor heme activator protein (Hap1p). Altogether, we demonstrate that the heme sensors can be used to reveal fundamental aspects of heme trafficking and dynamics and can be used across multiple organisms, including Escherichia coli, yeast, and human cell lines.


Asunto(s)
Técnicas Biosensibles , Hemo/metabolismo , Escherichia coli , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Células HEK293 , Humanos , Óxido Nítrico/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
13.
Proc Natl Acad Sci U S A ; 113(35): E5144-52, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27528661

RESUMEN

Heme is an essential prosthetic group in proteins that reside in virtually every subcellular compartment performing diverse biological functions. Irrespective of whether heme is synthesized in the mitochondria or imported from the environment, this hydrophobic and potentially toxic metalloporphyrin has to be trafficked across membrane barriers, a concept heretofore poorly understood. Here we show, using subcellular-targeted, genetically encoded hemoprotein peroxidase reporters, that both extracellular and endogenous heme contribute to cellular labile heme and that extracellular heme can be transported and used in toto by hemoproteins in all six subcellular compartments examined. The reporters are robust, show large signal-to-background ratio, and provide sufficient range to detect changes in intracellular labile heme. Restoration of reporter activity by heme is organelle-specific, with the Golgi and endoplasmic reticulum being important sites for both exogenous and endogenous heme trafficking. Expression of peroxidase reporters in Caenorhabditis elegans shows that environmental heme influences labile heme in a tissue-dependent manner; reporter activity in the intestine shows a linear increase compared with muscle or hypodermis, with the lowest heme threshold in neurons. Our results demonstrate that the trafficking pathways for exogenous and endogenous heme are distinct, with intrinsic preference for specific subcellular compartments. We anticipate our results will serve as a heuristic paradigm for more sophisticated studies on heme trafficking in cellular and whole-animal models.


Asunto(s)
Hemo/metabolismo , Hemoproteínas/metabolismo , Espacio Intracelular/metabolismo , Peroxidasa/metabolismo , Animales , Animales Modificados Genéticamente , Transporte Biológico , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Membrana Celular/metabolismo , Endocitosis , Células HEK293 , Hemo/química , Humanos , Microscopía Confocal , Orgánulos/metabolismo , Peroxidasa/química , Peroxidasa/genética
14.
Anal Chem ; 90(5): 3395-3401, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29401392

RESUMEN

Heme, a hydrophobic and cytotoxic macrocycle, is an essential cofactor in a large number of proteins and is important for cell signaling. This must mean that heme is mobilized from its place of synthesis or entry into the cell to other parts of the cell where hemoproteins reside. However, the cellular dynamics of heme movement is not well understood, in large part due to the inability to image heme noninvasively in live biological systems. Here, using high-resolution transient absorption microscopy, we showed that heme storage and distribution is dynamic in Caenorhabditis elegans. Intracellular heme exists in concentrated granular puncta which localizes to lysosomal-related organelles. These granules are dynamic, and their breaking down into smaller granules provides a mechanism by which heme stores can be mobilized. Collectively, these direct and noninvasive dynamic imaging techniques provide new insights into heme storage and transport and open a new avenue for label-free investigation of heme function and regulation in living systems.


Asunto(s)
Caenorhabditis elegans/ultraestructura , Hemo/análisis , Animales , Células HEK293 , Humanos , Lisosomas/ultraestructura , Microscopía/métodos , Imagen Óptica/métodos
15.
Acc Chem Res ; 49(6): 1104-10, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27254265

RESUMEN

Heme is universally recognized as an essential and ubiquitous prosthetic group that enables proteins to carry out a diverse array of functions. All heme-dependent processes, from protein hemylation to heme signaling, require the dynamic and rapid mobilization of heme to hemoproteins present in virtually every subcellular compartment. The cytotoxicity and hydrophobicity of heme necessitates that heme mobilization is carefully controlled at the cellular and systemic level. However, the molecules and mechanisms that mediate heme homeostasis are poorly understood. In this Account, we provide a heuristic paradigm with which to conceptualize heme trafficking and highlight the most recent developments in the mechanisms underlying heme trafficking. As an iron-containing tetrapyrrole, heme exhibits properties of both transition metals and lipids. Accordingly, we propose its transport and trafficking will reflect principles gleaned from the trafficking of both metals and lipids. Using this conceptual framework, we follow the flow of heme from the final step of heme synthesis in the mitochondria to hemoproteins present in various subcellular organelles. Further, given that many cells and animals that cannot make heme can assimilate it intact from nutritional sources, we propose that intercellular heme trafficking pathways must exist. This necessitates that heme be able to be imported and exported from cells, escorted between cells and organs, and regulated at the organismal level via a coordinated systemic process. In this Account, we highlight recently discovered heme transport and trafficking factors and provide the biochemical foundation for the cell and systems biology of heme. Altogether, we seek to reconceptualize heme from an exchange inert cofactor buried in hemoprotein active sites to an exchange labile and mobile metallonutrient.


Asunto(s)
Hemo/metabolismo , Metabolismo de los Lípidos , Animales , Transporte Biológico , Citosol/metabolismo , Mitocondrias/metabolismo
16.
Blood ; 125(19): 2893-7, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25778532

RESUMEN

Macrophages play a critical role in iron homeostasis via their intimate association with developing and dying red cells. Central nurse macrophages promote erythropoiesis in the erythroblastic island niche. These macrophages make physical contact with erythroblasts, enabling signaling and the transfer of growth factors and possibly nutrients to the cells in their care. Human mature red cells have a lifespan of 120 days before they become senescent and again come into contact with macrophages. Phagocytosis of red blood cells is the main source of iron flux in the body, because heme must be recycled from approximately 270 billion hemoglobin molecules in each red cell, and roughly 2 million senescent red cells are recycled each second. Here we will review pathways for iron trafficking found at the macrophage-erythroid axis, with a focus on possible roles for the transport of heme in toto.


Asunto(s)
Eritrocitos/citología , Hierro/metabolismo , Macrófagos/metabolismo , Animales , Eritrocitos/metabolismo , Homeostasis , Humanos , Macrófagos/citología
17.
FASEB J ; 30(10): 3501-3514, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27363426

RESUMEN

Nematodes lack a heme biosynthetic pathway and must acquire heme from exogenous sources. Given the indispensable role of heme, this auxotrophy may be exploited to develop drugs that interfere with heme uptake in parasites. Although multiple heme-responsive genes (HRGs) have been characterized within the free-living nematode Caenorhabditis elegans, we have undertaken the first study of heme transport in Brugia malayi, a causative agent of lymphatic filariasis. Through functional assays in yeast, as well as heme analog, RNAi, and transcriptomic experiments, we have shown that the heme transporter B. malayi HRG-1 (BmHRG-1) is indeed functional in B. malayi In addition, BmHRG-1 localizes both to the endocytic compartments and cell membrane when expressed in yeast cells. Transcriptomic sequencing revealed that BmHRG-1, BmHRG-2, and BmMRP-5 (all orthologs of HRGs in C. elegans) are down-regulated in heme-treated B. malayi, as compared to non-heme-treated control worms. Likely because of short gene lengths, multiple exons, other HRGs in B. malayi (BmHRG-3-6) remain unidentified. Although the precise mechanisms of heme homeostasis in a nematode with the ability to acquire heme remains unknown, this study clearly demonstrates that the filarial nematode B. malayi is capable of transporting exogenous heme.-Luck, A. N., Yuan, X., Voronin, D., Slatko, B. E., Hamza, I., Foster, J. M. Heme acquisition in the parasitic filarial nematode Brugia malayi.


Asunto(s)
Brugia Malayi , Hemo/inmunología , Homeostasis/fisiología , Animales , Caenorhabditis elegans , Interferencia de ARN
18.
J Biol Inorg Chem ; 20(8): 1253-61, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26531103

RESUMEN

C. elegans is a heme auxotroph that requires environmental heme for sustenance. As such, worms utilize HRG-3, a small heme-trafficking protein, to traffic heme from the intestine to extra-intestinal tissues and embryos. However, how HRG-3 binds and delivers heme remains unknown. In this study, we utilized electron paramagnetic resonance spectroscopy together with site-directed spin labeling, absorption spectroscopy, circular dichroism, and mutagenesis to gain structural and molecular insights into HRG-3. We showed that HRG-3 is a dimer, whereas H9 and H10 are significant residues that preserve a specific conformational state in the HRG-3 dimer. In the absence of H9 and H10, HRG-3 can still bind heme, although with a different affinity. Furthermore, the heme-binding site is closer to the N-termini than to the C-termini. Taken together, our results lay the groundwork for future mechanistic and structural studies of HRG-3 and inter-tissue heme trafficking in metazoans.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Hemoproteínas/química , Hemoproteínas/metabolismo , Histidina/química , Histidina/metabolismo , Animales , Caenorhabditis elegans/química , Dicroismo Circular , Espectroscopía de Resonancia por Spin del Electrón , Electroforesis en Gel de Poliacrilamida
19.
Biometals ; 28(3): 481-9, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25724951

RESUMEN

Heme is an essential cofactor for proteins involved in diverse biological processes such as oxygen transport, electron transport, and microRNA processing. Free heme is hydrophobic and cytotoxic, implying that specific trafficking pathways must exist for the delivery of heme to target hemoproteins which reside in various subcellular locales. Although heme biosynthesis and catabolism have been well characterized, the pathways for trafficking heme within and between cells remain poorly understood. Caenorhabditis elegans serves as a unique animal model for uncovering these pathways because, unlike vertebrates, the worm lacks enzymes to synthesize heme and therefore is crucially dependent on dietary heme for sustenance. Using C. elegans as a genetic animal model, several novel heme trafficking molecules have been identified. Importantly, these proteins have corresponding homologs in vertebrates underscoring the power of using C. elegans, a bloodless worm, in elucidating pathways in heme homeostasis and hematology in humans. Since iron deficiency and anemia are often exacerbated by parasites such as helminths and protozoa which also rely on host heme for survival, C. elegans will be an ideal model to identify anti-parasitic drugs that target heme transport pathways unique to the parasite.


Asunto(s)
Caenorhabditis elegans/metabolismo , Hemo/metabolismo , Animales , Homeostasis
20.
PLoS Pathog ; 8(7): e1002795, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22807677

RESUMEN

Trypanosomatid protozoan parasites lack a functional heme biosynthetic pathway, so must acquire heme from the environment to survive. However, the molecular pathway responsible for heme acquisition by these organisms is unknown. Here we show that L. amazonensis LHR1, a homolog of the C. elegans plasma membrane heme transporter HRG-4, functions in heme transport. Tagged LHR1 localized to the plasma membrane and to endocytic compartments, in both L. amazonensis and mammalian cells. Heme deprivation in L. amazonensis increased LHR1 transcript levels, promoted uptake of the fluorescent heme analog ZnMP, and increased the total intracellular heme content of promastigotes. Conversely, deletion of one LHR1 allele reduced ZnMP uptake and the intracellular heme pool by approximately 50%, indicating that LHR1 is a major heme importer in L. amazonensis. Viable parasites with correct replacement of both LHR1 alleles could not be obtained despite extensive attempts, suggesting that this gene is essential for the survival of promastigotes. Notably, LHR1 expression allowed Saccharomyces cerevisiae to import heme from the environment, and rescued growth of a strain deficient in heme biosynthesis. Syntenic genes with high sequence identity to LHR1 are present in the genomes of several species of Leishmania and also Trypanosoma cruzi and Trypanosoma brucei, indicating that therapeutic agents targeting this transporter could be effective against a broad group of trypanosomatid parasites that cause serious human disease.


Asunto(s)
Hemo/metabolismo , Leishmania mexicana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Células HeLa , Hemo/deficiencia , Humanos , Leishmania mexicana/patogenicidad , Macrófagos/metabolismo , Macrófagos/parasitología , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Metaloporfirinas/metabolismo , Ratones , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA