Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 170(3): 429-442.e11, 2017 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-28753423

RESUMEN

Hunger, driven by negative energy balance, elicits the search for and consumption of food. While this response is in part mediated by neurons in the hypothalamus, the role of specific cell types in other brain regions is less well defined. Here, we show that neurons in the dorsal raphe nucleus, expressing vesicular transporters for GABA or glutamate (hereafter, DRNVgat and DRNVGLUT3 neurons), are reciprocally activated by changes in energy balance and that modulating their activity has opposite effects on feeding-DRNVgat neurons increase, whereas DRNVGLUT3 neurons suppress, food intake. Furthermore, modulation of these neurons in obese (ob/ob) mice suppresses food intake and body weight and normalizes locomotor activity. Finally, using molecular profiling, we identify druggable targets in these neurons and show that local infusion of agonists for specific receptors on these neurons has potent effects on feeding. These data establish the DRN as an important node controlling energy balance. PAPERCLIP.


Asunto(s)
Regulación del Apetito , Núcleo Dorsal del Rafe/metabolismo , Neuronas/metabolismo , Animales , Peso Corporal , Encéfalo/fisiología , Núcleo Dorsal del Rafe/citología , Electrofisiología , Ayuno , Hambre , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Optogenética
2.
Mol Psychiatry ; 28(3): 1090-1100, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36642737

RESUMEN

Pain and anxiety comorbidities are a common health problem, but the neural mechanisms underlying comorbidity remain unclear. We propose that comorbidity implies that similar brain regions and neural circuits, with the lateral septum (LS) as a major candidate, process pain and anxiety. From results of behavioral and neurophysiological experiments combined with selective LS manipulation in mice, we find that LS GABAergic neurons were critical for both pain and anxiety. Selective activation of LS GABAergic neurons induced hyperalgesia and anxiety-like behaviors. In contrast, selective inhibition of LS GABAergic neurons reduced nocifensive withdrawal responses and anxiety-like behaviors. This was found in two mouse models, one for chronic inflammatory pain (induced by complete Freund's adjuvant) and one for anxiety (induced by chronic restraint stress). Additionally, using TetTag chemogenetics to functionally mark LS neurons, we found that activation of LS neurons by acute pain stimulation could induce anxiety-like behaviors and vice versa. Furthermore, we show that LS GABAergic projection to the lateral hypothalamus (LH) plays an important role in the regulation of pain and anxiety comorbidities. Our study revealed that LS GABAergic neurons, and especially the LSGABAergic-LH circuit, are a critical to the modulation of pain and anxiety comorbidities.


Asunto(s)
Dolor Crónico , Área Hipotalámica Lateral , Ratones , Animales , Área Hipotalámica Lateral/fisiología , Ansiedad , Comorbilidad , Neuronas GABAérgicas/fisiología
3.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38612683

RESUMEN

The midbrain dopamine system is a sophisticated hub that integrates diverse inputs to control multiple physiological functions, including locomotion, motivation, cognition, reward, as well as maternal and reproductive behaviors. Dopamine is a neurotransmitter that binds to G-protein-coupled receptors. Dopamine also works together with other neurotransmitters and various neuropeptides to maintain the balance of synaptic functions. The dysfunction of the dopamine system leads to several conditions, including Parkinson's disease, Huntington's disease, major depression, schizophrenia, and drug addiction. The ventral tegmental area (VTA) has been identified as an important relay nucleus that modulates homeostatic plasticity in the midbrain dopamine system. Due to the complexity of synaptic transmissions and input-output connections in the VTA, the structure and function of this crucial brain region are still not fully understood. In this review article, we mainly focus on the cell types, neurotransmitters, neuropeptides, ion channels, receptors, and neural circuits of the VTA dopamine system, with the hope of obtaining new insight into the formation and function of this vital brain region.


Asunto(s)
Trastorno Depresivo Mayor , Neuropéptidos , Humanos , Dopamina , Área Tegmental Ventral , Neurotransmisores
4.
Pharmacol Res ; 187: 106598, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36481260

RESUMEN

Resilience represents an active adaption process in the face of adversity, trauma, tragedy, threats, or significant sources of stress. Investigations of neurobiological mechanisms of resilience opens an innovative direction for preclinical research and drug development for various stress-related disorders. The locus coeruleus norepinephrine system has been implicated in mediating stress susceptibility versus resilience. It has attracted increasing attention over the past decades with the revolution of modern neuroscience technologies. In this review article, we first briefly go over resilience-related concepts and introduce rodent paradigms for segregation of susceptibility and resilience, then highlight recent literature that identifies the neuronal and molecular substrates of active resilience in the locus coeruleus, and discuss possible future directions for resilience investigations.


Asunto(s)
Norepinefrina
5.
Nature ; 534(7609): 688-92, 2016 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-27357796

RESUMEN

Maladaptive aggressive behaviour is associated with a number of neuropsychiatric disorders and is thought to result partly from the inappropriate activation of brain reward systems in response to aggressive or violent social stimuli. Nuclei within the ventromedial hypothalamus, extended amygdala and limbic circuits are known to encode initiation of aggression; however, little is known about the neural mechanisms that directly modulate the motivational component of aggressive behaviour. Here we established a mouse model to measure the valence of aggressive inter-male social interaction with a smaller subordinate intruder as reinforcement for the development of conditioned place preference (CPP). Aggressors develop a CPP, whereas non-aggressors develop a conditioned place aversion to the intruder-paired context. Furthermore, we identify a functional GABAergic projection from the basal forebrain (BF) to the lateral habenula (lHb) that bi-directionally controls the valence of aggressive interactions. Circuit-specific silencing of GABAergic BF-lHb terminals of aggressors with halorhodopsin (NpHR3.0) increases lHb neuronal firing and abolishes CPP to the intruder-paired context. Activation of GABAergic BF-lHb terminals of non-aggressors with channelrhodopsin (ChR2) decreases lHb neuronal firing and promotes CPP to the intruder-paired context. Finally, we show that altering inhibitory transmission at BF-lHb terminals does not control the initiation of aggressive behaviour. These results demonstrate that the BF-lHb circuit has a critical role in regulating the valence of inter-male aggressive behaviour and provide novel mechanistic insight into the neural circuits modulating aggression reward processing.


Asunto(s)
Agresión/fisiología , Prosencéfalo Basal/fisiología , Habénula/fisiología , Vías Nerviosas/fisiología , Recompensa , Potenciales de Acción , Animales , Prosencéfalo Basal/citología , Condicionamiento Psicológico/fisiología , Neuronas GABAérgicas/metabolismo , Habénula/citología , Halorrodopsinas/metabolismo , Individualidad , Masculino , Ratones , Modelos Neurológicos , Motivación , Inhibición Neural , Refuerzo en Psicología , Rodopsina/metabolismo , Conducta Social
6.
J Neurosci ; 40(32): 6228-6233, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32561672

RESUMEN

Chronic stress in both humans and rodents induces a robust downregulation of neuroligin-2, a key component of the inhibitory synapse, in the NAc that modifies behavioral coping mechanisms and stress resiliency in mice. Here we extend this observation by examining the role of two other inhibitory synapse constituents, vesicular GABA transporter (vGAT) and gephyrin, in the NAc of male mice that underwent chronic social defeat stress (CSDS) and in patients with major depressive disorder (MDD). We first performed transcriptional profiling of vGAT and gephyrin in postmortem NAc samples from a cohort of healthy controls, medicated, and nonmedicated MDD patients. In parallel, we conducted whole-cell electrophysiology recordings in the NAc of stress-susceptible and stress-resilient male mice following 10 d of CSDS. Finally, we used immunohistochemistry to analyze protein levels of vGAT and gephyrin in the NAc of mice after CSDS. We found that decreased vGAT and gephyrin mRNA in the NAc of nonmedicated MDD patients is paralleled by decreased inhibitory synapse markers and decreased frequency of mini inhibitory postsynaptic currents (mIPSC) in the NAc of susceptible mice, indicating a reduction in the number of NAc inhibitory synapses that is correlated with depression-like behavior. Overall, these findings suggest a common state of reduced inhibitory tone in the NAc in depression and stress susceptibility.SIGNIFICANCE STATEMENT Existing studies focus on excitatory synaptic changes after social stress, although little is known about stress-induced inhibitory synaptic plasticity and its relevance for neuropsychiatric disease. These results extend our previous findings on the critical role of impaired inhibitory tone in the NAc following stress and provide new neuropathological evidence for reduced levels of inhibitory synaptic markers in human NAc from nonmedicated major depressive disorder patients. This finding is corroborated in stress-susceptible male mice that have undergone chronic social defeat stress, a mouse model of depression, at both the level of synaptic function and protein expression. These data support the hypothesis that reduced inhibitory synaptic transmission within the NAc plays a critical role in the stress response.


Asunto(s)
Depresión/metabolismo , Potenciales Postsinápticos Inhibidores , Núcleo Accumbens/fisiopatología , Derrota Social , Estrés Psicológico/metabolismo , Adulto , Anciano , Animales , Depresión/fisiopatología , Femenino , Humanos , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Persona de Mediana Edad , Núcleo Accumbens/metabolismo , Estrés Psicológico/fisiopatología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
7.
Mol Psychiatry ; 25(6): 1323-1333, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-30385872

RESUMEN

Major depressive disorder (MDD) is a leading cause of disability worldwide, yet current treatment strategies remain limited in their mechanistic diversity. Recent evidence has highlighted a promising novel pharmaceutical target-the KCNQ-type potassium channel-for the treatment of depressive disorders, which may exert a therapeutic effect via functional changes within the brain reward system, including the ventral striatum. The current study assessed the effects of the KCNQ channel opener ezogabine (also known as retigabine) on reward circuitry and clinical symptoms in patients with MDD. Eighteen medication-free individuals with MDD currently in a major depressive episode were enrolled in an open-label study and received ezogabine up to 900 mg/day orally over the course of 10 weeks. Resting-state functional magnetic resonance imaging data were collected at baseline and posttreatment to examine brain reward circuitry. Reward learning was measured using a computerized probabilistic reward task. After treatment with ezogabine, subjects exhibited a significant reduction of depressive symptoms (Montgomery-Asberg Depression Rating Scale score change: -13.7 ± 9.7, p < 0.001, d = 2.08) and anhedonic symptoms (Snaith-Hamilton Pleasure Scale score change: -6.1 ± 5.3, p < 0.001, d = 1.00), which remained significant even after controlling for overall depression severity. Improvement in depression was associated with decreased functional connectivity between the ventral caudate and clusters within the mid-cingulate cortex and posterior cingulate cortex (n = 14, voxel-wise p < 0.005). In addition, a subgroup of patients tested with a probabilistic reward task (n = 9) showed increased reward learning following treatment. These findings highlight the KCNQ-type potassium channel as a promising target for future drug discovery efforts in mood disorders.


Asunto(s)
Carbamatos/farmacología , Carbamatos/uso terapéutico , Trastorno Depresivo Mayor/tratamiento farmacológico , Activación del Canal Iónico/efectos de los fármacos , Fenilendiaminas/farmacología , Fenilendiaminas/uso terapéutico , Estriado Ventral/efectos de los fármacos , Trastorno Depresivo Mayor/metabolismo , Femenino , Humanos , Canales de Potasio KCNQ/agonistas , Canales de Potasio KCNQ/metabolismo , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Recompensa , Estriado Ventral/metabolismo
8.
J Neurosci ; 38(3): 575-585, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29196318

RESUMEN

Cocaine self-administration increases expression of GluA1 subunits in ventral tegmental area (VTA) dopamine neurons, which subsequently enhance the motivation for cocaine. This increase in GluA1 may be dependent on concomitant NMDA receptor (NMDAR) activation during self-administration, similar to cocaine-induced long-term potentiation in the VTA. In this study, we used viral-mediated expression of a dominant-negative GluN1 subunit (HSV-dnGluN1) in VTA neurons to study the effect of transient NMDAR inactivation on the GluA1 increases induced by chronic cocaine self-administration in male rats. We found that dnGluN1 expression in the VTA limited to the 3 weeks of cocaine self-administration prevents the subsequent increase in tissue GluA1 levels when compared with control infusions of HSV-LacZ. Surprisingly, dnGluN1 expression led to an enhancement in the motivation to self-administer cocaine as measured using a progressive ratio reinforcement schedule and to enhanced cocaine seeking measured in extinction/reinstatement tests following an extended 3 week withdrawal period. Despite blocking tissue GluA1 increases in cocaine self-administering animals, the HSV-dnGluN1 treatment resulted in increased membrane levels of GluA1 and GluN2B, along with markedly higher locomotor responses to intra-VTA infusions of AMPA, suggesting a paradoxical increase in VTA AMPA receptor responsiveness. Together, these data suggest that NMDARs mediate cocaine-induced increases in VTA GluA1 expression, but such transient NMDAR inactivation also leads to compensatory scaling of synaptic AMPA receptors that enhance the motivational for cocaine.SIGNIFICANCE STATEMENT Dopamine neurons in the ventral tegmental area (VTA) are critical substrates of drug rewards. Animal models indicate that chronic cocaine use enhances excitatory glutamatergic input to these neurons, making them more susceptible to environmental stimuli that trigger drug craving and relapse. We previously found that self-administration of cocaine increases AMPA glutamate receptors in the VTA, and this effect enhances motivation for cocaine. Here we report that the mechanism for this upregulation involves NMDA receptor activity during cocaine use. While interference with NMDA receptor function blocks AMPA receptor upregulation, it also produces a paradoxical enhancement in membrane AMPA receptor subunits, AMPA responsiveness, and the motivation for cocaine. Thus, pharmacotherapy targeting NMDA receptors may inadvertently produce substantial adverse consequences for cocaine addiction.


Asunto(s)
Trastornos Relacionados con Cocaína/metabolismo , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Área Tegmental Ventral/metabolismo , Animales , Cocaína/farmacología , Trastornos Relacionados con Cocaína/fisiopatología , Inhibidores de Captación de Dopamina/farmacología , Comportamiento de Búsqueda de Drogas/fisiología , Masculino , Ratas , Ratas Sprague-Dawley , Autoadministración , Regulación hacia Arriba , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/fisiopatología
9.
Eur J Neurosci ; 50(3): 2180-2200, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30251377

RESUMEN

Nicotine and alcohol addiction are leading causes of preventable death worldwide and continue to constitute a huge socio-economic burden. Both nicotine and alcohol perturb the brain's mesocorticolimbic system. Dopamine (DA) neurons projecting from the ventral tegmental area (VTA) to multiple downstream structures, including the nucleus accumbens, prefrontal cortex, and amygdala, are highly involved in the maintenance of healthy brain function. VTA DA neurons play a crucial role in associative learning and reinforcement. Nicotine and alcohol usurp these functions, promoting reinforcement of drug taking behaviors. In this review, we will first describe how nicotine and alcohol individually affect VTA DA neurons by examining how drug exposure alters the heterogeneous VTA microcircuit and network-wide projections. We will also examine how coadministration or previous exposure to nicotine or alcohol may augment the reinforcing effects of the other. Additionally, this review briefly summarizes the role of VTA DA neurons in nicotine, alcohol, and their synergistic effects in reinforcement and also addresses the remaining questions related to the circuit-function specificity of the dopaminergic system in mediating nicotine/alcohol reinforcement and comorbidity.


Asunto(s)
Consumo de Bebidas Alcohólicas/metabolismo , Neuronas Dopaminérgicas/metabolismo , Etanol/administración & dosificación , Mesencéfalo/metabolismo , Nicotina/administración & dosificación , Refuerzo en Psicología , Consumo de Bebidas Alcohólicas/psicología , Animales , Neuronas Dopaminérgicas/efectos de los fármacos , Etanol/efectos adversos , Humanos , Mesencéfalo/efectos de los fármacos , Red Nerviosa/efectos de los fármacos , Red Nerviosa/metabolismo , Nicotina/efectos adversos
10.
Nature ; 493(7433): 532-6, 2013 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-23235832

RESUMEN

Ventral tegmental area (VTA) dopamine neurons in the brain's reward circuit have a crucial role in mediating stress responses, including determining susceptibility versus resilience to social-stress-induced behavioural abnormalities. VTA dopamine neurons show two in vivo patterns of firing: low frequency tonic firing and high frequency phasic firing. Phasic firing of the neurons, which is well known to encode reward signals, is upregulated by repeated social-defeat stress, a highly validated mouse model of depression. Surprisingly, this pathophysiological effect is seen in susceptible mice only, with no apparent change in firing rate in resilient individuals. However, direct evidence--in real time--linking dopamine neuron phasic firing in promoting the susceptible (depression-like) phenotype is lacking. Here we took advantage of the temporal precision and cell-type and projection-pathway specificity of optogenetics to show that enhanced phasic firing of these neurons mediates susceptibility to social-defeat stress in freely behaving mice. We show that optogenetic induction of phasic, but not tonic, firing in VTA dopamine neurons of mice undergoing a subthreshold social-defeat paradigm rapidly induced a susceptible phenotype as measured by social avoidance and decreased sucrose preference. Optogenetic phasic stimulation of these neurons also quickly induced a susceptible phenotype in previously resilient mice that had been subjected to repeated social-defeat stress. Furthermore, we show differences in projection-pathway specificity in promoting stress susceptibility: phasic activation of VTA neurons projecting to the nucleus accumbens (NAc), but not to the medial prefrontal cortex (mPFC), induced susceptibility to social-defeat stress. Conversely, optogenetic inhibition of the VTA-NAc projection induced resilience, whereas inhibition of the VTA-mPFC projection promoted susceptibility. Overall, these studies reveal novel firing-pattern- and neural-circuit-specific mechanisms of depression.


Asunto(s)
Depresión/fisiopatología , Neuronas Dopaminérgicas/metabolismo , Mesencéfalo/citología , Conducta Social , Estrés Psicológico/fisiopatología , Animales , Depresión/etiología , Preferencias Alimentarias , Masculino , Ratones , Vías Nerviosas , Núcleo Accumbens/fisiología , Optogenética , Fenotipo , Corteza Prefrontal/fisiología , Estrés Psicológico/complicaciones , Sacarosa/administración & dosificación , Factores de Tiempo , Área Tegmental Ventral/fisiología
11.
Chem Biodivers ; 14(11)2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28805955

RESUMEN

A new cis-stilbenoid, 1,9-dihydroxy-10-methoxy-6H-dibenzo[b,f]oxocin-6-one (2) was isolated from the AcOEt extract of the stem barks of Acanthopanax leucorrhizus, along with three known stilbenoids, 9-hydroxy-10-methoxy-6H-dibenzo[b,f]oxocin-6-one (1), 5-O-methyl-(E)-resveratrol 3-O-ß-d-glucopyranoside (3), and (E)-resveratrol 3-O-ß-d-xylopyranoside (4). Two derivatives (2a and 2b) were synthesized by the structural modification of compound 2, which exhibited certain cytotoxic activities against HT-29 and HeLa cell lines in vitro. All compounds were structurally characterized by comprehensive analysis of their spectroscopic data and comparison with literature information, and evaluated for their cytotoxic activities against three human tumor cell lines (HL-60, HT-29, and HeLa) by the standard MTT assay in vitro. The results showed that derivatives 2a and 2b exhibited strong activities than compounds 2 against HT-29 and HeLa cell lines.


Asunto(s)
Eleutherococcus/química , Estilbenos/química , Supervivencia Celular/efectos de los fármacos , Eleutherococcus/metabolismo , Células HL-60 , Células HT29 , Células HeLa , Humanos , Espectroscopía de Resonancia Magnética , Conformación Molecular , Corteza de la Planta/química , Corteza de la Planta/metabolismo , Extractos Vegetales/química , Tallos de la Planta/química , Tallos de la Planta/metabolismo , Estilbenos/aislamiento & purificación , Estilbenos/toxicidad
12.
Cell Mol Life Sci ; 72(24): 4825-48, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26542802

RESUMEN

Major depressive disorder (MDD) is a common psychiatric disorder effecting approximately 121 million people worldwide and recent reports from the World Health Organization (WHO) suggest that it will be the leading contributor to the global burden of diseases. At present, the most commonly used treatment strategies are still based on the monoamine hypothesis that has been the predominant theory in the last 60 years. Clinical observations show that only a subset of depressed patients exhibits full remission when treated with classical monoamine-based antidepressants together with the fact that patients exhibit multiple symptoms suggest that the pathophysiology leading to mood disorders may differ between patients. Accumulating evidence indicates that depression is a neural circuit disorder and that onset of depression may be located at different regions of the brain involving different transmitter systems and molecular mechanisms. This review synthesises findings from rodent studies from which emerges a role for different, yet interconnected, molecular systems and associated neural circuits to the aetiology of depression.


Asunto(s)
Encéfalo/fisiopatología , Trastorno Depresivo Mayor/fisiopatología , Vías Nerviosas/fisiopatología , Encéfalo/metabolismo , Ritmo Circadiano , Trastorno Depresivo Mayor/metabolismo , Epigenómica , Homeostasis , Humanos , Modelos Biológicos , Vías Nerviosas/metabolismo , Transducción de Señal , Privación de Sueño/fisiopatología
13.
J Neurosci ; 33(47): 18381-95, 2013 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-24259563

RESUMEN

The transcription factor, ΔFosB, is robustly and persistently induced in striatum by several chronic stimuli, such as drugs of abuse, antipsychotic drugs, natural rewards, and stress. However, very few studies have examined the degree of ΔFosB induction in the two striatal medium spiny neuron (MSN) subtypes. We make use of fluorescent reporter BAC transgenic mice to evaluate induction of ΔFosB in dopamine receptor 1 (D1) enriched and dopamine receptor 2 (D2) enriched MSNs in ventral striatum, nucleus accumbens (NAc) shell and core, and in dorsal striatum (dStr) after chronic exposure to several drugs of abuse including cocaine, ethanol, Δ(9)-tetrahydrocannabinol, and opiates; the antipsychotic drug, haloperidol; juvenile enrichment; sucrose drinking; calorie restriction; the serotonin selective reuptake inhibitor antidepressant, fluoxetine; and social defeat stress. Our findings demonstrate that chronic exposure to many stimuli induces ΔFosB in an MSN-subtype selective pattern across all three striatal regions. To explore the circuit-mediated induction of ΔFosB in striatum, we use optogenetics to enhance activity in limbic brain regions that send synaptic inputs to NAc; these regions include the ventral tegmental area and several glutamatergic afferent regions: medial prefrontal cortex, amygdala, and ventral hippocampus. These optogenetic conditions lead to highly distinct patterns of ΔFosB induction in MSN subtypes in NAc core and shell. Together, these findings establish selective patterns of ΔFosB induction in striatal MSN subtypes in response to chronic stimuli and provide novel insight into the circuit-level mechanisms of ΔFosB induction in striatum.


Asunto(s)
Cuerpo Estriado/citología , Dopaminérgicos/farmacología , Emociones/efectos de los fármacos , Optogenética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Animales , Antidepresivos/farmacología , Agonistas de Receptores de Cannabinoides/farmacología , Dronabinol/farmacología , Ambiente , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/clasificación , Neuronas/efectos de los fármacos , Fosfopiruvato Hidratasa/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/genética
14.
bioRxiv ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38464110

RESUMEN

Drug addiction is a multifactorial syndrome in which genetic predispositions and exposure to environmental stressors constitute major risk factors for the early onset, escalation, and relapse of addictive behaviors. While it is well known that stress plays a key role in drug addiction, the genetic factors that make certain individuals particularly sensitive to stress and thereby more vulnerable to becoming addicted are unknown. In an effort to test a complex set of gene x environment interactions-specifically gene x chronic stress -here we leveraged a systems genetics resource: BXD recombinant inbred mice (BXD5, BXD8, BXD14, BXD22, BXD29, and BXD32) and their parental mouse lines, C57BL/6J and DBA/2J. Utilizing the chronic social defeat stress (CSDS) and chronic variable stress (CVS) paradigms, we first showed sexual dimorphism in the behavioral stress response between the mouse strains. Further, we observed an interaction between genetic background and vulnerability to prolonged exposure to non-social stressors. Finally, we found that DBA/2J and C57BL/6J mice pre-exposed to stress displayed differences in morphine sensitivity. Our results support the hypothesis that genetic variation in predisposition to stress responses influences morphine sensitivity and is likely to modulate the development of drug addiction.

15.
Nat Commun ; 15(1): 4947, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858350

RESUMEN

The potential brain mechanism underlying resilience to socially transferred allodynia remains unknown. Here, we utilize a well-established socially transferred allodynia paradigm to segregate male mice into pain-susceptible and pain-resilient subgroups. Brain screening results show that ventral tegmental area glutamatergic neurons are selectively activated in pain-resilient mice as compared to control and pain-susceptible mice. Chemogenetic manipulations demonstrate that activation and inhibition of ventral tegmental area glutamatergic neurons bi-directionally regulate resilience to socially transferred allodynia. Moreover, ventral tegmental area glutamatergic neurons that project specifically to the nucleus accumbens shell and lateral habenula regulate the development and maintenance of the pain-resilient phenotype, respectively. Together, we establish an approach to explore individual variations in pain response and identify ventral tegmental area glutamatergic neurons and related downstream circuits as critical targets for resilience to socially transferred allodynia and the development of conceptually innovative analgesics.


Asunto(s)
Ácido Glutámico , Hiperalgesia , Neuronas , Núcleo Accumbens , Área Tegmental Ventral , Animales , Masculino , Hiperalgesia/fisiopatología , Área Tegmental Ventral/fisiopatología , Ratones , Ácido Glutámico/metabolismo , Núcleo Accumbens/fisiopatología , Neuronas/metabolismo , Mesencéfalo , Ratones Endogámicos C57BL , Resiliencia Psicológica , Habénula , Modelos Animales de Enfermedad
16.
Proc Natl Acad Sci U S A ; 107(39): 17011-6, 2010 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-20837544

RESUMEN

Excessive inhibition of brain neurons in primary or slice cultures can induce homeostatic intrinsic plasticity, but the functional role and underlying molecular mechanisms of such plasticity are poorly understood. Here, we developed an ex vivo locus coeruleus (LC) slice culture system and successfully recapitulated the opiate-induced homeostatic adaptation in electrical activity of LC neurons seen in vivo. We investigated the mechanisms underlying this adaptation in LC slice cultures by use of viral-mediated gene transfer and genetic mutant mice. We found that short-term morphine treatment of slice cultures almost completely abolished the firing of LC neurons, whereas chronic morphine treatment increased LC neuronal excitability as revealed during withdrawal. This increased excitability was mediated by direct activation of opioid receptors and up-regulation of the cAMP pathway and accompanied by increased cAMP response-element binding protein (CREB) activity. Overexpression of a dominant negative CREB mutant blocked the increase in LC excitability induced by morphine- or cAMP-pathway activation. Knockdown of CREB in slice cultures from floxed CREB mice similarly decreased LC excitability. Furthermore, the ability of morphine or CREB overexpression to up-regulate LC firing was blocked by knockout of the CREB target adenylyl cyclase 8. Together, these findings provide direct evidence that prolonged exposure to morphine induces homeostatic plasticity intrinsic to LC neurons, involving up-regulation of the cAMP-CREB signaling pathway, which then enhances LC neuronal excitability.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Locus Coeruleus/efectos de los fármacos , Morfina/farmacología , Neuronas/efectos de los fármacos , Adaptación Fisiológica/efectos de los fármacos , Adenilil Ciclasas/genética , Animales , Células Cultivadas , AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/antagonistas & inhibidores , Técnicas de Inactivación de Genes , Homeostasis/efectos de los fármacos , Locus Coeruleus/metabolismo , Locus Coeruleus/fisiología , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley
17.
NPJ Parkinsons Dis ; 9(1): 1, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36609384

RESUMEN

Parkinson's disease (PD) is the most common neurodegenerative motor disorder, and its pathologic hallmarks include extensive dopaminergic neuronal degeneration in the Substantia nigra associated with Lewy bodies, predominantly consisting of phosphorylated and truncated α-Synuclein (α-Syn). Asparagine endopeptidase (AEP) cleaves human α-Syn at N103 residue and promotes its aggregation, contributing to PD pathogenesis. However, how AEP mediates Lewy body pathologies during aging and elicits PD onset remains incompletely understood. Knockout of AEP or C/EBPß from α-SNCA mice, and their chronic rotenone exposure models were used, and the mechanism of α-Syn from the gut that spread to the brain was observed. Here we report that C/EBPß/AEP pathway, aggravated by oxidative stress, is age-dependently activated and cleaves α-Syn N103 and regulates Lewy body-like pathologies spreading from the gut into the brain in human α-SNCA transgenic mice. Deletion of C/EBPß or AEP substantially diminished the oxidative stress, neuro-inflammation, and PD pathologies, attenuating motor dysfunctions in aged α-SNCA mice. Noticeably, PD pathologies initiate in the gut and progressively spread into the brain. Chronic gastric exposure to a low dose of rotenone initiates Lewy body-like pathologies in the gut that propagate into the brain in a C/EBPß/AEP-dependent manner. Hence, our studies demonstrate that C/EBPß/AEP pathway is critical for mediating Lewy body pathology progression in PD.

18.
Biol Psychiatry ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38061466

RESUMEN

BACKGROUND: Individual variability in response to rewarding stimuli is a striking but understudied phenomenon. The mesolimbic dopamine system is critical in encoding the reinforcing properties of both natural reward and alcohol; however, how innate or baseline differences in the response dynamics of this circuit define individual behavior and shape future vulnerability to alcohol remain unknown. METHODS: Using naturalistic behavioral assays, a voluntary alcohol drinking paradigm, in vivo fiber photometry, in vivo electrophysiology, and chemogenetics, we investigated how differences in mesolimbic neural circuit activity contribute to the individual variability seen in reward processing and, by proxy, alcohol drinking. RESULTS: We first characterized heterogeneous behavioral and neural responses to natural reward and defined how these baseline responses predicted future individual alcohol-drinking phenotypes in male mice. We then determined spontaneous ventral tegmental area dopamine neuron firing profiles associated with responses to natural reward that predicted alcohol drinking. Using a dual chemogenetic approach, we mimicked specific mesolimbic dopamine neuron firing activity before or during voluntary alcohol drinking to link unique neurophysiological profiles to individual phenotype. We show that hyperdopaminergic individuals exhibit a lower neuronal response to both natural reward and alcohol that predicts lower levels of alcohol consumption in the future. CONCLUSIONS: These findings reveal unique, circuit-specific neural signatures that predict future individual vulnerability or resistance to alcohol and expand the current knowledge base on how some individuals are able to titrate their alcohol consumption whereas others go on to engage in unhealthy alcohol-drinking behaviors.

19.
Neurobiol Stress ; 26: 100565, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37664876

RESUMEN

Repeated, long-term (weeks to months) exposure to standard antidepressant medications is required to achieve treatment efficacy. In contrast, acute ketamine quickly improves mood for an extended time. Recent work implicates that hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are involved in mediating ketamine's antidepressant effects. In this study, we directly targeted HCN channels and achieved ketamine-like rapid and sustained antidepressant efficacy. Our in vitro electrophysiological recordings first showed that HCN inhibitor DK-AH 269 (also called cilobradine) decreased the pathological HCN-mediated current (Ih) and abnormal hyperactivity of ventral tegmental area (VTA) dopamine (DA) neurons in a depressive-like model produced by chronic social defeat stress (CSDS). Our in vivo studies further showed that acute intra-VTA or acute systemic administration of DK-AH 269 normalized social behavior and rescued sucrose preference in CSDS-susceptible mice. The single-dose of DK-AH 269, both by intra-VTA microinfusion and intraperitoneal (ip) approaches, could produce an extended 13-day duration of antidepressant-like efficacy. Animals treated with acute DK-AH 269 spent less time immobile than vehicle-treated mice during forced swim test. A social behavioral reversal lasted up to 13 days following the acute DK-AH 269 ip injection, and this rapid and sustained antidepressant-like response is paralleled with a single-dose treatment of ketamine. This study provides a novel ion channel target for acutely acting, long-lasting antidepressant-like effects.

20.
J Neurosci ; 31(21): 7927-37, 2011 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-21613507

RESUMEN

Chronic cocaine use produces numerous biological changes in brain, but relatively few are functionally associated with cocaine reinforcement. Here we show that daily intravenous cocaine self-administration, but not passive cocaine administration, induces dynamic upregulation of the AMPA glutamate receptor subunits GluR1 and GluR2 in the ventral tegmental area (VTA) of rats. Increases in GluR1 protein and GluR1(S845) phosphorylation are associated with increased GluR1 mRNA in self-administering animals, whereas increased GluR2 protein levels occurred despite substantial decreases in GluR2 mRNA. We investigated the functional significance of GluR1 upregulation in the VTA on cocaine self-administration using localized viral-mediated gene transfer. Overexpression of GluR1(WT) in rat VTA primarily infected dopamine neurons (75%) and increased AMPA receptor-mediated membrane rectification in these neurons with AMPA application. Similar GluR1(WT) overexpression potentiated locomotor responses to intra-VTA AMPA, but not NMDA, infusions. In cocaine self-administering animals, overexpression of GluR1(WT) in the VTA markedly increased the motivation for cocaine injections on a progressive ratio schedule of cocaine reinforcement. In contrast, overexpression of protein kinase A-resistant GluR1(S845A) in the VTA reduced peak rates of cocaine self-administration on a fixed ratio reinforcement schedule. Neither viral vector altered sucrose self-administration, and overexpression of GluR1(WT) or GluR1(S845A) in the adjacent substantia nigra had no effect on cocaine self-administration. Together, these results suggest that dynamic regulation of AMPA receptors in the VTA during cocaine self-administration contributes to cocaine addiction by acting to facilitate subsequent cocaine use.


Asunto(s)
Conducta Adictiva , Cocaína/administración & dosificación , Motivación/fisiología , Receptores AMPA/fisiología , Refuerzo en Psicología , Área Tegmental Ventral/fisiología , Animales , Conducta Adictiva/psicología , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Masculino , Motivación/efectos de los fármacos , Células PC12 , Subunidades de Proteína/fisiología , Ratas , Ratas Sprague-Dawley , Autoadministración , Área Tegmental Ventral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA