Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Gastroenterol ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38668926

RESUMEN

INTRODUCTION: After colectomy with ileoanal pouch anastomosis (IPAA), many patients develop high bowel frequency (BF) refractory to antimotility agents, despite normal IPAA morphology. Low circulating levels of glucagon-like protein-1 (GLP-1), a modulator of gastroduodenal motility, have been reported after colectomy. METHODS: Double-blind crossover study of 8 IPAA patients with refractory high BF treated with daily administration of the GLP-1 receptor agonist liraglutide or placebo. RESULTS: Liraglutide, but not placebo, reduced daily BF by more than 35% ( P < 0.03). DISCUSSION: Larger randomized controlled studies are warranted to delineate the treatment potential of GLP-1 receptor agonists in IPAA patients suffering from noninflammatory high BF.

2.
Infect Immun ; 87(7)2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31036600

RESUMEN

Enterococcus faecalis strains are resident intestinal bacteria associated with invasive infections, inflammatory bowel diseases, and colon cancer. Although factors promoting E. faecalis colonization of intestines are not fully known, one implicated pathway is a phosphotransferase system (PTS) in E. faecalis strain OG1RF that phosphorylates gluconate and contains the genes OG1RF_12399 to OG1RF_12402 (OG1RF_12399-12402). We hypothesize that this PTS permits growth in gluconate, facilitates E. faecalis intestinal colonization, and exacerbates colitis. We generated E. faecalis strains containing deletions/point mutations in this PTS and measured bacterial growth and PTS gene expression in minimal medium supplemented with selected carbohydrates. We show that E. faecalis upregulates OG1RF_12399 transcription specifically in the presence of gluconate and that E. faecalis strains lacking, or harboring a single point mutation in, OG1RF_12399-12402 are unable to grow in minimal medium containing gluconate. We colonized germfree wild-type and colitis-prone interleukin-10-deficient mice with defined bacterial consortia containing the E. faecalis strains and measured inflammation and bacterial abundance in the colon. We infected macrophage and intestinal epithelial cell lines with the E. faecalis strains and measured intracellular bacterial survival and proinflammatory cytokine secretion. The presence of OG1RF_12399-12402 is not required for E. faecalis colonization of the mouse intestine but is associated with an accelerated onset of experimental colitis in interleukin-10-deficient mice, altered bacterial composition in the colon, enhanced E. faecalis survival within macrophages, and increased proinflammatory cytokine secretion by colon tissue and macrophages. Further studies of bacterial carbohydrate metabolism in general, and E. faecalis PTS-gluconate in particular, during inflammation may identify new mechanisms of disease pathogenesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Colitis/microbiología , Enterococcus faecalis/enzimología , Macrófagos/inmunología , Fosfotransferasas/metabolismo , Animales , Proteínas Bacterianas/genética , Colitis/genética , Colitis/inmunología , Enterococcus faecalis/genética , Enterococcus faecalis/crecimiento & desarrollo , Femenino , Gluconatos/metabolismo , Humanos , Interleucina-10/genética , Interleucina-10/inmunología , Intestinos/inmunología , Intestinos/microbiología , Macrófagos/microbiología , Masculino , Ratones , Operón , Fosfotransferasas/genética
3.
PLoS Pathog ; 11(6): e1004911, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26067254

RESUMEN

The commensal Enterococcus faecalis is among the most common causes of nosocomial infections. Recent findings regarding increased abundance of enterococci in the intestinal microbiota of patients with inflammatory bowel diseases and induction of colitis in IL-10-deficient (IL-10-/-) mice put a new perspective on the contribution of E. faecalis to chronic intestinal inflammation. Based on the expression of virulence-related genes in the inflammatory milieu of IL-10-/- mice using RNA-sequencing analysis, we characterized the colitogenic role of two bacterial structures that substantially impact on E. faecalis virulence by different mechanisms: the enterococcal polysaccharide antigen and cell surface-associated lipoproteins. Germ-free wild type and IL-10-/- mice were monoassociated with E. faecalis wild type OG1RF or the respective isogenic mutants for 16 weeks. Intestinal tissue and mesenteric lymph nodes (MLN) were collected to characterize tissue pathology, loss of intestinal barrier function, bacterial adhesion to intestinal epithelium and immune cell activation. Bone marrow-derived dendritic cells (BMDC) were stimulated with bacterial lysates and E. faecalis virulence was additionally investigated in three invertebrate models. Colitogenic activity of wild type E. faecalis (OG1RF score: 7.2±1.2) in monoassociated IL-10-/- mice was partially impaired in E. faecalis lacking enterococcal polysaccharide antigen (ΔepaB score: 4.7±2.3; p<0.05) and was almost completely abrogated in E. faecalis deficient for lipoproteins (Δlgt score: 2.3±2.3; p<0.0001). Consistently both E. faecalis mutants showed significantly impaired virulence in Galleria mellonella and Caenorhabditis elegans. Loss of E-cadherin in the epithelium was shown for all bacterial strains in inflamed IL-10-/- but not wild type mice. Inactivation of epaB in E. faecalis reduced microcolony and biofilm formation in vitro, altered bacterial adhesion to intestinal epithelium of germ-free Manduca sexta larvae and impaired penetration into the colonic mucus layer of IL-10-/- mice. Lipoprotein-deficient E. faecalis exhibited an impaired TLR2-mediated activation of BMDCs in vitro despite their ability to fully reactivate MLN cells as well as MLN-derived colitogenic T cells ex vivo. E. faecalis virulence factors accounting for bacterial adhesion to mucosal surfaces as well as intestinal barrier disruption partially contribute to colitogenic activity of E. faecalis. Beyond their well-known role in infections, cell surface-associated lipoproteins are essential structures for colitogenic activity of E. faecalis by mediating innate immune cell activation.


Asunto(s)
Colitis/microbiología , Enterococcus faecalis/inmunología , Enterococcus faecalis/patogenicidad , Infecciones por Bacterias Grampositivas/metabolismo , Interleucina-10/metabolismo , Animales , Western Blotting , Enterococcus faecalis/metabolismo , Técnica del Anticuerpo Fluorescente , Infecciones por Bacterias Grampositivas/inmunología , Hibridación Fluorescente in Situ , Interleucina-10/deficiencia , Lipoproteínas/metabolismo , Ratones , Ratones Noqueados , Virulencia
4.
Curr Allergy Asthma Rep ; 15(10): 61, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26306907

RESUMEN

Inflammatory bowel diseases (IBDs), including Crohn's disease and ulcerative colitis, are characterized by chronic, T-cell-mediated inflammation of the gastrointestinal tract that can cause significant, lifelong morbidity. Data from both human and animal studies indicate that IBDs are likely caused by dysregulated immune responses to resident intestinal microbes. Certain products from mycobacteria, fungi, and Clostridia stimulate increased effector T cell responses during intestinal inflammation, whereas other bacterial products from Clostridia and Bacteroides promote anti-inflammatory regulatory T cell responses. Antibody responses to bacterial and fungal components may help predict the severity of IBDs. While most currently approved treatments for IBDs generally suppress the patient's immune system, our growing understanding of microbial influences in IBDs will likely lead to the development of new diagnostic tools and therapies that target the intestinal microbiota.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino/microbiología , Animales , Linfocitos B/inmunología , Humanos , Inmunidad Innata , Inmunoglobulina A/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , Linfocitos T/inmunología
5.
Microbiol Immunol ; 59(8): 452-65, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26146866

RESUMEN

Induction of mammalian heme oxygenase (HO)-1 and exposure of animals to carbon monoxide (CO) ameliorates experimental colitis. When enteric bacteria, including Escherichia coli, are exposed to low iron conditions, they express an HO-like enzyme, chuS, and metabolize heme into iron, biliverdin and CO. Given the abundance of enteric bacteria residing in the intestinal lumen, our postulate was that commensal intestinal bacteria may be a significant source of CO and those that express chuS and other Ho-like molecules suppress inflammatory immune responses through release of CO. According to real-time PCR, exposure of mice to CO results in changes in enteric bacterial composition and increases E. coli 16S and chuS DNA. Moreover, the severity of experimental colitis correlates positively with E. coli chuS expression in IL-10 deficient mice. To explore functional roles, E. coli were genetically modified to overexpress chuS or the chuS gene was deleted. Co-culture of chuS-overexpressing E. coli with bone marrow-derived macrophages resulted in less IL-12p40 and greater IL-10 secretion than in wild-type or chuS-deficient E. coli. Mice infected with chuS-overexpressing E. coli have more hepatic CO and less serum IL-12 p40 than mice infected with chuS-deficient E. coli. Thus, CO alters the composition of the commensal intestinal microbiota and expands populations of E. coli that harbor the chuS gene. These bacteria are capable of attenuating innate immune responses through expression of chuS. Bacterial HO-like molecules and bacteria-derived CO may represent novel targets for therapeutic intervention in inflammatory conditions.


Asunto(s)
Escherichia coli/enzimología , Escherichia coli/inmunología , Hemo Oxigenasa (Desciclizante)/inmunología , Hemo Oxigenasa (Desciclizante)/metabolismo , Evasión Inmune , Inmunidad Innata , Animales , Monóxido de Carbono/metabolismo , Células Cultivadas , Técnicas de Cocultivo , ADN Bacteriano/genética , ADN Ribosómico/genética , Escherichia coli/metabolismo , Eliminación de Gen , Expresión Génica , Hemo Oxigenasa (Desciclizante)/genética , Interleucina-10/metabolismo , Subunidad p40 de la Interleucina-12/metabolismo , Macrófagos/inmunología , Masculino , Ratones Endogámicos C57BL , ARN Ribosómico 16S/genética
6.
Gastroenterology ; 144(4): 789-98, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23266559

RESUMEN

BACKGROUND & AIMS: Heme oxygenase-1 (HO-1) and its metabolic by-product, carbon monoxide (CO), protect against intestinal inflammation in experimental models of colitis, but little is known about their intestinal immune mechanisms. We investigated the interactions among CO, HO-1, and the enteric microbiota in mice and zebrafish. METHODS: Germ-free, wild-type, and interleukin (Il)10(-/-) mice and germ-free zebrafish embryos were colonized with specific pathogen-free (SPF) microbiota. Germ-free or SPF-raised wild-type and Il10(-/-) mice were given intraperitoneal injections of cobalt(III) protoporphyrin IX chloride (CoPP), which up-regulates HO-1, the CO-releasing molecule Alfama-186, or saline (control). Colitis was induced in wild-type mice housed in SPF conditions by infection with Salmonella typhimurium. RESULTS: In colons of germ-free, wild-type mice, SPF microbiota induced production of HO-1 via activation of nuclear factor erythroid 2-related factor 2-, IL-10-, and Toll-like receptor-dependent pathways; similar observations were made in zebrafish. SPF microbiota did not induce HO-1 in colons of germ-free Il10(-/-) mice. Administration of CoPP to Il10(-/-) mice before transition from germ-free to SPF conditions reduced their development of colitis. In Il10(-/-) mice, CO and CoPP reduced levels of enteric bacterial genomic DNA in mesenteric lymph nodes. In mice with S typhimurium-induced enterocolitis, CoPP reduced the numbers of live S typhimurium recovered from the lamina propria, mesenteric lymph nodes, spleen, and liver. Knockdown of HO-1 in mouse macrophages impaired their bactericidal activity against E coli, E faecalis, and S typhimurium, whereas exposure to CO or overexpression of HO-1 increased their bactericidal activity. HO-1 induction and CO increased acidification of phagolysosomes. CONCLUSIONS: Colonic HO-1 prevents colonic inflammation in mice. HO-1 is induced by the enteric microbiota and its homeostatic function is mediated, in part, by promoting bactericidal activities of macrophages.


Asunto(s)
Traslocación Bacteriana/fisiología , Monóxido de Carbono/farmacología , Colitis/prevención & control , Hemo-Oxigenasa 1/metabolismo , Salmonella typhimurium/fisiología , Animales , Traslocación Bacteriana/efectos de los fármacos , Western Blotting , Colitis/tratamiento farmacológico , Colitis/microbiología , Modelos Animales de Enfermedad , Escherichia coli/patogenicidad , Gentamicinas/farmacología , Hemo-Oxigenasa 1/biosíntesis , Macrófagos/citología , Macrófagos/fisiología , Metagenoma , Ratones , Ratones Endogámicos C57BL , Distribución Aleatoria , Reacción en Cadena en Tiempo Real de la Polimerasa
7.
Infect Immun ; 81(10): 3662-71, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23876805

RESUMEN

Dysregulated immune responses to commensal intestinal bacteria, including Escherichia coli, contribute to the development of inflammatory bowel diseases (IBDs) and experimental colitis. Reciprocally, E. coli responds to chronic intestinal inflammation by upregulating expression of stress response genes, including gadA and gadB. GadAB encode glutamate decarboxylase and protect E. coli from the toxic effects of low pH and fermentation acids, factors present in the intestinal lumen in patients with active IBDs. We hypothesized that E. coli upregulates gadAB during inflammation to enhance its survival and virulence. Using real-time PCR, we determined gadAB expression in luminal E. coli from ex-germfree wild-type (WT) and interleukin-10 (IL-10) knockout (KO) (IL-10(-/-)) mice selectively colonized with a commensal E. coli isolate (NC101) that causes colitis in KO mice in isolation or in combination with 7 other commensal intestinal bacterial strains. E. coli survival and host inflammatory responses were measured in WT and KO mice colonized with NC101 or a mutant lacking the gadAB genes (NC101ΔgadAB). The susceptibility of NC101 and NC101ΔgadAB to killing by host antimicrobial peptides and their translocation across intestinal epithelial cells were evaluated using bacterial killing assays and transwell experiments, respectively. We show that expression of gadAB in luminal E. coli increases proportionately with intestinal inflammation in KO mice and enhances the susceptibility of NC101 to killing by the host antimicrobial peptide cryptdin-4 but decreases bacterial transmigration across intestinal epithelial cells, colonic inflammation, and mucosal immune responses. Chronic intestinal inflammation upregulates acid tolerance pathways in commensal E. coli isolates, which, contrary to our original hypothesis, limits their survival and colitogenic potential. Further investigation of microbial adaptation to immune-mediated inflammation may provide novel insights into the pathogenesis and treatment of IBDs.


Asunto(s)
Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación de la Expresión Génica/inmunología , Glutamato Descarboxilasa/metabolismo , Inflamación/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Escherichia coli/genética , Escherichia coli/patogenicidad , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Glutamato Descarboxilasa/genética , Concentración de Iones de Hidrógeno , Inflamación/inmunología , Interleucina-10/genética , Interleucina-10/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Factores de Tiempo
8.
J Immunol ; 186(8): 4649-55, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21383239

RESUMEN

Regulation of innate inflammatory responses against the enteric microbiota is essential for the maintenance of intestinal homeostasis. Key participants in innate defenses are macrophages. In these studies, the basic leucine zipper protein, NFIL3, is identified as a regulatory transcription factor in macrophages, controlling IL-12 p40 production induced by bacterial products and the enteric microbiota. Exposure to commensal bacteria and bacterial products induced NFIL3 in cultured macrophages and in vivo. The Il12b promoter has a putative DNA-binding element for NFIL3. Basal and LPS-activated NFIL3 binding to this site was confirmed by chromatin immunoprecipitation. LPS-induced Il12b promoter activity was inhibited by NFIL3 expression and augmented by NFIL3-short hairpin RNA in an Il12b-bacterial artificial chromosome-GFP reporter macrophage line. Il12b inhibition by NFIL3 does not require IL-10 expression, but a C-terminal minimal repression domain is necessary. Furthermore, colonic CD11b(+) lamina propria mononuclear cells from Nfil3(-/-) mice spontaneously expressed Il12b mRNA. Importantly, lower expression of NFIL3 was observed in CD14(+) lamina propria mononuclear cells from Crohn's disease and ulcerative colitis patients compared with control subjects. Likewise, no induction of Nfil3 was observed in colons of colitis-prone Il10(-/-) mice transitioned from germ-free to a conventional microbiota. In conclusion, these experiments characterize NFIL3 as an Il12b transcriptional inhibitor. Interactions of macrophages with the enteric microbiota induce NFIL3 to limit their inflammatory capacity. Furthermore, altered intestinal NFIL3 expression may have implications for the pathogenesis of experimental and human inflammatory bowel diseases.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/inmunología , Inmunidad Mucosa/inmunología , Subunidad p40 de la Interleucina-12/inmunología , Macrófagos/inmunología , Animales , Secuencia de Bases , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Western Blotting , Células Cultivadas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/metabolismo , Interleucina-10/genética , Interleucina-10/inmunología , Interleucina-10/metabolismo , Subunidad p40 de la Interleucina-12/genética , Subunidad p40 de la Interleucina-12/metabolismo , Lipopolisacáridos/inmunología , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Fluorescente , Datos de Secuencia Molecular , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/inmunología , Factor 88 de Diferenciación Mieloide/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , Interferencia de ARN , Homología de Secuencia de Ácido Nucleico
9.
Gastroenterology ; 141(5): 1842-51.e1-10, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21726510

RESUMEN

BACKGROUND & AIMS: Intestinal microbes induce homeostatic mucosal immune responses, but can also cause inappropriate immune activation in genetically susceptible hosts. Although immune responses to bacterial products have been studied extensively, little is known about how intestinal inflammation affects functions of commensal luminal microbes. METHODS: Microarrays and real-time polymerase chain reaction were used to profile transcriptional changes in luminal bacteria from wild-type and IL-10(-/-) mice monoassociated with a nonpathogenic, murine isolate of Escherichia coli (NC101, which causes colitis in gnotobiotic IL-10(-/-) mice). Colonic inflammation and innate and adaptive immune responses were measured in wild-type and IL-10(-/-) mice monoassociated with mutant NC101 that lack selected, up-regulated genes, and in IL-10(-/-) mice that were colonized with a combination of mutant and parental NC101. We measured intracellular survival of bacteria within primary macrophages from mice and resulting production of tumor necrosis factor. RESULTS: Bacteria from IL-10(-/-) mice with colitis had significant up-regulation of the stress-response regulon, including the small heat shock proteins IbpA and IbpB that protect E coli from oxidative stress, compared to healthy, wild-type controls. In IL-10(-/-) mice, expression of ibpAB reduced histologic signs of colon inflammation, secretion of interleukin-12/23p40 in colonic explant cultures, serologic reactivity to NC101 antigens, and secretion of interferon-gamma by stimulated mesenteric lymph node cells. Infection of primary macrophages by bacteria that express ibpAB was associated with decreased intracellular survival and reduced secretion of tumor necrosis factor. CONCLUSIONS: Chronic intestinal inflammation causes functional alterations in gene expression in commensal gut bacterium (E coli NC101). Further studies of these expression patterns might identify therapeutic targets for patients with inflammatory bowel diseases.


Asunto(s)
Colitis/fisiopatología , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Proteínas de Choque Térmico/genética , Estrés Fisiológico/genética , Animales , Línea Celular , Enfermedad Crónica , Colitis/metabolismo , Modelos Animales de Enfermedad , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Proteínas de Choque Térmico/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Ratones , Ratones Noqueados , Factor de Necrosis Tumoral alfa
10.
Clin Transl Gastroenterol ; 13(3): e00467, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35166714

RESUMEN

INTRODUCTION: Microscopic colitis, a common cause of diarrhea, is characterized by a largely normal appearance of the mucosa but increased numbers of lymphocytes in the epithelium and lamina propria on microscopy. We sought to determine whether T-cell percentage was associated with exposures or symptoms. METHODS: We conducted a case-control study that enrolled patients referred for colonoscopy for diarrhea. Patients were classified as microscopic colitis cases or controls by an experienced pathologist. Participants provided information on symptoms and exposures during a telephone or internet survey. Research biopsies from the ascending colon and descending colon were examined using immunofluorescence stains for CD3, CD8, and FOXP3 to determine percent T cells per total epithelial or lamina propria cells. Digital images were analyzed by regions of interest using Tissue Studio. RESULTS: There were 97 microscopic colitis cases and 165 diarrhea controls. There was no association between demographic factors and percentage of intraepithelial or lamina propria T cells. In cases, the mean percent T cells were similar in the right colon and left colon. There was no association between mean percent T cells and stool frequency or consistency. There was no association with irritable bowel syndrome, abdominal pain, or medications purported to cause microscopic colitis. DISCUSSION: The lack of association between the density of T cells and medications raises further doubts about their role in disease etiology. Loose and frequent stools in patients with microscopic colitis are not correlated with T-cell density.


Asunto(s)
Colitis Microscópica , Estudios de Casos y Controles , Colitis Microscópica/diagnóstico , Humanos , Linfocitos , Membrana Mucosa
11.
Cell Mol Gastroenterol Hepatol ; 12(4): 1373-1389, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34246809

RESUMEN

BACKGROUND & AIMS: The inflammatory bowel diseases (IBDs), Crohn's disease and ulcerative colitis, are caused in part by aberrant immune responses to resident intestinal bacteria. Certain dietary components, including carbohydrates, are associated with IBDs and alter intestinal bacterial composition. However, the effects of luminal carbohydrates on the composition and colitogenic potential of intestinal bacteria are incompletely understood. We hypothesize that carbohydrate metabolism by resident proinflammatory intestinal bacteria enhances their growth and worsens intestinal inflammation. METHODS: We colonized germ-free, wild-type, and colitis-susceptible interleukin-10 knockout mice (Il10-/-) with a consortium of resident intestinal bacterial strains and quantified colon inflammation using blinded histologic scoring and spontaneous secretion of IL12/23p40 by colon explants. We measured luminal bacterial composition using real-time 16S polymerase chain reaction, bacterial gene expression using RNA sequencing and real-time polymerase chain reaction, and luminal glucosamine levels using gas chromatography-mass spectrometry. RESULTS: We show that a consortium of 8 bacterial strains induces severe colitis in Il10-/- mice and up-regulates genes associated with carbohydrate metabolism during colitis. Specifically, Enterococcus faecalis strain OG1RF is proinflammatory and strongly up-regulates OG1RF_11616-11610, an operon that encodes genes of a previously undescribed phosphotransferase system that we show imports glucosamine. Experimental colitis is associated with increased levels of luminal glucosamine and OG1RF_11616 causes worse colitis, not by increasing E faecalis numbers, but rather by mechanisms that require the presence of complex microbiota. CONCLUSIONS: Further studies of luminal carbohydrate levels and bacterial carbohydrate metabolism during intestinal inflammation will improve our understanding of the pathogenesis of IBDs and may lead to the development of novel therapies for these diseases.


Asunto(s)
Colitis/etiología , Colitis/patología , Susceptibilidad a Enfermedades , Enterococcus faecalis/metabolismo , Microbioma Gastrointestinal , Glucosamina/metabolismo , Animales , Biomarcadores , Colitis/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Disbiosis , Enterococcus faecalis/genética , Regulación Bacteriana de la Expresión Génica , Interacciones Microbiota-Huesped , Enfermedades Inflamatorias del Intestino/etiología , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Metagenoma , Metagenómica , Ratones , Ratones Noqueados
12.
Sci Rep ; 11(1): 13533, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34188154

RESUMEN

The host receptor for SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2), is highly expressed in small intestine. Our aim was to study colonic ACE2 expression in Crohn's disease (CD) and non-inflammatory bowel disease (non-IBD) controls. We hypothesized that the colonic expression levels of ACE2 impacts CD course. We examined the expression of colonic ACE2 in 67 adult CD and 14 NIBD control patients using RNA-seq and quantitative (q) RT-PCR. We validated ACE2 protein expression and localization in formalin-fixed, paraffin-embedded matched colon and ileal tissues using immunohistochemistry. The impact of increased ACE2 expression in CD for the risk of surgery was evaluated by a multivariate regression analysis and a Kaplan-Meier estimator. To provide critical support for the generality of our findings, we analyzed previously published RNA-seq data from two large independent cohorts of CD patients. Colonic ACE2 expression was significantly higher in a subset of adult CD patients which was defined as the ACE2-high CD subset. IHC in a sampling of ACE2-high CD patients confirmed high ACE2 protein expression in the colon and ileum compared to ACE2-low CD and NIBD patients. Notably, we found that ACE2-high CD patients are significantly more likely to undergo surgery within 5 years of CD diagnosis, and a Cox regression analysis found that high ACE2 levels is an independent risk factor for surgery (OR 2.17; 95% CI, 1.10-4.26; p = 0.025). Increased intestinal expression of ACE2 is associated with deteriorated clinical outcomes in CD patients. These data point to the need for molecular stratification that can impact CD disease-related outcomes.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Enfermedad de Crohn/patología , Adolescente , Adulto , Enzima Convertidora de Angiotensina 2/genética , Enfermedad de Crohn/metabolismo , Enfermedad de Crohn/cirugía , Femenino , Humanos , Íleon/metabolismo , Íleon/patología , Inmunohistoquímica , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Masculino , Pronóstico , Modelos de Riesgos Proporcionales , ARN Mensajero/química , ARN Mensajero/metabolismo , Factores de Riesgo , Análisis de Secuencia de ARN , Adulto Joven
14.
bioRxiv ; 2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33269348

RESUMEN

BACKGROUND AND AIMS: The host receptor for SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2), is highly expressed in small intestine. Our aim was to study colonic ACE2 expression in Crohn's disease (CD) and non-inflammatory bowel disease (non-IBD) controls. We hypothesized that the colonic expression levels of ACE2 impacts CD course. METHODS: We examined the expression of colon ACE2 using RNA-seq and quantitative (q) RT-PCR from 69 adult CD and 14 NIBD control patients. In a subset of this cohort we validated ACE2 protein expression and localization in formalin-fixed, paraffin-embedded matched colon and ileal tissues using immunohistochemistry. The impact of increased ACE2 expression in CD for the risk of surgery was evaluated by a multivariate regression analysis and a Kaplan-Meier estimator. To provide critical support for the generality of our findings, we analyzed previously published RNA-seq data from two large independent cohorts of CD patients. RESULTS: Colonic ACE2 expression was significantly higher in a subset of adult CD patients (ACE2-high CD). IHC in a sampling of ACE2-high CD patients confirmed high ACE2 protein expression in the colon and ileum compared to ACE2-low CD and NIBD patients. Notably, we found that ACE2-high CD patients are significantly more likely to undergo surgery within 5 years of diagnosis, with a Cox regression analysis finding that high ACE2 levels is an independent risk factor (OR 2.18; 95%CI, 1.05-4.55; p=0.037). CONCLUSION: Increased intestinal expression of ACE2 is associated with deteriorated clinical outcomes in CD patients. These data point to the need for molecular stratification that may impact CD disease-related outcomes.

15.
Cell Mol Gastroenterol Hepatol ; 10(4): 779-796, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32561494

RESUMEN

BACKGROUND & AIMS: Intestinal epithelial cell (IEC) barrier dysfunction is critical to the development of Crohn's disease (CD). However, the mechanism is understudied. We recently reported increased microRNA-31-5p (miR-31-5p) expression in colonic IECs of CD patients, but downstream targets and functional consequences are unknown. METHODS: microRNA-31-5p target genes were identified by integrative analysis of RNA- and small RNA-sequencing data from colonic mucosa and confirmed by quantitative polymerase chain reaction in colonic IECs. Functional characterization of activin receptor-like kinase 1 (ACVRL1 or ALK1) in IECs was performed ex vivo using 2-dimensional cultured human primary colonic IECs. The impact of altered colonic ALK1 signaling in CD for the risk of surgery and endoscopic relapse was evaluated by a multivariate regression analysis and a Kaplan-Meier estimator. RESULTS: ALK1 was identified as a target of miR-31-5p in colonic IECs of CD patients and confirmed using a 3'-untranslated region reporter assay. Activation of ALK1 restricted the proliferation of colonic IECs in a 5-ethynyl-2-deoxyuridine proliferation assay and down-regulated the expression of stemness-related genes. Activated ALK1 signaling increased colonic IEC differentiation toward colonocytes. Down-regulated ALK1 signaling was associated with increased stemness and decreased colonocyte-specific marker expression in colonic IECs of CD patients compared with healthy controls. Activation of ALK1 enhanced epithelial barrier integrity in a transepithelial electrical resistance permeability assay. Lower colonic ALK1 expression was identified as an independent risk factor for surgery and was associated with a higher risk of endoscopic relapse in CD patients. CONCLUSIONS: Decreased colonic ALK1 disrupted colonic IEC barrier integrity and was associated with poor clinical outcomes in CD patients.


Asunto(s)
Receptores de Activinas Tipo II/análisis , Colon/patología , Enfermedad de Crohn/patología , Mucosa Intestinal/patología , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Adulto , Colon/metabolismo , Enfermedad de Crohn/genética , Enfermedad de Crohn/metabolismo , Regulación hacia Abajo , Activación Enzimática , Femenino , Humanos , Mucosa Intestinal/metabolismo , Masculino , MicroARNs/genética , Persona de Mediana Edad
16.
Front Immunol ; 10: 1420, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31281321

RESUMEN

Inflammatory bowel diseases (IBD) are associated with compositional and functional changes of the intestinal microbiota, but specific contributions of individual bacteria to chronic intestinal inflammation remain unclear. Enterococcus faecalis is a resident member of the human intestinal core microbiota that has been linked to the pathogenesis of IBD and induces chronic colitis in susceptible monoassociated IL-10-deficient (IL-10-/-) mice. In this study, we characterized the colitogenic activity of E. faecalis as part of a simplified human microbial consortium based on seven enteric bacterial strains (SIHUMI). RNA sequencing analysis of E. faecalis isolated from monoassociated wild type and IL-10-/- mice identified 408 genes including 14 genes of the ethanolamine utilization (eut) locus that were significantly up-regulated in response to inflammation. Despite considerable up-regulation of eut genes, deletion of ethanolamine utilization (ΔeutVW) had no impact on E. faecalis colitogenic activity in monoassociated IL-10-/- mice. However, replacement of the E. faecalis wild type bacteria by a ΔeutVW mutant in SIHUMI-colonized IL-10-/- mice resulted in exacerbated colitis, suggesting protective functions of E. faecalis ethanolamine utilization in complex bacterial communities. To better understand E. faecalis gene response in the presence of other microbes, we purified wild type E. faecalis cells from the colon content of SIHUMI-colonized wild type and IL-10-/- mice using immuno-magnetic separation and performed RNA sequencing. Transcriptional profiling revealed that the bacterial environment reprograms E. faecalis gene expression in response to inflammation, with the majority of differentially expressed genes not being shared between monocolonized and SIHUMI conditions. While in E. faecalis monoassociation a general bacterial stress response could be observed, expression of E. faecalis genes in SIHUMI-colonized mice was characterized by up-regulation of genes involved in growth and replication. Interestingly, in mice colonized with SIHUMI lacking E. faecalis enhanced inflammation was observed in comparison to SIHUMI-colonized mice, supporting the hypothesis that E. faecalis ethanolamine metabolism protects against colitis in complex consortia. In conclusion, this study demonstrates that complex bacterial consortia interactions reprogram the gene expression profile and colitogenic activity of the opportunistic pathogen E. faecalis toward a protective function.


Asunto(s)
Colitis/inmunología , Colitis/microbiología , Enterococcus faecalis/inmunología , Infecciones por Bacterias Grampositivas/inmunología , Consorcios Microbianos/inmunología , Animales , Colitis/genética , Modelos Animales de Enfermedad , Enterococcus faecalis/genética , Infecciones por Bacterias Grampositivas/genética , Ratones , Ratones Noqueados , Consorcios Microbianos/genética
17.
Crohns Colitis 360 ; 1(3): otz029, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31667470

RESUMEN

BACKGROUND: Risk factors for the development of chronic antibiotic dependent pouchitis (CADP) are not well understood. METHODS: Using multivariable logistic regression, we compared clinical factors between 194 patients with acute antibiotic responsive pouchitis or CADP. RESULTS: Individuals with CADP were significantly older (40.9 vs 30.8 years, P < 0.001) and demonstrated a longer disease duration before IPAA (10.3 vs 7.0 years, P = 0.004). Age ≥55 years at the time of IPAA was significantly associated with CADP (adjusted odds ratio = 4.35, 95% confidence interval = 1.01-18.7). CONCLUSIONS: Although older age should not represent a barrier to IPAA, further studies evaluating etiologies of this association are warranted.

18.
J Clin Invest ; 129(9): 3702-3716, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31211700

RESUMEN

Resident microbiota activate regulatory cells that modulate intestinal inflammation and promote and maintain intestinal homeostasis. IL-10 is a key mediator of immune regulatory function. Our studies described the functional importance and mechanisms by which gut microbiota and specific microbial components influenced the development of intestinal IL-10-producing B cells. We used fecal transplant to germ-free (GF) Il10+/EGFP reporter and Il10-/- mice to demonstrate that microbiota from specific pathogen-free mice primarily stimulated IL-10-producing colon-specific B cells and T regulatory-1 cells in ex-GF mice. IL-10 in turn down-regulated microbiota-activated mucosal inflammatory cytokines. TLR2/9 ligands and enteric bacterial lysates preferentially induced IL-10 production and regulatory capacity of intestinal B cells. Analysis of Il10+/EGFP mice crossed with additional gene-deficient strains and B cell co-transfer studies demonstrated that microbiota-induced IL-10-producing intestinal B cells ameliorated chronic T cell-mediated colitis in a TLR2, MyD88 and PI3K-dependent fashion. In vitro studies implicated PI3Kp110δ and AKT downstream signaling. These studies demonstrated that resident enteric bacteria activated intestinal IL-10-producing B cells through TLR2, MyD88 and PI3K pathways. These B cells reduced colonic T cell activation and maintained mucosal homeostasis in response to intestinal microbiota.


Asunto(s)
Linfocitos B Reguladores/microbiología , Microbioma Gastrointestinal , Interleucina-10/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor Toll-Like 2/metabolismo , Animales , Linfocitos B Reguladores/inmunología , Colitis/microbiología , Citocinas/metabolismo , Regulación hacia Abajo , Trasplante de Microbiota Fecal , Vida Libre de Gérmenes , Proteínas Fluorescentes Verdes/metabolismo , Inmunidad Innata , Inflamación , Intestinos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor Toll-Like 9/metabolismo
19.
Inflamm Bowel Dis ; 24(11): 2394-2403, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30312415

RESUMEN

Background: Human and mouse studies implicate the inflammasome in the pathogenesis of inflammatory bowel diseases, though the effects in mice are variable. The noncanonical inflammasome activator caspase-11 (Casp11) reportedly attenuates acute dextran sodium sulfate (DSS) colitis in mice. However, the effects of Casp11 on chronic experimental colitis and factors that influence the impact of Casp11 on acute DSS colitis are unknown. Methods: We studied the role of Casp11 in Il10-/- mice and acute and chronic DSS colitis mouse models. We quantified colonic Casp11 mRNA using quantative polymerase chain reaction and colitis using weight loss, blinded histological scoring, IL-12/23p40 secretion by colonic explants, and fecal lipocalin-2. We determined fecal microbial composition using 16S amplicon sequencing. Results: We detected increased colonic Casp11 mRNA in Il10-/- mice with chronic colitis, but not in mice with DSS colitis. The presence of Casp11 did not alter the severity of chronic colitis in DSS-treated or Il10-/- mice. Contrary to prior reports, we initially observed that Casp11 exacerbates acute DSS colitis. Subsequent experiments in the same animal facility revealed no effect of Casp11 on acute DSS colitis. There were pronounced stochastic changes in the fecal microbiome over this time. The majority of bacterial taxa that changed over time in wild-type vs Casp11-/- mice belong to the Clostridiales. Conclusions: Casp11 does not impact chronic experimental colitis, and its effects on acute DSS colitis vary with environmental factors including the microbiota, particularly Clostridiales. Stochastic drifts in intestinal microbiota composition, even in mice in the same housing facility, should be considered when interpreting studies of acute DSS colitis models.


Asunto(s)
Caspasas/fisiología , Colitis/patología , Microbioma Gastrointestinal , Inflamasomas/toxicidad , Índice de Severidad de la Enfermedad , Enfermedad Aguda , Animales , Caspasas Iniciadoras , Colitis/inducido químicamente , Colitis/microbiología , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA