RESUMEN
Chiral perovskites play a pivotal role in spintronics and optoelectronic systems attributed to their chiral-induced spin selectivity (CISS) effect. Specifically, they allow for spin-polarized charge transport in spin light-emitting diodes (LEDs), yielding circularly polarized electroluminescence at room temperature without external magnetic fields. However, chiral lead bromide-based perovskites have yet to achieve high-performance green emissive spin-LEDs, owing to limited CISS effects and charge transport. Herein, we employ dimensional regulation and Sn2+-doping to optimize chiral bromide-based perovskite architecture for green emissive spin-LEDs. The optimized (PEA)x(S/R-PRDA)2-xSn0.1Pb0.9Br4 chiral perovskite film exhibits an enhanced CISS effect, higher hole mobility, and better energy level alignment with the emissive layer. These improvements allow us to fabricate green emissive spin-LEDs with an external quantum efficiency (EQE) of 5.7% and an asymmetry factor |gCP-EL| of 1.1 × 10-3. This work highlights the importance of tailored perovskite architectures and doping strategies in advancing spintronics for optoelectronic applications.
RESUMEN
All-inorganic CsPbI3 perovskite is attractive for deep-red light-emitting diodes (LEDs) because of its excellent carrier mobility, high color purity, and solution processability. However, the high phase transition energy barrier of optically active CsPbI3 black phase hinders the fabrication of efficient and bright LEDs. Here, we report a novel α-BaF2 nanoparticle substrate-promoted solution-processable heteroepitaxial growth to overcome this hindrance and obtain high-quality optically active γ-CsPbI3 thin films, achieving efficient and bright deep-red LEDs. We unravel that the highly exposed planes on the α-BaF2 nanoparticle-based heteroepitaxial growth substrate have a 99.5% lattice matching degree with the (110) planes of γ-CsPbI3. This ultrahigh lattice matching degree initiates solution-processed interfacial strain-free epitaxial growth of low-defect and highly oriented γ-CsPbI3 thin films on the substrate. The obtained γ-CsPbI3 thin films are uniform, smooth, and highly luminescent, based on which we fabricate efficient and bright deep-red LEDs with a high peak external quantum efficiency of 14.1% and a record luminance of 1325 cd m-2.
RESUMEN
Mixed halide 3D perovskites are promising for bright, efficient, and wide-color gamut light-emitting diodes (LEDs) due to their excellent carrier transport, high luminescence, and easily tunable bandgaps. However, serious halide ion migration inside mixed halide 3D perovskite results in poor operational and spectral stability of the as-fabricated LEDs. Here, a hetero-nucleation crystallization strategy is reported to grow [111]-orientation preferred mixed halide 3D perovskite CsPbI3-xBrx thin films for stable pure red LEDs. This hetero-nucleation crystallization is enabled by the addition of phosphoric acid (H3PO4) complexation, which promotes the growth of small perovskite grains into large grains with uniform [111]-orientation. The obtained [111]-orientation preferred film exhibits excellent stability under light or electric field stimulus as revealed by model analysis and experimental results compared to that of [001]-orientation preferred film. Thus, based on the [111]-orientation preferred film, the fabricated LED exhibits an external quantum efficiency of 22.8%, a maximum brightness of 12 000 cd m-2, and a half-life time of 4080 min under 1.5 mA cm-2. More importantly, the electroluminescence spectrum of the device remains stable during the continuous operation of 4080 min, showcasing the significant spectral stability improvement enabled by the hetero-nucleation induced [111]-orientation strategy.
RESUMEN
Solution-processable all-inorganic CsPbI3-xBrx perovskite holds great potential for pure red light-emitting diodes. However, the widely existing defects in this mixed halide perovskite markedly limit the efficiency and stability of present light-emitting diode devices. We here identify that intragrain Ruddlesden-Popper planar defects are primary forms of such defects in the CsPbI3-xBrx thin film owing to the lattice strain caused by inhomogeneous halogen ion distribution. To eliminate these defects, we develop a stepwise metastable phase crystallization strategy to minimize the CsPbI3-xBrx perovskite lattice strain, which brings planar defect-free CsPbI3-xBrx thin film with improved radiative recombination, narrowed emission band, and enhanced spectral stability. Using these high-quality thin films, we fabricate spectrally stable pure red perovskite light-emitting diodes, showing 17.8% external quantum efficiency and 9000 candela meter-2 brightness with color coordinates required by Rec. 2020.
RESUMEN
OBJECTIVE: To evaluate the values of spiral CT arthrography with multiplanar reconstruction and virtual arthroscopy technique in diagnosis of internal derangements of the knee. METHODS: Ten bovine knees were used for experiment. The menisci, anterior and posterior cruciate ligaments and cartilage of these 10 bovine knees were injured with a hook. Each of the joints was injected with 100 ml air, then soon scanned with a PQ6000 spiral computed tomography scanner. The data obtained was input into the work station, and multiplanar reconstruction technique was used to illustrate lesions in the knees. The results of CT diagnosis were compared to those found by gross inspection of the specimens. Clinically, 10 knees of 9 patients diagnosed as internal derangement were evaluated with the same method after 50-70 ml air was injected into each of the joints. Nine months later, the data of 2 patients were used for CT endoscopy reconstruction. The results were compared with intraoperative findings. RESULTS: Experimentally, the sensitivity and specificity were 88.9% and 93.9% by detection of meniscal abnormalities, 85.7% and 100% by detection of cruciate ligament lesions, and 72.7% and 100% by detection of cartilage damage, respectively. Clinically, the sensitivity and specificity were 90.0% and 95.0% by detection of meniscal lesion. As to ligament, the figures were 85.7% and 100% respectively. Images of virtual arthroscopy simulated the images of real arthroscopy. CONCLUSIONS: Spiral CT arthrography of multiplanar reconstruction technique offers fine images of internal structures of the knee, with clear border and internal structure. It is an accurate method for detecting meniscal, cruciate and collateral ligament and cartilaginous lesions that cause internal derangement of the knee. Virtual arthroscopy technique is a hopeful method for detecting reasons of derangement of the knee.