Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Lancet Oncol ; 25(3): 308-316, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38423047

RESUMEN

BACKGROUND: Stereotactic ablative body radiotherapy (SABR) is a novel non-invasive alternative for patients with primary renal cell cancer who do not undergo surgical resection. The FASTRACK II clinical trial investigated the efficacy of SABR for primary renal cell cancer in a phase 2 trial. METHODS: This international, non-randomised, phase 2 study was conducted in seven centres in Australia and one centre in the Netherlands. Eligible patients aged 18 years or older had biopsy-confirmed diagnosis of primary renal cell cancer, with only a single lesion; were medically inoperable, were at high risk of complications from surgery, or declined surgery; and had an Eastern Cooperative Oncology Group performance status of 0-2. A multidisciplinary decision that active treatment was warranted was required. Key exclusion criteria were a pre-treatment estimated glomerular filtration rate of less than 30 mL/min per 1·73 m2, previous systemic therapies for renal cell cancer, previous high-dose radiotherapy to an overlapping region, tumours larger than 10 cm, and direct contact of the renal cell cancer with the bowel. Patients received either a single fraction SABR of 26 Gy for tumours 4 cm or less in maximum diameter, or 42 Gy in three fractions for tumours more than 4 cm to 10 cm in maximum diameter. The primary endpoint was local control, defined as no progression of the primary renal cell cancer, as evaluated by the investigator per Response Evaluation Criteria in Solid Tumours (version 1.1). Assuming a 1-year local control of 90%, the null hypothesis of 80% or less was considered not to be worthy of proceeding to a future randomised controlled trial. All patients who commenced trial treatment were included in the primary outcome analysis. This trial is registered with ClinicalTrials.gov, NCT02613819, and has completed accrual. FINDINGS: Between July 28, 2016, and Feb 27, 2020, 70 patients were enrolled and initiated treatment. Median age was 77 years (IQR 70-82). Before enrolment, 49 (70%) of 70 patients had documented serial growth on initial surveillance imaging. 49 (70%) of 70 patients were male and 21 (30%) were female. Median tumour size was 4·6 cm (IQR 3·7-5·5). All patients enrolled had T1-T2a and N0-N1 disease. 23 patients received single-fraction SABR of 26 Gy and 47 received 42 Gy in three fractions. Median follow-up was 43 months (IQR 38-60). Local control at 12 months from treatment commencement was 100% (p<0·0001). Seven (10%) patients had grade 3 treatment-related adverse events, with no grade 4 adverse events observed. Grade 3 treatment-related adverse events were nausea and vomiting (three [4%] patients), abdominal, flank, or tumour pain (four [6%]), colonic obstruction (two [3%]), and diarrhoea (one [1%]). No treatment-related or cancer-related deaths occurred. INTERPRETATION: To our knowledge, this is the first multicentre prospective clinical trial of non-surgical definitive therapy in patients with primary renal cell cancer. In a cohort with predominantly T1b or larger disease, SABR was an effective treatment strategy with no observed local failures or cancer-related deaths. We observed an acceptable side-effect profile and renal function after SABR. These outcomes support the design of a future randomised trial of SABR versus surgery for primary renal cell cancer. FUNDING: Cancer Australia Priority-driven Collaborative Cancer Research Scheme.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Radiocirugia , Anciano , Femenino , Humanos , Masculino , Carcinoma de Células Renales/radioterapia , Neoplasias Renales/radioterapia , Neoplasias Renales/patología , Estudios Prospectivos , Radiocirugia/efectos adversos , Radiocirugia/métodos , Resultado del Tratamiento , Anciano de 80 o más Años
2.
BMC Cancer ; 24(1): 813, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973009

RESUMEN

BACKGROUND: Therapeutic options for early-stage hepatocellular carcinoma (HCC) in individual patients can be limited by tumor and location, liver dysfunction and comorbidities. Many patients with early-stage HCC do not receive curative-intent therapies. Stereotactic ablative body radiotherapy (SABR) has emerged as an effective, non-invasive HCC treatment option, however, randomized evidence for SABR in the first line setting is lacking. METHODS: Trans-Tasman Radiation Oncology Group (TROG) 21.07 SOCRATES-HCC is a phase II, prospective, randomised trial comparing SABR to other current standard of care therapies for patients with a solitary HCC ≤ 8 cm, ineligible for surgical resection or transplantation. The study is divided into 2 cohorts. Cohort 1 will compromise 118 patients with tumors ≤ 3 cm eligible for thermal ablation randomly assigned (1:1 ratio) to thermal ablation or SABR. Cohort 2 will comprise 100 patients with tumors > 3 cm up to 8 cm in size, or tumors ≤ 3 cm ineligible for thermal ablation, randomly assigned (1:1 ratio) to SABR or best other standard of care therapy including transarterial therapies. The primary objective is to determine whether SABR results in superior freedom from local progression (FFLP) at 2 years compared to thermal ablation in cohort 1 and compared to best standard of care therapy in cohort 2. Secondary endpoints include progression free survival, overall survival, adverse events, patient reported outcomes and health economic analyses. DISCUSSION: The SOCRATES-HCC study will provide the first randomized, multicentre evaluation of the efficacy, safety and cost effectiveness of SABR versus other standard of care therapies in the first line treatment of unresectable, early-stage HCC. It is a broad, multicentre collaboration between hepatology, interventional radiology and radiation oncology groups around Australia, coordinated by TROG Cancer Research. TRIAL REGISTRATION: anzctr.org.au, ACTRN12621001444875, registered 21 October 2021.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Radiocirugia , Nivel de Atención , Humanos , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/cirugía , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/radioterapia , Carcinoma Hepatocelular/cirugía , Radiocirugia/métodos , Estudios Prospectivos , Masculino , Femenino , Estadificación de Neoplasias , Persona de Mediana Edad , Ensayos Clínicos Controlados Aleatorios como Asunto , Anciano , Adulto
3.
J Appl Clin Med Phys ; 25(6): e14276, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38414322

RESUMEN

PURPOSE: Patient-specific quality assurance (PSQA) for vertebra stereotactic body radiation therapy (SBRT) presents challenges due to highly modulated small fields with high-dose gradients between the target and spinal cord. This study aims to explore the use of the SRS MapCHECK® (SRSMC) for vertebra SBRT PSQA. METHODS: Twenty vertebra SBRT treatment plans including prescriptions 20 Gy/1 fraction and 24 Gy/2 fractions were selected for each of Millennium (M)-Multileaf Collimator (MLC), and high-definition (HD)-MLC. All 40 plans were measured using Gafchromic EBT3 film (film) and SRSMC, using the StereoPHAN phantom. Plan complexity was assessed using modulation complexity score (MCS), edge metric (EM) (mm-1), modulation factor (MU/cGy), and average leaf pair opening (ALPO) (mm) and its correlation with gamma-pass rate was investigated. The high dose gradient between the target and the spinal cord was analyzed for film and SRSMC and compared against the treatment planning system (TPS). Applying the methodology proposed by AAPM TG-218, action and tolerance values specific to the SRSMC for vertebra SBRT were determined for ß values ranging from 5 to 8. RESULTS: Film and SRSMC gamma-pass rates showed no correlation (p > 0.05). A moderate negative correlation (R = -0.57, p = 0.01) is present between EM and SRSMC 3%/1 mm gamma-pass rate for HD-MLC plans. Both film and SRSMC accurately measured high dose gradients between the target and the spinal cord (R2 > 0.86, p ≤ 0.05). Notably, dose-gradient of HD-MLC plans is 22% steeper and has a smaller standard deviation to M-MLC plans (p ≤ 0.05). Applying TG-218, the film tolerance limit was 96% with action limit 95% for 5%/1 mm (ß = 6) and for the SRSMC tolerance limit was 97% with an action limit of 96% for 4%/1 mm (ß = 6). CONCLUSION: Our findings suggest that universal TG-218 limits may not be suitable for vertebra SBRT PSQA. This study demonstrates that SRSMC is a viable tool for vertebra SBRT PSQA, supported by TG-218 implementation of process-based tolerance and action limits.


Asunto(s)
Órganos en Riesgo , Fantasmas de Imagen , Garantía de la Calidad de Atención de Salud , Radiocirugia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Radiocirugia/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Garantía de la Calidad de Atención de Salud/normas , Órganos en Riesgo/efectos de la radiación , Neoplasias de la Columna Vertebral/cirugía , Neoplasias de la Columna Vertebral/radioterapia
4.
BMC Cancer ; 21(1): 494, 2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-33941111

RESUMEN

BACKGROUND: Stereotactic Ablative Body Radiotherapy (SABR) is a non-invasive treatment which allows delivery of an ablative radiation dose with high accuracy and precision. SABR is an established treatment for both primary and secondary liver malignancies, and technological advances have improved its efficacy and safety. Respiratory motion management to reduce tumour motion and image guidance to achieve targeting accuracy are crucial elements of liver SABR. This phase II multi-institutional TROG 17.03 study, Liver Ablative Radiotherapy using Kilovoltage intrafraction monitoring (LARK), aims to investigate and assess the dosimetric impact of the KIM real-time image guidance technology. KIM utilises standard linear accelerator equipment and therefore has the potential to be a widely available real-time image guidance technology for liver SABR. METHODS: Forty-six patients with either hepatocellular carcinoma or oligometastatic disease to the liver suitable for and treated with SABR using Kilovoltage Intrafraction Monitoring (KIM) guidance will be included in the study. The dosimetric impact will be assessed by quantifying accumulated patient dose distribution with or without the KIM intervention. The patient treatment outcomes of local control, toxicity and quality of life will be measured. DISCUSSION: Liver SABR is a highly effective treatment, but precise dose delivery is challenging due to organ motion. Currently, there is a lack of widely available options for performing real-time tumour localisation to assist with accurate delivery of liver SABR. This study will provide an assessment of the impact of KIM as a potential solution for real-time image guidance in liver SABR. TRIAL REGISTRATION: This trial was registered on December 7th 2016 on ClinicalTrials.gov under the trial-ID NCT02984566 .


Asunto(s)
Carcinoma Hepatocelular/radioterapia , Neoplasias Hepáticas/radioterapia , Movimientos de los Órganos , Radiocirugia/métodos , Radioterapia Guiada por Imagen/métodos , Australia , Carcinoma Hepatocelular/secundario , Dinamarca , Marcadores Fiduciales , Humanos , Neoplasias Hepáticas/secundario , Calidad de Vida , Radiocirugia/efectos adversos , Radiocirugia/instrumentación , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/efectos adversos , Radioterapia de Intensidad Modulada/métodos , Respiración , Resultado del Tratamiento
5.
J Appl Clin Med Phys ; 22(4): 71-81, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33756036

RESUMEN

BACKGROUND: Stereotactic ablative body radiotherapy (SABR) of primary kidney cancers is confounded by motion. There is a risk of interplay effect if the dose is delivered using volumetric modulated arc therapy (VMAT) and flattening filter-free (FFF) dose rates due to target and linac motion. This study aims to provide an efficient way to generate plans with minimal aperture complexity. METHODS: In this retrospective study, 62 patients who received kidney SABR were reviewed. For each patient, two plans were created using internal target volume based motion management, on the average intensity projection of a four-dimensional CT. In the first plan, optimization was performed using a knowledge-based planning model based on delivered clinical plans in our institution. In the second plan, the optimization was repeated, with a maximum monitor unit (MU) objective applied in the optimization. Dose-volume, conformity, and complexity metric (with the field edge metric and the modulation complexity score) were compared between the two plans. Results are shown in terms of median (first quartile - third quartile). RESULTS: Similar dosimetry was obtained with and without the utilization of an objective on the MU. However, complexity was reduced by using the objective on the MUs (modulation complexity score = 0.55 (0.50-0.61) / 0.33 (0.29-0.36), P-value < 10-10 , with/without the MU objective). Reduction of complexity was driven by a larger aperture area (area aperture variability = 0.68 (0.64-0.73) / 0.42 (0.37-0.45), P-value < 10-10 , with/without the MU objective). Using the objective on the MUs resulted in a more spherical dose distribution (sphericity 50% isodose = 0.73 (0.69-0.75) / 0.64 (0.60-0.68), P-value < 10-8 , with/without the MU objective) reducing dose to organs at risk given respiratory motion. CONCLUSIONS: Aperture complexity is reduced in kidney SABR by using an objective on the MU delivery with VMAT and FFF dose rate.


Asunto(s)
Radiocirugia , Radioterapia de Intensidad Modulada , Humanos , Riñón/diagnóstico por imagen , Riñón/cirugía , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Estudios Retrospectivos
6.
J Appl Clin Med Phys ; 22(7): 255-265, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34159719

RESUMEN

PURPOSE: This study aimed to develop a physical geometric phantom for the deformable image registration (DIR) credentialing of radiotherapy centers for a clinical trial and tested the feasibility of the proposed phantom at multiple domestic and international institutions. METHODS AND MATERIALS: The phantom reproduced tumor shrinkage, rectum shape change, and body shrinkage using several physical phantoms with custom inserts. We tested the feasibility of the proposed phantom using 5 DIR patterns at 17 domestic and 2 international institutions (21 datasets). Eight institutions used the MIM software (MIM Software Inc, Cleveland, OH); seven used Velocity (Varian Medical Systems, Palo Alto, CA), and six used RayStation (RaySearch Laboratories, Stockholm, Sweden). The DIR accuracy was evaluated using the Dice similarity coefficient (DSC) and Hausdorff distance (HD). RESULTS: The mean and one standard deviation (SD) values (range) of DSC were 0.909 ± 0.088 (0.434-0.984) and 0.909 ± 0.048 (0.726-0.972) for tumor and rectum proxies, respectively. The mean and one SD values (range) of the HD value were 5.02 ± 3.32 (1.53-20.35) and 5.79 ± 3.47 (1.22-21.48) (mm) for the tumor and rectum proxies, respectively. In three patterns evaluating the DIR accuracy within the entire phantom, 61.9% of the data had more than a DSC of 0.8 in both tumor and rectum proxies. In two patterns evaluating the DIR accuracy by focusing on tumor and rectum proxies, all data had more than a DSC of 0.8 in both tumor and rectum proxies. CONCLUSIONS: The wide range of DIR performance highlights the importance of optimizing the DIR process. Thus, the proposed method has considerable potential as an evaluation tool for DIR credentialing and quality assurance.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador , Habilitación Profesional , Humanos , Planificación de la Radioterapia Asistida por Computador , Suecia , Tomografía Computarizada por Rayos X
7.
J Appl Clin Med Phys ; 21(8): 299-304, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32469150

RESUMEN

Peripheral lung lesions treated with a single fraction of stereotactic ablative body radiotherapy (SABR) utilizing volumetric modulated arc therapy (VMAT) delivery and flattening filter-free (FFF) beams represent a potentially high-risk scenario for clinically significant dose blurring effects due to interplay between the respiratory motion of the lesion and dynamic multi-leaf collimators (MLCs). The aim of this study was to determine an efficient means of developing low-modulation VMAT plans in the Eclipse treatment planning system (v15.5, Varian Medical Systems, Palo Alto, USA) in order to minimize this risk, while maintaining dosimetric quality. The study involved 19 patients where an internal target volume (ITV) was contoured to encompass the entire range of tumor motion, and a planning target volume (PTV) created using a 5-mm isotropic expansion of this contour. Each patient had seven plan variations created, with each rescaled to achieve the clinical planning goal for PTV coverage. All plan variations used the same field arrangement, and consisted of one dynamic conformal arc therapy (DCAT) plan, and six VMAT plans with varying degrees of modulation restriction, achieved through utilizing different combinations of the aperture shape controller (ASC) in the calculation parameters, and monitor unit (MU) objective during optimization. The dosimetric quality was assessed based on RTOG conformity indices (CI100/CI50), as well as adherence to dose-volume metrics used clinically at our institution. Plan complexity was assessed based on the modulation factor (MU/cGy) and the field edge metric. While VMAT plans with the least modulation restriction achieved the best dosimetry, it was found that there was no clinically significant trade-off in terms of dose to organs at risk and conformity by reducing complexity. Furthermore, it was found that utilizing the ASC and MU objective could reduce plan complexity to near-DCAT levels with improved dosimetry, which may be sufficiently robust to overcome the interplay effect.


Asunto(s)
Neoplasias Pulmonares , Radiocirugia , Radioterapia de Intensidad Modulada , Humanos , Pulmón , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/cirugía , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
8.
J Appl Clin Med Phys ; 21(12): 109-119, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33140915

RESUMEN

PURPOSE: The aim of this study was to provide a comprehensive assessment of patient intrafraction motion in linac-based frameless stereotactic radiosurgery (SRS) and radiotherapy (SRT). METHODS: A retrospective review was performed on 101 intracranial SRS/SRT patients immobilized with the Klarity stereotactic thermoplastic mask (compatible with the Brainlab frameless stereotactic system) and aligned on a 6 Degree of Freedom (DoF) couch with the Brainlab ExacTrac image guidance system. Both pretreatment and intrafraction correction data are provided as observed by the ExacTrac system. The effects of couch angle and treatment duration on positioning outcomes are also explored. RESULTS: Initial setup data for patients is shown to vary by up to ±4.18 mm, ±2.97°, but when corrected with a single x-ray image set with ExacTrac, patient positions are corrected to within ±2.11 mm, ±2.27°. Intrafraction patient motion is shown to be uniformly random and independent of both time and couch angle. Patient motion was also limited to within approximately 3 mm, 3° by the thermoplastic mask. CONCLUSIONS: Our results indicate that since patient intrafraction motion is unrelated to couch rotation and treatment duration, intrafraction patient monitoring in 6 DoF is required to minimize intracranial SRS/SRT margins.


Asunto(s)
Neoplasias Encefálicas , Radiocirugia , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirugía , Humanos , Imagenología Tridimensional , Aceleradores de Partículas , Posicionamiento del Paciente , Planificación de la Radioterapia Asistida por Computador , Errores de Configuración en Radioterapia/prevención & control , Estudios Retrospectivos , Rotación
9.
J Appl Clin Med Phys ; 21(3): 62-67, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32053280

RESUMEN

Four-dimensional computerized tomography (4DCT) is required for stereotactic ablative body radiotherapy (SABR) of mobile targets to account for tumor motion during treatment planning and delivery. In this study, we report on the impact of an image review quality assurance process performed prior to treatment planning by medical physicists for 4DCT scans used for SABR treatment. Reviews were performed of 211 4DCT scans (193 patients) over a 3-yr period (October 2014 to October 2017). Treatment sites included lung (n = 168), kidney/adrenal/adrenal gland (n = 12), rib (n = 4), mediastinum (n = 10), liver (n = 2), T-spine (n = 1), and other abdominal sites (n = 14). It was found that in 23% (n = 49) of cases patient management was altered due to the review process. The most frequent intervention involved patient-specific contouring advice (n = 35 cases, 17%) including adjustment of internal target volume (ITV) margins. In 13 cases (6%) a rescan was requested due to extensive motion artifact rendering the scan inadequate for SABR treatment planning. 4DCT review by medical physicists was found to be an effective method to improve plan quality for SABR.


Asunto(s)
Tomografía Computarizada Cuatridimensional/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias/cirugía , Órganos en Riesgo/efectos de la radiación , Radiocirugia/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Humanos , Estudios Prospectivos , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Respiración , Estudios Retrospectivos
10.
J Appl Clin Med Phys ; 21(10): 10-24, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32915492

RESUMEN

OBJECTIVES: Rigid image registration (RIR) and deformable image registration (DIR) are widely used in radiotherapy. This project aims to capture current international approaches to image registration. METHODS: A survey was designed to identify variations in use, resources, implementation, and decision-making criteria for clinical image registration. This was distributed to radiotherapy centers internationally in 2018. RESULTS: There were 57 responses internationally, from the Americas (46%), Australia/New Zealand (32%), Europe (12%), and Asia (10%). Rigid image registration and DIR were used clinically for computed tomography (CT)-CT registration (96% and 51%, respectively), followed by CT-PET (81% and 47%), CT-CBCT (84% and 19%), CT-MR (93% and 19%), MR-MR (49% and 5%), and CT-US (9% and 0%). Respondent centers performed DIR using dedicated software (75%) and treatment planning systems (29%), with 84% having some form of DIR software. Centers have clinically implemented DIR for atlas-based segmentation (47%), multi-modality treatment planning (65%), and dose deformation (63%). The clinical use of DIR for multi-modality treatment planning and accounting for retreatments was considered to have the highest benefit-to-risk ratio (69% and 67%, respectively). CONCLUSIONS: This survey data provides useful insights on where, when, and how image registration has been implemented in radiotherapy centers around the world. DIR is mainly in clinical use for CT-CT (51%) and CT-PET (47%) for the head and neck (43-57% over all use cases) region. The highest benefit-risk ratio for clinical use of DIR was for multi-modality treatment planning and accounting for retreatments, which also had higher clinical use than for adaptive radiotherapy and atlas-based segmentation.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Planificación de la Radioterapia Asistida por Computador , Algoritmos , Humanos , Dosificación Radioterapéutica , Encuestas y Cuestionarios , Tomografía Computarizada por Rayos X
11.
J Appl Clin Med Phys ; 21(6): 121-131, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32277741

RESUMEN

PURPOSE: This study focused on determining risks from stereotactic radiotherapy using flattening filter-free (FFF) beams for patients with cardiac implantable electronic device (CIEDs). Two strategies were employed: a) a retrospective analysis of patients with CIEDs who underwent stereotactic radiosurgery (SRS)/SBRT at the Peter MacCallum Cancer Centre between 2014 and 2018 and b) an experimental study on the impact of FFF beams on CIEDs. METHODS: A retrospective review was performed. Subsequently, a phantom study was performed using 30 fully functional explanted CIEDs from two different manufacturers. Irradiation was carried out in a slab phantom with 6-MV and 10-MV FFF beams. First, a repetition-rate test (RRT) with a range of beam pulse frequencies was conducted. Then, multifraction SBRT (48 Gy/4 Fx) and single-fraction SBRT (28 Gy/1 Fx) treatment plans were used for lung tumors delivered to the phantom. RESULTS: Between 2014 and 2018, 13 cases were treated with an FFF beam (6 MV, 1400 MU/min or 10 MV, 2400 MU/min), and 15 cases were treated with a flattening filter (FF) beam (6 MV, 600 MU/min). All the devices were positioned outside the treatment field at a distance of more than 5 cm, except for one case, and no failures were reported due to SBRT/SRS. In the phantom rep-rate tests, inappropriate sensing occurred, starting at a rep-rate of 1200 MU/min. Cardiac implantable electronic device anomalies during and after delivering VMAT-SBRT with a 10-MV FFF beam were observed. CONCLUSIONS: The study showed that caution should be paid to managing CIED patients when they undergo SBRT using FFF beams, as it is recommended by AAPM TG-203. Correspondingly, it was found that for FFF beams although there is small risk from dose-rate effects, delivering high dose of radiation with beam energy greater than 6 MV and high-dose rate to CIEDs positioned in close vicinity of the PTV may present issues.


Asunto(s)
Radiocirugia , Radioterapia de Intensidad Modulada , Electrónica , Humanos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Estudios Retrospectivos
12.
BMC Cancer ; 18(1): 1030, 2018 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-30352550

RESUMEN

BACKGROUND: Stereotactic ablative body radiotherapy (SABR) is a non-invasive alternative to surgery to control primary renal cell cancer (RCC) in patients that are medically inoperable or at high-risk of post-surgical dialysis. The objective of the FASTRACK II clinical trial is to investigate the efficacy of SABR for primary RCC. METHODS: FASTRACK II is a single arm, multi-institutional phase II study. Seventy patients will be recruited over 3 years and followed for a total of 5 years. Eligible patients must have a biopsy confirmed diagnosis of primary RCC with a single lesion within a kidney, have ECOG performance ≤2 and be medically inoperable, high risk or decline surgery. Radiotherapy treatment planning is undertaken using four dimensional CT scanning to incorporate the impact of respiratory motion. Treatment must be delivered using a conformal or intensity modulated technique including IMRT, VMAT, Cyberknife or Tomotherapy. The trial includes two alternate fractionation schedules based on tumour size: for tumours ≤4 cm in maximum diameter a single fraction of 26Gy is delivered; and for tumours > 4 cm in maximum diameter 42Gy in three fractions is delivered. The primary outcome of the study is to estimate the efficacy of SABR for primary RCC. Secondary objectives include estimating tolerability, characterising overall survival and cancer specific survival, estimating the distant failure rate, describing toxicity and renal function changes after SABR, and assessment of cost-effectiveness of SABR compared with current therapies. DISCUSSION: The present study design allows for multicentre prospective validation of the efficacy of SABR for primary RCC that has been observed from prior single institutional and retrospective series. The study also allows assessment of treatment related toxicity, overall survival, cancer specific survival, freedom from distant failure and renal function post therapy. TRIAL REGISTRATION: Clinicaltrials.gov NCT02613819 , registered Nov 25th 2015.


Asunto(s)
Carcinoma de Células Renales/radioterapia , Neoplasias Renales/radioterapia , Radiocirugia/efectos adversos , Adulto , Carcinoma de Células Renales/mortalidad , Carcinoma de Células Renales/fisiopatología , Humanos , Neoplasias Renales/mortalidad , Neoplasias Renales/fisiopatología , Estudios Multicéntricos como Asunto , Resultado del Tratamiento
13.
BMC Cancer ; 16: 183, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26944262

RESUMEN

BACKGROUND: Stereotactic ablative body radiotherapy (SABR) is emerging as a non-invasive method for precision irradiation of lung tumours. However, the ideal dose/fractionation schedule is not yet known. The primary purpose of this study is to assess safety and efficacy profile of single and multi-fraction SABR in the context of pulmonary oligometastases. METHODS/DESIGN: The TROG 13.01/ALTG 13.001 clinical trial is a multicentre unblinded randomised phase II study. Eligible patients have up to three metastases to the lung from any non-haematological malignancy, each < 5 cm in size, non-central targets, and have all primary and extrathoracic disease controlled with local therapies. Patients are randomised 1:1 to a single fraction of 28Gy versus 48Gy in four fractions of SABR. The primary objective is to assess the safety of each treatment arm, with secondary objectives including assessment of quality of life, local efficacy, resource use and costs, overall and disease free survival and time to distant failure. Outcomes will be stratified by number of metastases and origin of the primary disease (colorectal versus non-colorectal primary). Planned substudies include an assessment of the impact of online e-Learning platforms for lung SABR and assessment of the effect of SABR fractionation on the immune responses. A total of 84 patients are required to complete the study. DISCUSSION: Fractionation schedules have not yet been investigated in a randomised fashion in the setting of oligometastatic disease. Assuming the likelihood of similar clinical efficacy in both arms, the present study design allows for exploration of the hypothesis that cost implications of managing potentially increased toxicities from single fraction SABR will be outweighed by costs associated with delivering multiple-fraction SABR. TRIALS REGISTRATION: ACTRN12613001157763 , registered 17th October 2013.


Asunto(s)
Fraccionamiento de la Dosis de Radiación , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/terapia , Radiocirugia , Radioterapia/métodos , Costos de la Atención en Salud , Recursos en Salud , Humanos , Neoplasias Pulmonares/diagnóstico , Calidad de Vida , Radiocirugia/economía , Radiocirugia/métodos , Radioterapia/economía , Tomografía Computarizada por Rayos X , Carga Tumoral
14.
J Appl Clin Med Phys ; 17(5): 99-110, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27685114

RESUMEN

Stereotactic body radiation therapy (SBRT) aims to deliver a highly conformal ablative dose to a small target. Dosimetric verification of SBRT for lung tumors presents a challenge due to heterogeneities, moving targets, and small fields. Recent software (M3D) designed for dosimetric verification of lung SBRT treatment plans using an advanced convolution-superposition algorithm was evaluated. Ten lung SBRT patients covering a range of tumor volumes were selected. 3D CRT plans were created using the XiO treatment planning system (TPS) with the superposition algorithm. Dose was recalculated in the Eclipse TPS using the AAA algorithm, M3D verification software using the collapsed-cone-convolution algorithm, and in-house Monte Carlo (MC). Target point doses were calculated with RadCalc software. Near-maximum, median, and near-minimum target doses, conformity indices, and lung doses were compared with MC as the reference calculation. M3D 3D gamma passing rates were compared with the XiO and Eclipse. Wilcoxon signed-rank test was used to compare each calculation method with XiO with a threshold of significance of p < 0.05. M3D and RadCalc point dose calculations were greater than MC by up to 7.7% and 13.1%, respectively, with M3D being statistically significant (s.s.). AAA and XiO calculated point doses were less than MC by 11.3% and 5.2%, respectively (AAA s.s.). Median and near-minimum and near-maximum target doses were less than MC when calculated with AAA and XiO (all s.s.). Near-maximum and median target doses were higher with M3D compared with MC (s.s.), but there was no difference in near-minimum M3D doses compared with MC. M3D-calculated ipsilateral lung V20 Gy and V5 Gy were greater than that calculated with MC (s.s.); AAA- and XiO-calculated V20 Gy was lower than that calculated with MC, but not statistically different to MC for V5 Gy. Nine of the 10 plans achieved M3D gamma passing rates greater than 95% and 80%for 5%/1 mm and 3%/1 mm criteria, respectively. M3D typically calculated a higher target and lung dose than MC for lung SBRT plans. The results show a range of calculated doses with different algorithms and suggest that M3D is in closer agree-ment with Monte Carlo, thus discrepancies between the TPS and M3D software will be observed for lung SBRT plans. M3D provides a useful supplement to verification of lung SBRT plans by direct measurement, which typically excludes patient specific heterogeneities.


Asunto(s)
Algoritmos , Neoplasias Pulmonares/cirugía , Fantasmas de Imagen , Radiocirugia/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Simulación por Computador , Humanos , Método de Montecarlo , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Carga Tumoral
15.
Med Phys ; 51(7): 4767-4777, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38376454

RESUMEN

BACKGROUND: Auto-segmentation of organs-at-risk (OARs) in the head and neck (HN) on computed tomography (CT) images is a time-consuming component of the radiation therapy pipeline that suffers from inter-observer variability. Deep learning (DL) has shown state-of-the-art results in CT auto-segmentation, with larger and more diverse datasets showing better segmentation performance. Institutional CT auto-segmentation datasets have been small historically (n < 50) due to the time required for manual curation of images and anatomical labels. Recently, large public CT auto-segmentation datasets (n > 1000 aggregated) have become available through online repositories such as The Cancer Imaging Archive. Transfer learning is a technique applied when training samples are scarce, but a large dataset from a closely related domain is available. PURPOSE: The purpose of this study was to investigate whether a large public dataset could be used in place of an institutional dataset (n > 500), or to augment performance via transfer learning, when building HN OAR auto-segmentation models for institutional use. METHODS: Auto-segmentation models were trained on a large public dataset (public models) and a smaller institutional dataset (institutional models). The public models were fine-tuned on the institutional dataset using transfer learning (transfer models). We assessed both public model generalizability and transfer model performance by comparison with institutional models. Additionally, the effect of institutional dataset size on both transfer and institutional models was investigated. All DL models used a high-resolution, two-stage architecture based on the popular 3D U-Net. Model performance was evaluated using five geometric measures: the dice similarity coefficient (DSC), surface DSC, 95th percentile Hausdorff distance, mean surface distance (MSD), and added path length. RESULTS: For a small subset of OARs (left/right optic nerve, spinal cord, left submandibular), the public models performed significantly better (p < 0.05) than, or showed no significant difference to, the institutional models under most of the metrics examined. For the remaining OARs, the public models were inferior to the institutional models, although performance differences were small (DSC ≤ 0.03, MSD < 0.5 mm) for seven OARs (brainstem, left/right lens, left/right parotid, mandible, right submandibular). The transfer models performed significantly better than the institutional models for seven OARs (brainstem, right lens, left/right optic nerve, left/right parotid, spinal cord) with a small margin of improvement (DSC ≤ 0.02, MSD < 0.4 mm). When numbers of institutional training samples were limited, public and transfer models outperformed the institutional models for most OARs (brainstem, left/right lens, left/right optic nerve, left/right parotid, spinal cord, and left/right submandibular). CONCLUSION: Training auto-segmentation models with public data alone was suitable for a small number of OARs. Using only public data incurred a small performance deficit for most other OARs, when compared with institutional data alone, but may be preferable over time-consuming curation of a large institutional dataset. When a large institutional dataset was available, transfer learning with models pretrained on a large public dataset provided a modest performance improvement for several OARs. When numbers of institutional samples were limited, using the public dataset alone, or as a pretrained model, was beneficial for most OARs.


Asunto(s)
Neoplasias de Cabeza y Cuello , Procesamiento de Imagen Asistido por Computador , Órganos en Riesgo , Tomografía Computarizada por Rayos X , Órganos en Riesgo/efectos de la radiación , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Neoplasias de Cabeza y Cuello/radioterapia , Aprendizaje Profundo , Conjuntos de Datos como Asunto
16.
Med Phys ; 51(2): 910-921, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38141043

RESUMEN

BACKGROUND: The use of modulated techniques for intra-cranial stereotactic radiosurgery (SRS) results in highly modulated fields with small apertures, which may be susceptible to uncertainties in the delivery device. PURPOSE: This study aimed to quantify the impact of simulated delivery errors on treatment plan dosimetry and how this is affected by treatment planning system (TPS), plan geometry, delivery technique, and plan complexity. A beam modelling error was also included as context to the dose uncertainties due to treatment delivery errors. METHODS: Delivery errors were assessed for multiple-target brain SRS plans obtained through the Trans-Tasman Radiation Oncology Group (TROG) international treatment planning challenge (2018). The challenge dataset consisted of five intra-cranial targets, each with a prescription of 20 Gy. Of the final dataset of 54 plans, 51 were created using the volumetric modulated arc therapy (VMAT) technique and three used intensity modulated arc therapy (IMRT). Thirty-five plans were from the Varian Eclipse TPS, 17 from Elekta Monaco TPS, and one plan each from RayStation and Philips Pinnacle TPS. The errors introduced included: monitor unit calibration errors, multi-leaf collimator (MLC) bank offset, single MLC leaf offset, couch rotations, and collimator rotations. Dosimetric leaf gap (DLG) error was also included as a beam modelling error. Dose to targets was assessed via dose covering 98% of planning target volume (PTV) (D98%), dose covering 2% of PTV (D2%), and dose covering 99% of gross tumor volume (GTV) (D99%). Dose to organs at risk (OARs) was assessed using the volume of normal brain receiving 12 Gy (V12Gy), mean dose to normal brain, and maximum dose covering 0.03cc brainstem (D0.03cc). Plan complexity was also assessed via edge metric, modulation complexity score (MCS), mean MLC gap, mean MLC speed, and plan modulation (PM). RESULTS: PTV D98% showed high robustness on average to most errors with the exception of a bank shift of 1.0 mm and large rotational errors ≥1.0° for either the couch or collimator. However, in some cases, errors close to or within generally accepted machine tolerances resulted in clinically relevant impacts. The greatest impact upon normal brain V12Gy, mean dose to normal brain, and D0.03cc brainstem was found for DLG error in alignment with other recent studies. All delivery errors had on average a minimal impact across these parameters. Comparing plans from the Monaco TPS and the Eclipse TPS, showed a lesser increase to V12Gy, mean dose to normal brain, and D0.03cc brainstem for Monaco plans (p < 0.01) when DLG error was simulated. Monaco plans also correlated to lower plan complexity. Using Spearman's correlation coefficient (r) a strong negative correlation (r ≤ -0.8) was found between the mean MLC gap and dose to OARs for DLG errors. CONCLUSIONS: Reducing MLC complexity and using larger mean MLC gaps is recommended to improve plan robustness and reduce sensitivity to delivery and modelling errors. For cases in which the calculated dose distribution or dose indices are close to the clinically acceptable limits, this is especially important.


Asunto(s)
Neoplasias Encefálicas , Radiocirugia , Radioterapia de Intensidad Modulada , Humanos , Radiocirugia/métodos , Dosificación Radioterapéutica , Radiometría , Neoplasias Encefálicas/cirugía , Órganos en Riesgo , Radioterapia de Intensidad Modulada/métodos , Planificación de la Radioterapia Asistida por Computador/métodos
17.
Med Phys ; 51(1): 682-693, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37797078

RESUMEN

BACKGROUND: Lattice radiation therapy (LRT) alternates regions of high and low doses within the target. The heterogeneous dose distribution is delivered to a geometrical structure of vertices segmented inside the tumor. LRT is typically used to treat patients with large tumor volumes with cytoreduction intent. Due to the geometric complexity of the target volume and the required dose distribution, LRT treatment planning demands additional resources, which may limit clinical integration. PURPOSE: We introduce a fully automated method to (1) generate an ordered lattice of vertices with various sizes and center-to-center distances and (2) perform dose optimization and calculation. We aim to report the dosimetry associated with these lattices to help clinical decision-making. METHODS: Sarcoma cancer patients with tumor volume between 100 cm3 and 1500 cm3 who received radiotherapy treatment between 2010 and 2018 at our institution were considered for inclusion. Automated segmentation and dose optimization/calculation were performed by using the Eclipse Scripting Application Programming Interface (ESAPI, v16, Varian Medical Systems, Palo Alto, USA). Vertices were modeled by spheres segmented within the gross tumor volume (GTV) with 1 cm/1.5 cm/2 cm diameters (LRT-1 cm/1.5 cm/2 cm) and 2 to 5 cm center-to-center distance on square lattices alternating along the superior-inferior direction. Organs at risk were modeled by subtracting the GTV from the body structure (body-GTV). The prescription dose was that 50% of the vertice volume should receive at least 20 Gy in one fraction. The automated dose optimization included three stages. The vertices optimization objectives were refined during optimization according to their values at the end of the first and second stages. Lattices were classified according to a score based on the minimization of body-GTV max dose and the maximization of GTV dose uniformity (measured with the equivalent uniform dose [EUD]), GTV dose heterogeneity (measured with the GTV D90%/D10% ratio), and the number of patients with more than one vertex inserted in the GTV. Plan complexity was measured with the modulation complexity score (MCS). Correlations were assessed with the Spearman correlation coefficient (r) and its associated p-value. RESULTS: Thirty-three patients with GTV volumes between 150 and 1350 cm3 (median GTV volume = 494 cm3 , IQR = 272-779 cm3 were included. The median time required for segmentation/planning was 1 min/21 min. The number of vertices was strongly correlated with GTV volume in each LRT lattice for each center-to-center distance (r > 0.85, p-values < 0.001 in each case). Lattices with center-to-center distance = 2.5 cm/3 cm/3.5 cm in LRT-1.5 cm and center-to-center distance = 4 cm in LRT-1 cm had the best scores. These lattices were characterized by high heterogeneity (median GTV D90%/D10% between 0.06 and 0.19). The generated plans were moderately complex (median MCS ranged between 0.19 and 0.40). CONCLUSIONS: The automated LRT planning method allows for the efficacious generation of vertices arranged in an ordered lattice and the refinement of planning objectives during dose optimization, enabling the systematic evaluation of LRT dosimetry from various lattice geometries.


Asunto(s)
Neoplasias , Radioterapia Conformacional , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Conformacional/métodos , Dosificación Radioterapéutica
18.
Int J Radiat Oncol Biol Phys ; 118(4): 1135-1143, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37914141

RESUMEN

PURPOSE: Radiation therapy treatment for non-small cell lung cancer (NSCLC) may result in radiation damage to the perfused lung. The loss in perfusion may be measured from positron tomography emission (PET) perfusion imaging; however, this modality may not be widely available. Dual-energy computed tomography (DECT) with contrast may be an alternative to PET/CT. The purpose of this work is to investigate the equivalence of dose-response curves (DRCs) determined from PET and DECT in NSCLC. METHODS AND MATERIALS: PET and DECT data sets from the prospective clinical trial HI-FIVE (NTC03569072) were included in this preplanned trial analysis. Patients underwent 68Ga-macroaggregated albumin PET/CT examination and DECT with contrast on the same day at baseline and at 3 and 12 months after treatment. The perfused lung was defined from a threshold based on the maximum standardized uptake value (%SUVmax)/iodine concentration (%IoMax) in PET/DECT. The equivalence between PET and DECT DRC was established by comparing (1) the average of the normalized overlap of the 2 DRCs ranging from 0 (no overlap) to 1 (perfect overlap) and (2) the slope of a linear model applied to DRCs. RESULTS: Of the 19 patients enrolled in the clinical trial, 14/10 patients had a posttreatment imaging session at a median of 4.5/13.5 months, respectively. With 30%SUVmax/35%IoMax, the average normalized overlap was maximized, and the difference between PET and DECT slopes of the linear model was minimized at each time point (slope = 0.76%/Gy / 0.75%/Gy at 3 months and 0.86%/Gy / 0.87%/Gy at 12 months determined from PET/DECT). CONCLUSIONS: The dose-response relationship determined from DECT was comparable to that from PET at 3 and 12 months after treatment in patients with NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Tomografía Computarizada por Tomografía de Emisión de Positrones , Estudios Prospectivos , Pulmón/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Perfusión , Fluorodesoxiglucosa F18
19.
Phys Med ; 124: 103423, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970949

RESUMEN

PURPOSE: This study aimed to analyse correlations between planning factors including plan geometry and plan complexity with robustness to patient setup errors. METHODS: Multiple-target brain stereotactic radiosurgery (SRS) plans were obtained through the Trans-Tasman Radiation Oncology Group (TROG) international treatment planning challenge (2018). The challenge dataset consisted of five intra-cranial targets with a 20 Gy prescription. Setup error was simulated using an in-house tool. Dose to targets was assessed via dose covering 99 % (D99 %) of gross tumour volume (GTV) and 98 % of planning target volume (PTV). Dose to organs at risk was assessed using volume of normal brain receiving 12 Gy and maximum dose covering 0.03 cc of brainstem. Plan complexity was assessed via edge metric, modulation complexity score, mean multi-leaf collimator (MLC) gap, mean MLC speed and plan modulation. RESULTS: Even for small (0.5 mm/°) errors, GTV D99 % was reduced by up to 20 %. The strongest correlation was found between lower complexity plans (larger mean MLC gap and lower edge metric) and higher robustness to setup error. Lower complexity plans had 1 %-20 % fewer targets/scenarios with GTV D99 % falling below the specified tolerance threshold. These complexity metrics correlated with 100 % isodose volume sphericity and dose conformity, though similar conformity was achievable with a range of complexities. CONCLUSIONS: A higher level of importance should be directed towards plan complexity when considering plan robustness. It is recommended when planning multi-target SRS, larger MLC gaps and lower MLC aperture irregularity be considered during plan optimisation due to higher robustness should patient positioning errors occur.

20.
Pract Radiat Oncol ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38705233

RESUMEN

PURPOSE: Functional lung avoidance (FLA) radiation therapy is an evolving field. The aim of FLA planning is to reduce dose to areas of functioning lung, with comparable target coverage and dose to organs at risk. Multicriteria optimization (MCO) is a planning tool that may assist with FLA planning. This study assessed the feasibility of using MCO to adapt radiation therapy plans to avoid functional regions of lung that were identified using a 68Ga-4D-V/Q positron emission tomography/computed tomography. METHODS AND MATERIALS: A prospective clinical trial U1111-1138-4421 was performed in which patients had a 68Ga-4D-V/Q positron emission tomography/computed tomography before radiation treatment. Of the 72 patients enrolled in this trial, 38 patients had stage III non-small cell lung cancer and were eligible for selection into this planning study. Functional lung target volumes HF lung (highly functioning lung) and F lung (functional lung) were defined using the ventilated and perfused lung. Using knowledge-based planning, a baseline anatomic plan was created, and then a functional adapted plan was generated using multicriteria optimization. The primary aim was to spare dose to HF lung. Using the MCO tools, a clinician selected the final FLA plan. Dose to functional lung, target volumes, organs at risk and measures of plan quality were compared using standard statistical methods. RESULTS: The HF lung volume was successfully spared in all patients. The F lung volume was successfully spared in 36 of the 38 patients. There were no clinically significant differences in dose to anatomically defined organs at risk. There were differences in the planning target volume near maximum and minimum doses. Across the entire population, there was a statistically significant reduction in the functional mean lung dose but not in the functional volume receiving 20 Gy. All trade-off decisions were made by the clinician. CONCLUSIONS: Using MCO for FLA was achievable but did result in changes to planning target volume coverage. A distinct advantage in using MCO was that all decisions regarding the cost and benefits of FLA could be made in real time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA