Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Cell Tissue Res ; 380(3): 449-467, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32242250

RESUMEN

Terrestrial hermit crabs of the genus Coenobita display strong behavioral responses to volatile odors and are attracted by chemical cues of various potential food sources. Several aspects of their sense of aerial olfaction have been explored in recent years including behavioral aspects and structure of their peripheral and central olfactory pathway. Here, we use classical histological methods and immunohistochemistry against the neuropeptides orcokinin and allatostatin as well as synaptic proteins and serotonin to provide insights into the functional organization of their primary olfactory centers in the brain, the paired olfactory lobes. Our results show that orcokinin is present in the axons of olfactory sensory neurons, which target the olfactory lobe. Orcokinin is also present in a population of local olfactory interneurons, which may relay lateral inhibition across the array of olfactory glomeruli within the lobes. Extensive lateral connections of the glomeruli were also visualized using the histological silver impregnation method according to Holmes-Blest. This technique also revealed the structural organization of the output pathway of the olfactory system, the olfactory projection neurons, the axons of which target the lateral protocerebrum. Within the lobes, the course of their axons seems to be reorganized in an axon-sorting zone before they exit the system. Together with previous results, we combine our findings into a model on the functional organization of the olfactory system in these animals.


Asunto(s)
Anomuros/anatomía & histología , Corteza Olfatoria/anatomía & histología , Neuronas Receptoras Olfatorias/citología , Animales , Neuropéptidos/metabolismo , Corteza Olfatoria/metabolismo , Neuronas Receptoras Olfatorias/metabolismo
2.
Front Zool ; 16: 30, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31372174

RESUMEN

BACKGROUND: Over the last years, the amphipod crustacean Parhyale hawaiensis has developed into an attractive marine animal model for evolutionary developmental studies that offers several advantages over existing experimental organisms. It is easy to rear in laboratory conditions with embryos available year-round and amenable to numerous kinds of embryological and functional genetic manipulations. However, beyond these developmental and genetic analyses, research on the architecture of its nervous system is fragmentary. In order to provide a first neuroanatomical atlas of the brain, we investigated P. hawaiensis using immunohistochemical labelings combined with laser-scanning microscopy, X-ray microcomputed tomography, histological sectioning and 3D reconstructions. RESULTS: As in most amphipod crustaceans, the brain is dorsally bent out of the body axis with downward oriented lateral hemispheres of the protocerebrum. It comprises almost all prominent neuropils that are part of the suggested ground pattern of malacostracan crustaceans (except the lobula plate and projection neuron tract neuropil). Beyond a general uniformity of these neuropils, the brain of P. hawaiensis is characterized by an elaborated central complex and a modified lamina (first order visual neuropil), which displays a chambered appearance. In the light of a recent analysis on photoreceptor projections in P. hawaiensis, the observed architecture of the lamina corresponds to specialized photoreceptor terminals. Furthermore, in contrast to previous descriptions of amphipod brains, we suggest the presence of a poorly differentiated hemiellipsoid body and an inner chiasm and critically discuss these aspects. CONCLUSIONS: Despite a general uniformity of amphipod brains, there is also a certain degree of variability in architecture and size of different neuropils, reflecting various ecologies and life styles of different species. In contrast to other amphipods, the brain of P. hawaiensis does not display any striking modifications or bias towards processing one particular sensory modality. Thus, we conclude that this brain represents a common type of an amphipod brain. Considering various established protocols for analyzing and manipulating P. hawaiensis, this organism is a suitable model to gain deeper understanding of brain anatomy e.g. by using connectome approaches, and this study can serve as first solid basis for following studies.

3.
J Exp Biol ; 222(Pt 12)2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31160428

RESUMEN

The terrestrial and omnivorous robber crab Birgus latro inhabits islands of the Indian Ocean and the Pacific Ocean. The animals live solitarily but occasionally gather at freshly opened coconuts or fructiferous arenga palms. By analyzing volatiles of coconuts and arenga fruit, we identified five compounds, including acetoin, which are present in both food sources. In a behavioral screen performed in the crabs' habitat, a beach on Christmas Island, we found that of 15 tested fruit compounds, acetoin was the only volatile eliciting significant attraction. Hence, acetoin might play a key role in governing the crabs' aggregation behavior at both food sources.


Asunto(s)
Acetoína/metabolismo , Anomuros/fisiología , Odorantes , Animales , Conducta Alimentaria , Islas del Oceano Índico
4.
Front Zool ; 15: 27, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29989069

RESUMEN

BACKGROUND: The life history stages of brachyuran crustaceans include pelagic larvae of the Zoea type which grow by a series of moults from one instar to the next. Zoeae actively feed and possess a wide range of organ systems necessary for autonomously developing in the plankton. They also display a rich behavioural repertoire that allows for responses to variations in environmental key factors such as light, hydrostatic pressure, tidal currents, and temperature. Brachyuran larvae have served as distinguished models in the field of Ecological Developmental Biology fostering our understanding of diverse ecophysiological aspects such as phenotypic plasticity, carry-over effects on life-history traits, and adaptive mechanisms that enhance tolerance to fluctuations in environmental abiotic factors. In order to link such studies to the level of tissues and organs, this report analyses the internal anatomy of laboratory-reared larvae of the European shore crab Carcinus maenas. This species has a native distribution extending across most European waters and has attracted attention because it has invaded five temperate geographic regions outside of its native range and therefore can serve as a model to analyse thermal tolerance of species affected by rising sea temperatures as an effect of climate change. RESULTS: Here, we used X-ray micro-computed tomography combined with 3D reconstruction to describe organogenesis in brachyuran larvae. We provide a detailed atlas of the larval internal organization to complement existing descriptions of its external morphology. In a multimethodological approach, we also used cuticular autofluorescence and classical histology to analyse the anatomy of selected organ systems. CONCLUSIONS: Much of our fascination for the anatomy of brachyuran larvae stems from the opportunity to observe a complex organism on a single microscopic slide and the realization that the entire decapod crustacean bauplan unfolds from organ anlagen compressed into a miniature organism in the sub-millimetre range. The combination of imaging techniques used in the present study provides novel insights into the bewildering diversity of organ systems that brachyuran larvae possess. Our analysis may serve as a basis for future studies bridging the fields of evolutionary developmental biology and ecological developmental biology.

5.
Cell Tissue Res ; 369(2): 255-271, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28389816

RESUMEN

Penaeus vannamei (Dendrobranchiata, Decapoda) is best known as the "Pacific White Shrimp" and is currently the most important crustacean in commercial aquaculture worldwide. Although the neuroanatomy of crustaceans has been well examined in representatives of reptant decapods ("ground-dwelling decapods"), there are only a few studies focusing on shrimps and prawns. In order to obtain insights into the architecture of the brain of P. vannamei, we use neuroanatomical methods including X-ray micro-computed tomography, 3D reconstruction and immunohistochemical staining combined with confocal laser-scanning microscopy and serial sectioning. The brain of P. vannamei exhibits all the prominent neuropils and tracts that characterize the ground pattern of decapod crustaceans. However, the size proportion of some neuropils is salient. The large lateral protocerebrum that comprises the visual neuropils as well as the hemiellipsoid body and medulla terminalis is remarkable. This observation corresponds with the large size of the compound eyes of these animals. In contrast, the remaining median part of the brain is relatively small. It is dominated by the paired antenna 2 neuropils, while the deutocerebral chemosensory lobes play a minor role. Our findings suggest that visual input from the compound eyes and mechanosensory input from the second pair of antennae are major sensory modalities, which this brain processes.


Asunto(s)
Encéfalo/anatomía & histología , Penaeidae/anatomía & histología , Sensación/fisiología , Animales , Células Receptoras Sensoriales/fisiología
6.
Cell Tissue Res ; 363(3): 649-77, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26391274

RESUMEN

We reveal the neuroanatomy of the optic ganglia and central brain in the water flea Daphnia magna by use of classical neuroanatomical techniques such as semi-thin sectioning and neuronal backfilling, as well as immunohistochemical markers for synapsins, various neuropeptides and the neurotransmitter histamine. We provide structural details of distinct neuropiles, tracts and commissures, many of which were previously undescribed. We analyse morphological details of most neuron types, which allow for unravelling the connectivities between various substructural parts of the optic ganglia and the central brain and of ascending and descending connections with the ventral nerve cord. We identify 5 allatostatin-A-like, 13 FMRFamide-like and 5 tachykinin-like neuropeptidergic neuron types and 6 histamine-immunoreactive neuron types. In addition, novel aspects of several known pigment-dispersing hormone-immunoreactive neurons are re-examined. We analyse primary and putative secondary olfactory pathways and neuronal elements of the water flea central complex, which displays both insect- and decapod crustacean-like features, such as the protocerebral bridge, central body and lateral accessory lobes. Phylogenetic aspects based upon structural comparisons are discussed as well as functional implications envisaging more specific future analyses of ecotoxicological and endocrine disrupting environmental chemicals.


Asunto(s)
Encéfalo/anatomía & histología , Daphnia/anatomía & histología , Ganglios de Invertebrados/anatomía & histología , Animales , Encéfalo/citología , Agregación Celular , Daphnia/citología , FMRFamida/metabolismo , Ganglios de Invertebrados/citología , Histamina/metabolismo , Imagenología Tridimensional , Modelos Biológicos , Neuronas/metabolismo , Neuropéptidos/metabolismo , Neurópilo/metabolismo , Corteza Olfatoria/anatomía & histología , Péptidos/metabolismo , Taquicininas/metabolismo , Vías Visuales/anatomía & histología
7.
BMC Evol Biol ; 13: 119, 2013 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-23758940

RESUMEN

BACKGROUND: Remipedia were initially seen as a primitive taxon within Pancrustacea based on characters considered ancestral, such as the homonomously segmented trunk. Meanwhile, several morphological and molecular studies proposed a more derived position of Remipedia within Pancrustacea, including a sister group relationship to Hexapoda. Because of these conflicting hypotheses, fresh data are crucial to contribute new insights into euarthropod phylogeny. The architecture of individually identifiable serotonin-immunoreactive neurons has successfully been used for phylogenetic considerations in Euarthropoda. Here, we identified neurons in three species of Remipedia with an antiserum against serotonin and compared our findings to reconstructed ground patterns in other euarthropod taxa. Additionally, we traced neurite connectivity and neuropil outlines using antisera against acetylated α-tubulin and synapsin. RESULTS: The ventral nerve cord of Remipedia displays a typical rope-ladder-like arrangement of separate metameric ganglia linked by paired longitudinally projecting connectives. The peripheral projections comprise an intersegmental nerve, consisting of two branches that fuse shortly after exiting the connectives, and the segmental anterior and posterior nerve. The distribution and morphology of serotonin-immunoreactive interneurons in the trunk segments is highly conserved within the remipede species we analyzed, which allows for the reconstruction of a ground pattern: two posterior and one anterior pair of serotonin-immunoreactive neurons that possess a single contralateral projection. Additionally, three pairs of immunoreactive neurons are found in the medial part of each hemiganglion. In one species (Cryptocorynetes haptodiscus), the anterior pair of immunoreactive neurons is missing. CONCLUSIONS: The anatomy of the remipede ventral nerve cord with its separate metameric ganglia mirrors the external morphology of the animal's trunk. The rope-ladder-like structure and principal architecture of the segmental ganglia in Remipedia corresponds closely to that of other Euarthropoda. A comparison of the serotonin-immunoreactive cell arrangement of Remipedia to reconstructed ground patterns of major euarthropod taxa supports a homology of the anterior and posterior neurons in Pancrustacea. These neurons in Remipedia possess unbranched projections across the midline, pointing towards similarities to the hexapod pattern. Our findings are in line with a growing number of phylogenetic investigations proposing Remipedia to be a rather derived crustacean lineage that perhaps has close affinities to Hexapoda.


Asunto(s)
Proteínas de Artrópodos/análisis , Crustáceos/clasificación , Neuronas/química , Serotonina/análisis , Animales , Artrópodos/clasificación , Crustáceos/anatomía & histología , Crustáceos/química , Crustáceos/genética , Inmunoquímica , Sistema Nervioso/anatomía & histología , Sistema Nervioso/química , Sistema Nervioso/citología , Neurópilo/química , Filogenia , Serotonina/inmunología , Sinapsinas/química , Tubulina (Proteína)/química
8.
J Exp Zool B Mol Dev Evol ; 320(3): 179-93, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23483730

RESUMEN

Emerging evidence suggests that Chaetognatha represent an evolutionary lineage that is the sister group to all other Protostomia thus promoting these animals as a pivotal model for our understanding of bilaterian evolutionary history. We have analyzed the proliferation of neuronal progenitor cells in the developing ventral nerve center (VNC) of Spadella cephaloptera hatchlings. To that end, for the first time in Chaetognatha, we performed in vivo incorporation experiments with the S-phase specific mitosis marker bromodeoxyuridine (BrdU). Our experiments provide evidence for a high level of mitotic activity in the VNC for ca. 3 days after hatching. Neurogenesis is carried by presumptive neuronal progenitor cells that cycle rapidly and most likely divide asymmetrically. These progenitors are arranged in a distinct grid-like geometrical pattern including about 35 transverse rows. Considering Chaetognaths to be an early offshoot of the protostome lineage we conclude that the presence of neuronal progenitor cells with asymmetric division seems to be a feature that is rooted deeply in the Metazoa. In the light of previous evidence indicating the presence of serially iterated peptidergic neurons with individual identities in the chaetognath VNC, we discuss if these neuronal progenitor cells give rise to distinct lineages. Furthermore, we evaluate the serially iterated arrangement of the progenitor cells in the light of evolution of segmentation.


Asunto(s)
Evolución Biológica , Invertebrados/crecimiento & desarrollo , Sistema Nervioso/crecimiento & desarrollo , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Animales , División Celular Asimétrica/fisiología , Bromodesoxiuridina , Linaje de la Célula/fisiología , Proliferación Celular , Francia , Microscopía Fluorescente , Sistema Nervioso/citología , Especificidad de la Especie
9.
J Comp Neurol ; 531(10): 1032-1056, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37016900

RESUMEN

In mandibulate arthropods, the primary olfactory centers, termed olfactory lobes in crustaceans, are typically organized in distinct fields of dense synaptic neuropils called olfactory glomeruli. In addition to olfactory sensory neuron terminals and their postsynaptic efferents, the glomeruli are innervated by diverse neurochemically distinctive interneurons. The functional morphology of the olfactory glomeruli is understudied in crustaceans compared with insects and even less well understood and described in a particular crustacean subgroup, the Peracarida, which embrace, for example, Amphipoda and Isopoda. Using immunohistochemistry combined with confocal laser scanning microscopy, we analyzed the neurochemistry of the olfactory pathway in the amphipod Parhyale hawaiensis. We localized the biogenic amines serotonin and histamine as well as the neuropeptides RFamide, allatostatin, orcokinin, and SIFamide. As for other classical neurotransmitters, we stained for γ-aminobutyric acid and glutamate decarboxylase and used choline acetyltransferase as indicator for acetylcholine. Our study is another step in understanding principles of olfactory processing in crustaceans and can serve as a basis for understanding evolutionary transformations of crustacean olfactory systems.


Asunto(s)
Anfípodos , Animales , Anfípodos/fisiología , Vías Olfatorias/metabolismo , Interneuronas , Inmunohistoquímica , Neurópilo
10.
Arthropod Struct Dev ; 77: 101309, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37879171

RESUMEN

Immunohistochemical analyses on the distribution of neuropeptides in the pancrustacean brain in the past have focussed mostly on representatives of the decapod ("ten-legged") pancrustaceans whereas other taxa are understudied in this respect. The current report examines the post-embryogenic and adult brain and ventral nerve cord of the amphipod pancrustacean Parhyale hawaiensis (Dana. 1853; Peracarida, Amphipoda, Hyalide), a subtropical species with a body size of 1.5 cm and a direct post-embryonic development using immunohistochemistry to label the neuropeptide SIFamide and synaptic proteins (synapsins). We found strong SIFamide-like labelling in proto-, deuto- and tritocerebrum, especially in the lamina, the lateral protocerebrum, lateral assessory lobe, the central body, olfactory lobe, medial antenna 1 neuropil and antenna 2 neuropil. Out of a total of 28 ± 5 (N = 12) SIFamide-positive neurons in the central brain of adult P. hawaiensis, we found three individually identifiable somata which were consistently present within the brain of adult and subadult animals. Additionally, the subesophageal and two adjacent thoracic ganglia were analysed in only adult animals and also showed a strong SIFamide-like immunoreactivity. We compare our findings to other pancrustaceans including hexapods and discuss them in an evolutionary context.


Asunto(s)
Anfípodos , Neuropéptidos , Animales , Neuropéptidos/metabolismo , Neuronas , Encéfalo , Neurópilo
11.
J Comp Neurol ; 532(2): e25554, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37948052

RESUMEN

Spiders (Araneae) include cursorial species that stalk their prey and more stationary species that use webs for prey capture. While many cursorial hunting spiders rely on visual cues, web-building spiders use vibratory cues (mechanosensation) for prey capture. We predicted that the differences in primary sensory input between the species are mirrored by differences in the morphology/architecture of the central nervous system (CNS). Here, we investigated the CNS anatomy of four spider species, two cursorial hunters Pardosa amentata (Lycosidae) and Marpissa muscosa (Salticidae), and two web-building hunters Argiope bruennichi (Araneidae) and Parasteatoda tepidariorum (Theridiidae). Their CNS was analyzed using Bodian silver impregnations, immunohistochemistry, and microCT analysis. We found that there are major differences between species in the secondary eye pathway of the brain that pertain to first-order, second-order, and higher order brain centers (mushroom bodies [MB]). While P. amentata and M. muscosa have prominent visual neuropils and MB, these are much reduced in the two web-building species. Argiope bruennichi lacks second-order visual neuropils but has specialized photoreceptors that project into two distinct visual neuropils, and P. tepidariorum lacks MB, suggesting that motion vision might be absent in this species. Interestingly, the differences in the ventral nerve cord are much less pronounced, but the web-building spiders have proportionally larger leg neuropils than the cursorial spiders. Our findings suggest that the importance of visual information is much reduced in web-building spiders, compared to cursorial spiders, while processing of mechanosensory information requires the same major circuits in both web-building and cursorial hunting spiders.

12.
Front Cell Neurosci ; 17: 1263591, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37920203

RESUMEN

Introduction: At the cellular level, acute temperature changes alter ionic conductances, ion channel kinetics, and the activity of entire neuronal circuits. This can result in severe consequences for neural function, animal behavior and survival. In poikilothermic animals, and particularly in aquatic species whose core temperature equals the surrounding water temperature, neurons experience rather rapid and wide-ranging temperature fluctuations. Recent work on pattern generating neural circuits in the crustacean stomatogastric nervous system have demonstrated that neuronal circuits can exhibit an intrinsic robustness to temperature fluctuations. However, considering the increased warming of the oceans and recurring heatwaves due to climate change, the question arises whether this intrinsic robustness can acclimate to changing environmental conditions, and whether it differs between species and ocean habitats. Methods: We address these questions using the pyloric pattern generating circuits in the stomatogastric nervous system of two crab species, Hemigrapsus sanguineus and Carcinus maenas that have seen a worldwide expansion in recent decades. Results and discussion: Consistent with their history as invasive species, we find that pyloric activity showed a broad temperature robustness (>30°C). Moreover, the temperature-robust range was dependent on habitat temperature in both species. Warm-acclimating animals shifted the critical temperature at which circuit activity breaks down to higher temperatures. This came at the cost of robustness against cold stimuli in H. sanguineus, but not in C. maenas. Comparing the temperature responses of C. maenas from a cold latitude (the North Sea) to those from a warm latitude (Spain) demonstrated that similar shifts in robustness occurred in natural environments. Our results thus demonstrate that neuronal temperature robustness correlates with, and responds to, environmental temperature conditions, potentially preparing animals for changing ecological conditions and shifting habitats.

13.
BMC Evol Biol ; 12: 168, 2012 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-22947030

RESUMEN

BACKGROUND: Remipedia, a group of homonomously segmented, cave-dwelling, eyeless arthropods have been regarded as basal crustaceans in most early morphological and taxonomic studies. However, molecular sequence information together with the discovery of a highly differentiated brain led to a reconsideration of their phylogenetic position. Various conflicting hypotheses have been proposed including the claim for a basal position of Remipedia up to a close relationship with Malacostraca or Hexapoda. To provide new morphological characters that may allow phylogenetic insights, we have analyzed the architecture of the remipede brain in more detail using immunocytochemistry (serotonin, acetylated α-tubulin, synapsin) combined with confocal laser-scanning microscopy and image reconstruction techniques. This approach allows for a comprehensive neuroanatomical comparison with other crustacean and hexapod taxa. RESULTS: The dominant structures of the brain are the deutocerebral olfactory neuropils, which are linked by the olfactory globular tracts to the protocerebral hemiellipsoid bodies. The olfactory globular tracts form a characteristic chiasm in the center of the brain. In Speleonectes tulumensis, each brain hemisphere contains about 120 serotonin immunoreactive neurons, which are distributed in distinct cell groups supplying fine, profusely branching neurites to 16 neuropilar domains. The olfactory neuropil comprises more than 300 spherical olfactory glomeruli arranged in sublobes. Eight serotonin immunoreactive neurons homogeneously innervate the olfactory glomeruli. In the protocerebrum, serotonin immunoreactivity revealed several structures, which, based on their position and connectivity resemble a central complex comprising a central body, a protocerebral bridge, W-, X-, Y-, Z-tracts, and lateral accessory lobes. CONCLUSIONS: The brain of Remipedia shows several plesiomorphic features shared with other Mandibulata, such as deutocerebral olfactory neuropils with a glomerular organization, innervations by serotonin immunoreactive interneurons, and connections to protocerebral neuropils. Also, we provided tentative evidence for W-, X-, Y-, Z-tracts in the remipedian central complex like in the brain of Malacostraca, and Hexapoda. Furthermore, Remipedia display several synapomorphies with Malacostraca supporting a sister group relationship between both taxa. These homologies include a chiasm of the olfactory globular tract, which connects the olfactory neuropils with the lateral protocerebrum and the presence of hemiellipsoid bodies. Even though a growing number of molecular investigations unites Remipedia and Cephalocarida, our neuroanatomical comparison does not provide support for such a sister group relationship.


Asunto(s)
Encéfalo/anatomía & histología , Crustáceos/anatomía & histología , Interneuronas/citología , Animales , Encéfalo/citología , Crustáceos/genética , Técnica del Anticuerpo Fluorescente , Microscopía Confocal , Neurópilo/citología , Vías Olfatorias/citología , Filogenia , Serotonina/análisis , Sinapsinas/análisis , Tubulina (Proteína)/análisis
14.
BMC Neurosci ; 13: 1-17, 2012 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-22214384

RESUMEN

BACKGROUND: Originating from a marine ancestor, the myriapods most likely invaded land independently of the hexapods. As these two evolutionary lineages conquered land in parallel but separately, we are interested in comparing the myriapod chemosensory system to that of hexapods to gain insights into possible adaptations for olfaction in air. Our study connects to a previous analysis of the brain and behavior of the chilopod (centipede) Scutigera coleoptrata in which we demonstrated that these animals do respond to volatile substances and analyzed the structure of their central olfactory pathway. RESULTS: Here, we examined the architecture of the deutocerebral brain areas (which process input from the antennae) in seven additional representatives of the Chilopoda, covering all major subtaxa, by histology, confocal laser-scan microscopy, and 3D reconstruction. We found that in all species that we studied the majority of antennal afferents target two separate neuropils, the olfactory lobe (chemosensory, composed of glomerular neuropil compartments) and the corpus lamellosum (mechanosensory). The numbers of olfactory glomeruli in the different chilopod taxa ranged from ca. 35 up to ca. 90 and the shape of the glomeruli ranged from spheroid across ovoid or drop-shape to elongate. CONCLUSION: A split of the afferents from the (first) pair of antennae into separate chemosensory and mechanosensory components is also typical for Crustacea and Hexapoda, but this set of characters is absent in Chelicerata. We suggest that this character set strongly supports the Mandibulata hypothesis (Myriapoda + (Crustacea + Hexapoda)) as opposed to the Myriochelata concept (Myriapoda + Chelicerata). The evolutionary implications of our findings, particularly the plasticity of glomerular shape, are discussed.


Asunto(s)
Artrópodos/fisiología , Encéfalo/citología , Neurópilo/fisiología , Vías Olfatorias/fisiología , Órganos de los Sentidos/anatomía & histología , Animales , Evolución Biológica , Biotina/análogos & derivados , Biotina/metabolismo , Imagenología Tridimensional , Microscopía Confocal , Órganos de los Sentidos/fisiología
15.
Cell Tissue Res ; 348(1): 47-69, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22374330

RESUMEN

The European shore crab Carcinus maenas and the common hermit crab Pagurus bernhardus are members of the sister taxa Brachyura and Anomura (together forming the taxon Meiura) respectively. Both species share similar coastal marine habitats and thus are confronted with similar environmental conditions. This study sets out to explore variations of general brain architecture of species that live in seemingly similar habitats but belong to different major malacostracan taxa and to understand possible differences of sensory systems and related brain compartments. We examined the brains of Carcinus maenas, Pagurus bernhardus, and three other hermit crab species with immunohistochemistry against tyrosinated tubulin, f-actin, synaptic proteins, RF-amides and allatostatin. Our comparison showed that their optic neuropils within the eyestalks display strong resemblance in gross morphology as well as in detailed organization, suggesting a rather similar potential of processing visual input. Besides the well-developed visual system, the olfactory neuropils are distinct components in the brain of both C. maenas and P. bernhardus as well as the other hermit crabs, suggesting that close integration of olfactory and visual information may be useful in turbid marine environments with low visibility, as is typical for many habitats such as, e.g., the Baltic and the North Sea. Comparing the shape of the olfactory glomeruli in the anomurans showed some variations, ranging from a wedge shape to an elongate morphology. Furthermore, the tritocerebrum and the organization of the second antennae associated with the tritocerebrum seem to differ markedly in C. maenas and P. bernhardus, indicating better mechanosensory abilities in the latter close to those of other Decapoda with long second antennae, such as Astacida, Homarida, or Achelata. This aspect may also represent an adaptation to the "hermit lifestyle" in which competition for shells is a major aspect of their life history. The shore crab C. maenas, on the other hand seems to rely much less on mechanosensory information mediated by the second antennae but in water, the visual and the olfactory senses seem to be the most important modalities.


Asunto(s)
Anomuros/anatomía & histología , Antenas de Artrópodos/anatomía & histología , Braquiuros/anatomía & histología , Encéfalo/anatomía & histología , Animales , Antenas de Artrópodos/ultraestructura , Europa (Continente) , Modelos Anatómicos
16.
J Comp Neurol ; 530(9): 1399-1422, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34843626

RESUMEN

The primary olfactory centers of metazoans as diverse as arthropods and mammals consist of an array of fields of dense synaptic neuropil, the olfactory glomeruli. However, the neurochemical structure of crustacean olfactory glomeruli is largely understudied when compared to the insects. We analyzed the glomerular architecture in selected species of hermit crabs using immunohistochemistry against presynaptic proteins, the neuropeptides orcokinin, RFamide and allatostatin, and the biogenic amine serotonin. Our study reveals an unexpected level of structural complexity, unmatched by what is found in the insect olfactory glomeruli. Peptidergic and aminergic interneurons provide the structural basis for a regionalization of the crustacean glomeruli into longitudinal and concentric compartments. Our data suggest that local olfactory interneurons take a central computational role in modulating the information transfer from olfactory sensory neurons to projection neurons within the glomeruli. Furthermore, we found yet unknown neuronal elements mediating lateral inhibitory interactions across the glomerular array that may play a central role in modulating the transfer of sensory input to the output neurons through presynaptic inhibition. Our study is another step in understanding the function of crustacean olfactory glomeruli as highly complex units of local olfactory processing.


Asunto(s)
Anomuros , Neuronas Receptoras Olfatorias , Animales , Interneuronas , Mamíferos , Neurópilo/metabolismo , Bulbo Olfatorio , Vías Olfatorias/metabolismo
17.
Dev Growth Differ ; 53(5): 740-59, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21671921

RESUMEN

Chaetognaths (arrow worms) play an important role as predators in planktonic food webs. Their phylogenetic position is unresolved, and among the numerous hypotheses, affinities to both protostomes and deuterostomes have been suggested. Many aspects of their life history, including ontogenesis, are poorly understood and, though some aspects of their embryonic and postembryonic development have been described, knowledge of early neural development is still limited. This study sets out to provide new insights into neurogenesis of newly hatched Spadella cephaloptera and their development during the following days, with attention to the two main nervous centers, the brain and the ventral nerve center. These were examined with immunohistological methods and confocal laser-scan microscopic analysis, using antibodies against tubulin, FMRFamide, and synapsin to trace the emergence of neuropils and the establishment of specific peptidergic subsystems. At hatching, the neuronal architecture of the ventral nerve center is already well established, whereas the brain and the associated vestibular ganglia are still rudimentary. The development of the brain proceeds rapidly over the next 6 days to a state that resembles the adult pattern. These data are discussed in relation to the larval life style and behaviors such as feeding. In addition, we compare the larval chaetognath nervous system and that of other bilaterian taxa in order to extract information with phylogenetic value. We conclude that larval neurogenesis in chaetognaths does not suggest an especially close relationship to either deuterostomes or protostomes, but instead displays many apomorphic features.


Asunto(s)
Evolución Biológica , Invertebrados/crecimiento & desarrollo , Sistema Nervioso/crecimiento & desarrollo , Filogenia , Animales , Conducta Animal/fisiología , Inmunohistoquímica , Larva/crecimiento & desarrollo , Larva/ultraestructura , Microscopía Confocal , Microscopía Electrónica de Transmisión , Neurópilo/fisiología , Especificidad de la Especie
18.
Chem Senses ; 36(1): 43-61, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20962283

RESUMEN

Myriapods represent an arthropod lineage, that originating from a marine arthropod ancestor most likely conquered land independently from hexapods and crustaceans. Establishing aerial olfaction during a transition from the ocean to land requires molecules to be detected in gas phase instead of in water solution. Considering that the olfactory sense of myriapods has evolved independently from that in hexapods and crustaceans, the question arises if and how myriapods have solved the tasks of odor detection and odor information processing in air. Comparative studies between arthropod taxa that independently have established a terrestrial life style provide a powerful means of investigating the evolution of chemosensory adaptations in this environment and to understand how the arthropod nervous system evolved in response to new environmental and ecological challenges. In general, the neuroethology of myriapods and the architecture of their central nervous systems are insufficiently understood. In a set of experiments with the centipede Scutigera coleoptrata, we analyzed the central olfactory pathway with serial semi-thin sectioning combined with 3-dimensional reconstruction, antennal backfilling with neuronal tracers, and immunofluorescence combined with confocal laser-scanning microscopy. Furthermore, we conducted behavioral experiments to find out if these animals react to airborne stimuli. Our results show that the primary olfactory and mechanosensory centers are well developed in these organisms but that the shape of the olfactory neuropils in S. coleoptrata is strikingly different when compared with those of hexapods and malacostracan crustaceans. Nevertheless, the presence of distinct neuropils for chemosensory and mechanosensory qualities in S. coleoptrata, malacostracan Crustacea, and Hexapoda could indicate a common architectural principle within the Mandibulata. Furthermore, behavioral experiments indicate that S. coleoptrata is able to perceive airborne stimuli, both from live prey and from a chemical extract of the prey. These results are in line with the morphological findings concerning the well-developed olfactory centers in the deutocerebrum of this species.


Asunto(s)
Artrópodos/fisiología , Neurópilo/fisiología , Olfato/fisiología , Aire , Animales , Conducta Animal , Evolución Biológica , Odorantes , Vías Olfatorias
19.
Zoology (Jena) ; 144: 125887, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33445148

RESUMEN

The unprecedented rate of carbon dioxide accumulation in the atmosphere has led to increased warming, acidification and oxygen depletion in the world's oceans, with projected impacts also on ocean salinity. In this perspective article, we highlight potential impacts of these factors on neuronal responses in decapod crustaceans. Decapod crustaceans comprise more than 8,800 marine species which have colonized a wide range of habitats that are particularly affected by global ocean change, including estuarine, intertidal, and coastal areas. Many decapod species have large economic value and high ecological importance because of their global invasive potential and impact on local ecosystems. Global warming has already led to considerable changes in decapod species' behavior and habitat range. Relatively little is known about how the decapod nervous system, which is the ultimate driver of all behaviors, copes with environmental stressors. We use select examples to summarize current findings and evaluate the impact of current and expected environmental changes. While data indicate a surprising robustness against stressors like temperature and pH, we find that only a handful of species have been studied and long-term effects on neuronal activity remain mostly unknown. A further conclusion is that the combined effects of multiple stressors are understudied. We call for greater research efforts towards long-term effects on neuronal physiology and expansion of cross-species comparisons to address these issues.


Asunto(s)
Cambio Climático , Decápodos/fisiología , Fenómenos Fisiológicos del Sistema Nervioso , Océanos y Mares , Animales , Concentración de Iones de Hidrógeno , Oxígeno , Salinidad , Temperatura
20.
Ecol Evol ; 11(11): 7042-7056, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34141274

RESUMEN

Developing physiological mechanistic models to predict species' responses to climate-driven environmental variables remains a key endeavor in ecology. Such approaches are challenging, because they require linking physiological processes with fitness and contraction or expansion in species' distributions. We explore those links for coastal marine species, occurring in regions of freshwater influence (ROFIs) and exposed to changes in temperature and salinity. First, we evaluated the effect of temperature on hemolymph osmolality and on the expression of genes relevant for osmoregulation in larvae of the shore crab Carcinus maenas. We then discuss and develop a hypothetical model linking osmoregulation, fitness, and species expansion/contraction toward or away from ROFIs. In C. maenas, high temperature led to a threefold increase in the capacity to osmoregulate in the first and last larval stages (i.e., those more likely to experience low salinities). This result matched the known pattern of survival for larval stages where the negative effect of low salinity on survival is mitigated at high temperatures (abbreviated as TMLS). Because gene expression levels did not change at low salinity nor at high temperatures, we hypothesize that the increase in osmoregulatory capacity (OC) at high temperature should involve post-translational processes. Further analysis of data suggested that TMLS occurs in C. maenas larvae due to the combination of increased osmoregulation (a physiological mechanism) and a reduced developmental period (a phenological mechanisms) when exposed to high temperatures. Based on information from the literature, we propose a model for C. maenas and other coastal species showing the contribution of osmoregulation and phenological mechanisms toward changes in range distribution under coastal warming. In species where the OC increases with temperature (e.g., C. maenas larvae), osmoregulation should contribute toward expansion if temperature increases; by contrast in those species where osmoregulation is weaker at high temperature, the contribution should be toward range contraction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA