Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Bioconjug Chem ; 33(6): 1011-1034, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34793138

RESUMEN

Immunotherapy has revolutionized the modality for establishing a firm immune response and immunological memory. However, intrinsic limitations of conventional low responsive poor T cell infiltration and immune related adverse effects urge the coupling of cancer nanomedicines with immunotherapy for boosting antitumor response under ultrasound (US) sensitization to mimic dose-limiting toxicities for safe and effective therapy against advanced cancer. US is composed of high-frequency sound waves that mediate targeted spatiotemporal control over release and internalization of the drug. The unconventional US triggered immunogenic nanoengineered arena assists the limited immunogenic dose, limiting toxicities and efficacies. In this Review, we discuss current prospects of enhanced immunotherapy using nanomedicine under US. We highlight how nanotechnology designs and incorporates nanomedicines for the reprogramming of systematic immunity in the tumor microenvironment. We also emphasize the mechanical and biological potential of US, encompassing sonosensitizer activation for enhanced immunotherapeutic efficacies. Finally, the smartly converging combinational platform of US stimulated cancer nanomedicines for amending immunotherapy is summarized. This Review will widen scientists' ability to explore and understand the limiting factors for combating cancer in a precisely customized way.


Asunto(s)
Neoplasias , Humanos , Factores Inmunológicos/farmacología , Inmunoterapia , Nanomedicina , Nanotecnología , Neoplasias/patología , Microambiente Tumoral
2.
Environ Res ; 215(Pt 1): 114140, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36002044

RESUMEN

Nowadays, environmental pollution due to discharge of organic pollutants from food, textile, and pharmaceutical industries into clean water and development of contagious diseases due to pathogenic organisms provide impetus to material researcher to fabricate novel design for efficient photocatalyst and antimicrobial agents. In this regard, designing a core-shell heterojunction catalyst based on metal oxides is considered an auspicious approach. In present study, combating the problems of singular oxides, core-shell PANI-CeO2-Fe2O3-NiO nanocomposite (PCFN) and CeO2-Fe2O3-NiO nanocomposite (CFN) was synthesized through sol-gel and oxidative polymerization route with cetyletrimethylammonium bromide (CTAB) as surfactant. The XRD, FTIR, and Raman confirmed the formation of nanocomposites with core-shell morphology composed of PANI (shell) and oxides (Core) in PCFN with a particle size of 52 nm (TEM). Surprisingly, PCFN has lower band gap, e-/h+ recombination, and larger charge transfer character than CFN. The decomposition test using MB and MO dyes showed that PCFN degraded 99%, 98%, while CFN degraded only 73% and 54%, respectively, under 50 min sunlight illumination. The reusability was assessed up to 7th cycle for PCFN. The influence of operational parameters (catalyst dose, dye concentration, pH) was tested for PCFN. Further, the antimicrobial action against S. aureus (gram + ve), E. coli (gram -ve) were also tested. The supreme performance of PCFN has been credited to heterostructure dual Z-scheme formation and core-shell morphology supported with PANI, which suppresses the e-/h+ recombination process by promoting their separation. The present finding indicated that the PCFN is a promising modifier for bacterial disinfection and acts as a superb photocatalyst through core-shell formation with PANI support.


Asunto(s)
Contaminantes Ambientales , Nanocompuestos , Bacterias , Bromuros , Cetrimonio , Colorantes , Desinfección , Escherichia coli , Nanocompuestos/química , Óxidos/química , Staphylococcus aureus , Luz Solar , Tensoactivos , Agua
3.
Sensors (Basel) ; 22(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36146077

RESUMEN

A study was conducted with the goal of developing an algorithm for use in sensors to monitor available soil N. For this purpose, three different soils were selected. The soils were studied for electrical conductivity (EC) at four different moisture levels and four levels of N. The selection of moisture levels was based on optimum moisture levels between tillage moisture and field capacity. The results revealed a significant relationship between electrical conductivity and moisture level of the soil as well as between electrical conductivity and soil N content. Based on these relations, a polynomial model was developed between the EC of each selected soil sample and moisture content as well as N levels. The regression model for moisture content-based EC determination had coefficients of determination of 0.985, 0.988, and 0.981 for clay loam, sandy loam, and sandy loam soils, respectively. Similarly, the regression model for N content-based EC determination had coefficients of determination of 0.9832, 0.9, and 0.99 for clay loam, sandy loam, and sandy loam soils, respectively. An algorithm developed using a polynomial relationship between the EC of each selected soil sample at all moisture and N levels can be used to develop a sensor for site-specific N application.


Asunto(s)
Nitrógeno , Suelo , Arcilla , Conductividad Eléctrica
4.
Sensors (Basel) ; 22(16)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36015996

RESUMEN

The management of water resources is a priority problem in agriculture, especially in areas with a limited water supply. The determination of crop water requirements and crop coefficient (Kc) of agricultural crops helps to create an appropriate irrigation schedule for the effective management of irrigation water. A portable smart weighing lysimeter (1000 × 1000 mm and 600 mm depth) was developed at CPCT, IARI, New Delhi for real-time measurement of Crop Coefficient (Kc) and water requirement of chrysanthemum crop and bulk data storage. The paper discusses the assembly, structural and operational design of the portable smart weighting lysimeter. The performance characteristics of the developed lysimeter were evaluated under different load conditions. The Kc values of the chrysanthemum crop obtained from the lysimeter installed inside the greenhouse were Kc ini. 0.43 and 0.38, Kc mid-1.27 and 1.25, and Kc end-0.67 and 0.59 for the years 2019-2020 and 2020-2021, respectively, which apprehensively corroborated with the FAO 56 paper for determination of crop coefficient. The Kc values decreased progressively at the late-season stage because of the maturity and aging of the leaves. The lysimeter's edge temperature was somewhat higher, whereas the center temperature closely matched the field temperature. The temperature difference between the center and the edge increased as the ambient temperature rose. The developed smart lysimeter system has unique applications due to its real-time measurement, portable attribute, and ability to produce accurate results for determining crop water use and crop coefficient for greenhouse chrysanthemum crops.


Asunto(s)
Chrysanthemum , Transpiración de Plantas , Riego Agrícola/métodos , Agricultura , Productos Agrícolas , Agua
5.
Molecules ; 27(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36144499

RESUMEN

Protein corona composition and precise physiological understanding of differentially expressed proteins are key for identifying disease biomarkers. In this report, we presented a distinctive quantitative proteomics table of molecular cell signaling differentially expressed proteins of corona that formed on iron carbide nanoparticles (NPs). High-performance liquid chromatography/electrospray ionization coupled with ion trap mass analyzer (HPLC/ESI-Orbitrap) and MASCOT helped quantify 142 differentially expressed proteins. Among these proteins, 104 proteins showed upregulated behavior and 38 proteins were downregulated with respect to the control, whereas 48, 32 and 24 proteins were upregulated and 8, 9 and 21 were downregulated CW (control with unmodified NPs), CY (control with modified NPs) and WY (modified and unmodified NPs), respectively. These proteins were further categorized on behalf of their regularity, locality, molecular functionality and molecular masses using gene ontology (GO). A STRING analysis was used to target the specific range of proteins involved in metabolic pathways and molecular processing in different kinds of binding functionalities, such as RNA, DNA, ATP, ADP, GTP, GDP and calcium ion bindings. Thus, this study will help develop efficient protocols for the identification of latent biomarkers in early disease detection using protein fingerprints.


Asunto(s)
Nanopartículas , Corona de Proteínas , Adenosina Difosfato , Adenosina Trifosfato , Calcio , Compuestos Inorgánicos de Carbono , Análisis por Conglomerados , Guanosina Trifosfato , Compuestos de Hierro , Nanopartículas/química , Corona de Proteínas/química , Proteínas/metabolismo , Proteómica/métodos , ARN
6.
Molecules ; 25(15)2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32751780

RESUMEN

Withania coagulans contains a complex mixture of various bioactive compounds. In order to reduce the complexity of the plant extract to purify its phytochemical biomolecules, a novel fractionation strategy using different solvent combination ratios was applied to isolate twelve bioactive fractions. These fractions were tested for activity in the biogenic synthesis of cobalt oxide nanoparticles, biofilm and antifungal activities. The results revealed that plant extract with bioactive fractions in 30% ratio for all solvent combinations showed more potent bioreducing power, according to the observed color changes and the appearance of representative absorption peaks at 500-510 nm in the UV-visible spectra which confirm the synthesis of cobalt oxide nanoparticles (Co3O4 NPs). XRD diffraction was used to define the crystal structure, size and phase composition of the products. The fractions obtained using 90% methanol/hexane and 30% methanol/hexane showed more effectiveness against biofilm formation by Pseudomonas aeruginosa and Staphylococcus aureus so these fractions could potentially be used to treat bacterial infections. The 90% hexane/H2O fraction showed excellent antifungal activity against Aspergillus niger and Candida albicans, while the 70% methanol/hexane fraction showed good antifungal activity for C. albicans, so these fractions are potentially useful for the treatment of various fungal infections. On the whole it was concluded that fractionation based on effective combinations of methanol/hexane was useful to investigate and study bioactive compounds, and the active compounds from these fractions may be further purified and tested in various clinical trials.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Cobalto/química , Nanopartículas del Metal/química , Óxidos/química , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Withania/química , Aspergillus niger/efectos de los fármacos , Candida albicans/efectos de los fármacos , Fraccionamiento Químico/métodos , Hexanos/química , Metanol/química , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/efectos de los fármacos , Solventes/química , Staphylococcus aureus/efectos de los fármacos
7.
J Nanosci Nanotechnol ; 15(2): 1320-6, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26353649

RESUMEN

Biological synthesis of nanoparticles is best way to avoid exposure of hazardous materials as compared to chemical manufacturing process which is a severe threat not only to biodiversity but also to environment. In present study, we reported a novel method of finding antiradiation compounds by bioreducing mechanism of silver nanoparticles formation using 50% ethanol extract of Dragons blood, a famous Chinese herbal plant. Color change during silver nanoparticles synthesis was observed and it was confirmed by ultra violet (UV) visible spectroscopy at wave length at 430 nm after 30 min of reaction at 60 °C. Well dispersed round shaped silver nanoparticles with approximate size (4 nm to 50 nm) were measured by TEM and particle size analyser. Capping of biomolecules on Ag nanoparticles was characterized by FTIR spectra. HPLC analysis was carried out to find active compounds in the extract. Furthermore, antiradiation activity of this extract was tested by MTT assay in vitro after incubating the SH-SY5Y cells for 24 h at 37 °C. The results indicate that presence of active compounds in plant extract not only involves in bioreduction process but also shows response against radiation. The dual role of plant extract as green synthesis of nanoparticles and exhibit activity against radiation which gives a new way of fishing out active compounds from complex herbal plants.


Asunto(s)
Nanopartículas del Metal/administración & dosificación , Neuronas/efectos de los fármacos , Neuronas/efectos de la radiación , Extractos Vegetales/farmacología , Protectores contra Radiación/síntesis química , Protectores contra Radiación/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Supervivencia Celular/efectos de la radiación , Etanol/química , Humanos , Nanopartículas del Metal/química , Neuronas/fisiología , Tamaño de la Partícula , Extractos Vegetales/química , Plata/química , Plata/farmacología , Resultado del Tratamiento
8.
Proteomics ; 14(2-3): 262-73, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24323493

RESUMEN

Microgravity generates oxidative stress in central nervous system, causing distortion of various vital signaling cascades involved in many homeostatic functions. Here, we performed comparative (16) O/(18) O labeled integrated proteomic strategy to observe the differential expression of signaling proteins involved in homeostasis. In this study, rat-tail suspension model is employed to induce simulated microgravity in CNS. By wide proteomic analysis, total of 35 and 97 significantly differentially expressed proteins were found by HPLC/ESI-TOF and HPLC-Q-TOF analysis, respectively. Among the total of 132 proteins quantified, 25 proteins were found related to various signaling cascades. Protein Thy-1, 14-3-3 gamma, 14-3-3 epsilon, 14-3-3 theta, 14-3-3 eta, and 14-3-3 beta/alpha proteins, calmodulin and calcium/calmodulin-dependent protein kinase type-II subunit beta were found upregulated under the influence of simulated microgravity. These proteins are found involved in disrupting homeostatic pathways like sleep/wake cycle, drinking behavior, hypothalamic-pituitary-adrenocortical regulation and fight and/or flee actions under stress. Furthermore, MS results for protein Thy-1 were verified by Western blot analysis showing the quantification accuracy of MS instruments. Results presented here will serve as means to understand the mechanism of action of microgravity and further reference for future detailed study of consequences of microgravity on astronauts and their possible countermeasures.


Asunto(s)
Hipotálamo/fisiología , Proteínas/análisis , Proteómica/métodos , Secuencia de Aminoácidos , Animales , Western Blotting , Cromatografía Líquida de Alta Presión , Homeostasis , Datos de Secuencia Molecular , Isótopos de Oxígeno/análisis , Isótopos de Oxígeno/metabolismo , Proteínas/metabolismo , Ratas , Transducción de Señal , Espectrometría de Masa por Ionización de Electrospray , Estrés Fisiológico , Ingravidez
9.
Proteomics ; 14(11): 1424-33, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24648329

RESUMEN

Microgravity severely halts the structural and functional cerebral capacity of astronauts especially affecting their brains due to the stress produced by cephalic fluid shift. We employed a rat tail suspension model to substantiate simulated microgravity (SM) in brain. In this study, comparative mass spectrometry was applied in order to demonstrate the differential expression of 17 specific cellular defense proteins. Gamma-enolase, peptidyl-prolyl cis-trans isomerase A, glial fibrillary acidic protein, heat shock protein HSP 90-alpha, 10 kDa heat shock protein, mitochondrial, heat shock cognate 71 kDa protein, superoxide dismutase 1 and dihydropyrimidinase-related protein 2 were found to be upregulated by HPLC/ESI-TOF. Furthermore, five differentially expressed proteins including 60 kDa heat shock protein, mitochondrial, heat shock protein HSP 90-beta, peroxiredoxin-2, stress-induced-phosphoprotein, and UCHL-1 were found to be upregulated by HPLC/ESI-Q-TOF MS. In addition, downregulated proteins include cytochrome C, superoxide dismutase 2, somatic, and excitatory amino acid transporter 1 and protein DJ-1. Validity of MS results was successfully performed by Western blot analysis of DJ-1 protein. This study will not only help to understand the neurochemical responses produced under microgravity but also will give future direction to cure the proteomic losses and their after effects in astronauts.


Asunto(s)
Hipotálamo/fisiología , Proteoma/metabolismo , Secuencia de Aminoácidos , Animales , Western Blotting , Cromatografía Líquida de Alta Presión , Masculino , Espectrometría de Masas , Datos de Secuencia Molecular , Proteoma/análisis , Proteómica , Ratas , Simulación de Ingravidez
10.
Mol Biol Rep ; 41(9): 5729-34, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24928088

RESUMEN

Reactive oxygen species (ROS) are produced due to oxidative stress which has wide range of affiliation with different diseases including cancer, heart failure, diabetes and neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, ischemic and hemorrhagic diseases. This study shows the involvement of BNIP3 in the amplification of metabolic pathways related to cellular quality control and cellular self defence mechanism in the form of autophagy. We used conventional methods to induce autophagy by treating the cells with H2O2. MTT assay was performed to observe the cellular viability in stressed condition. MDC staining was carried out for detection of autophagosomes formation which confirmed the autophagy. Furthermore, expression of BNIP3 was validated by western blot analysis with LC3 antibody. From these results it is clear that BNIP3 plays a key role in defence mechanism by removing the misfolded proteins through autophagy. These results enhance the practical application of BNIP3 in neuroblastoma cells and are helpful in reducing the chances of neurodegenerative diseases. Although, the exact mode of action is still unknown but these findings unveil a molecular mechanism for the role of autophagy in cell death and provide insight into complex relationship between ROS and non-apoptotic programmed cell death.


Asunto(s)
Autofagia/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Neuroblastoma/patología , Estrés Oxidativo , Proteínas Proto-Oncogénicas/metabolismo , Apoptosis , Línea Celular Tumoral , Supervivencia Celular , Humanos , Peróxido de Hidrógeno/efectos adversos , Proteínas de la Membrana/genética , Neuroblastoma/metabolismo , Plásmidos/genética , Proteínas Proto-Oncogénicas/genética , Especies Reactivas de Oxígeno/metabolismo
11.
J Nanosci Nanotechnol ; 14(6): 4066-71, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24738352

RESUMEN

In this study, we report the cellular uptake studies of novel LX loaded nanoliposomes in H2O2 stress SH-SY5Y Cells synthesized by thin film evaporation method. We have isolated the smallest size nanoliposomes after 90 min ultrasonification, keeping Polydisperse Index as 0.259. The morphology, size, zepta potential and drug efficiency of prepared nanoliposomes are characterized by using Transmission Electron Microscope (TEM), particle size analyzer and High Pressure Liquid Chromatography (HPLC). The particle size analyzer have confirmed the particle size of nanoluposomes measured in range of 100-250 nm, whereas the shape of these nanoliposomes is almost spherical. The zeta potential of small size nanoliposomes was measured as -49.62 and encapsulation efficiency of the LX loaded nanoliposomes was 87%. The oxidative stress response in SH-SY5Y Cells for various doses of drug with and without nanoliposomes has affectively improved the cell-stress response up to 20% after 24 h of incubation at 37 degrees C. The results indicated that LX loaded nanoliposomes were taken by the cells effectively which ultimately improved the cell-stress response. Thus, this study confirmed that synthesized nanoliposomes are not only effective drug carriers but could be potentially used for delivery of genes, antibodies, and proteins in future.


Asunto(s)
Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacología , Peróxido de Hidrógeno/farmacología , Nanocápsulas/química , Neuroblastoma/metabolismo , Estrés Oxidativo/efectos de los fármacos , Línea Celular Tumoral , Humanos , Tasa de Depuración Metabólica , Nanocápsulas/ultraestructura
12.
Environ Sci Pollut Res Int ; 31(12): 18313-18339, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38347361

RESUMEN

Advent of proteomic techniques has made it possible to identify a broad spectrum of proteins in living systems. Studying the impact of nanoparticle (NP)-mediated plant protein responses is an emerging field. NPs are continuously being released into the environment and directly or indirectly affect plant's biochemistry. Exposure of plants to NPs, especially crops, poses a significant risk to the food chain, leading to changes in underlying metabolic processes. Once absorbed by plants, NPs interact with cellular proteins, thereby inducing changes in plant protein patterns. Based on the reactivity, properties, and translocation of nanoparticles, NPs can interfere with proteins involved in various cellular processes in plants such as energy regulation, redox metabolism, and cytotoxicity. Such interactions of NPs at the subcellular level enhance ROS scavenging activity, especially under stress conditions. Although higher concentrations of NPs induce ROS production and hinder oxidative mechanisms under stress conditions, NPs also mediate metabolic changes from fermentation to normal cellular processes. Although there has been lots of work conducted to understand the different effects of NPs on plants, the knowledge of proteomic responses of plants toward NPs is still very limited. This review has focused on the multi-omic analysis of NP interaction mechanisms with crop plants mainly centering on the proteomic perspective in response to both stress and non-stressed conditions. Furthermore, NP-specific interaction mechanisms with the biological pathways are discussed in detail.


Asunto(s)
Nanopartículas , Proteómica , Especies Reactivas de Oxígeno/metabolismo , Nanopartículas/química , Proteínas de Plantas/metabolismo , Productos Agrícolas/metabolismo
13.
Plant Physiol Biochem ; 213: 108867, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936069

RESUMEN

Understanding the heavy metals (HMs) tolerance mechanism is crucial for improving plant growth in metal-contaminated soil. In order to evaluate the lead (Pb) tolerance mechanism in Brassica species, a comparative proteomic study was used. Thirteen-day-old seedlings of B. juncea and B. napus were treated with different Pb(NO3)2 concentrations at 0, 3, 30, and 300 mg/L. Under 300 mg/L Pb(NO3)2 concentration, B. napus growth was significantly decreased, while B. juncea maintained normal growth similar to the control. The Pb accumulation was also higher in B. napus root and shoot compared to B. juncea. Gel-free proteomic analysis of roots revealed a total of 68 and 37 differentially abundant proteins (DAPs) in B. juncea and B. napus-specifically, after 300 mg/L Pb exposure. The majority of these proteins are associated with protein degradation, cellular respiration, and enzyme classification. The upregulated RPT2 and tetrapyrrole biosynthesis pathway-associated proteins maintain the cellular homeostasis and photosynthetic rate in B. juncea. Among the 55 common DAPs, S-adenosyl methionine and TCA cycle proteins were upregulated in B. juncea and down-regulated in B. napus after Pb exposure. Furthermore, higher oxidative stress also reduced the antioxidant enzyme activity in B. napus. The current finding suggests that B. juncea is more Pb tolerant than B. napus, possibly due to the upregulation of proteins involved in protein recycling, degradation, and tetrapyrrole biosynthesis pathway.


Asunto(s)
Plomo , Proteínas de Plantas , Proteómica , Tetrapirroles , Plomo/toxicidad , Plomo/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteómica/métodos , Tetrapirroles/metabolismo , Tetrapirroles/biosíntesis , Planta de la Mostaza/metabolismo , Planta de la Mostaza/efectos de los fármacos , Planta de la Mostaza/genética , Brassica/metabolismo , Brassica/efectos de los fármacos , Brassica/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos
14.
Sci Rep ; 14(1): 13091, 2024 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849601

RESUMEN

The aim of current study was to prepared zinc oxide nanofertilzers by ecofriendly friendly, economically feasible, free of chemical contamination and safe for biological use. The study focused on crude extract of Withania coagulans as reducing agent for the green synthesis of ZnO nano-particles. Biosynthesized ZnO NPs were characterized by UV-Vis spectroscopy, XRD, FTIR and GC-MS analysis. However, zinc oxide as green Nano fertilizer was used to analyze responses induced by different doses of ZnO NPs [0, 25, 50,100, 200 mg/l and Zn acetate (100 mg/l)] in Triticum aestivum (wheat). The stimulatory and inhibitory effects of foliar application of ZnO NPs were studied on wheat (Triticum aestivum) with aspect of biomass accumulation, morphological attributes, biochemical parameters and anatomical modifications. Wheat plant showed significant (p < 0.01) enhancement of growth parameters upon exposure to ZnO NPs at specific concentrations. In addition, wheat plant showed significant increase in biochemical attributes, chlorophyll content, carotenoids, carbohydrate and protein contents. Antioxidant enzyme (POD, SOD, CAT) and total flavonoid content also confirmed nurturing impact on wheat plant. Increased stem, leaf and root anatomical parameters, all showed ZnO NPs mitigating capacity when applied to wheat. According to the current research, ZnO NPs application on wheat might be used to increase growth, yield, and Zn biofortification in wheat plants.


Asunto(s)
Fertilizantes , Oxidación-Reducción , Triticum , Óxido de Zinc , Triticum/metabolismo , Triticum/crecimiento & desarrollo , Triticum/efectos de los fármacos , Óxido de Zinc/química , Óxido de Zinc/farmacología , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Clorofila/metabolismo , Antioxidantes/metabolismo , Carotenoides/metabolismo , Nanopartículas del Metal/química , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo
15.
Sci Rep ; 14(1): 7528, 2024 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553550

RESUMEN

Biological and green synthesis of nanomaterial is a superior choice over chemical and physical methods due to nanoscale attributes implanted in a green chemistry matrix, have sparked a lot of interest for their potential uses in a variety of sectors. This research investigates the growing relevance of nanocomposites manufactured using ecologically friendly, green technologies. The transition to green synthesis correlates with the worldwide drive for environmentally sound procedures, limiting the use of traditional harsh synthetic techniques. Herein, manganese was decorated on ZnO NPs via reducing agent of Withania-extract and confirmed by UV-spectrophotometry with highest peak at 1:2 ratio precursors, and having lower bandgap energy (3.3 eV). XRD showed the sharp peaks and confirms the formation of nanoparticles, having particle size in range of 11-14 nm. SEM confirmed amorphous tetragonal structure while EDX spectroscopy showed the presence of Zn and Mn in all composition. Green synthesized Mn-decorated ZnO-NPs screened against bacterial strains and exhibited excellent antimicrobial activities against gram-negative and gram-positive bacteria. To check further, applicability of synthesized Mn-decorated Zn nanocomposites, their photocatalytic activity against toxic water pollutants (methylene blue (MB) dye) were also investigated and results showed that 53.8% degradation of MB was done successfully. Furthermore, the installation of green chemistry in synthesizing nanocomposites by using plant extract matrix optimizes antibacterial characteristics, antioxidant and biodegradability, helping to build sustainable green Mn decorated ZnO nanomaterial. This work, explains how biologically friendly Mn-doped ZnO nanocomposites can help reduce the environmental impact of traditional packaging materials. Based on these findings, it was determined that nanocomposites derived from biological resources should be produced on a wide scale to eradicate environmental and water contaminants through degradation.


Asunto(s)
Nanocompuestos , Nanopartículas , Óxido de Zinc , Óxido de Zinc/química , Antibacterianos/química , Antioxidantes , Nanocompuestos/química
16.
Food Chem X ; 22: 101285, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38550894

RESUMEN

Raisins, derived from dried grapes, represent a valuable commodity rich in secondary metabolites, particularly volatile organic compounds (VOCs). The primary objective of this review is to identify the VOCs that are influencing the aromatic profile of raisins to improve consumer preferences. However, extensive research has been done to optimize grape drying methods for different raisin attributes. In the context of this review, an in-depth investigation of published literature revealed the extraction of over 120 VOCs from raisins using SPME. Furthermore, we explored factors shaping raisin aroma and the sources of VOC generation. This review aims to pinpoint research gaps and provide an opportunity for future developments in studying raisins' aroma. This involves integrating advanced analytical techniques, examining processing method impacts, and considering consumer perception to enhance the overall understanding of raisin aromas. The outcomes are anticipated to provide valuable insights for the industry and the scientific community.

17.
Plant Physiol Biochem ; 211: 108719, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38739962

RESUMEN

Rapid global industrialization and an increase in population have enhanced the risk of heavy metals accumulation in plant bodies to disrupt the morphological, biochemical, and physiological processes of plants. To cope with this situation, reduced graphene oxide (rGO) NPs were used first time to mitigate abiotic stresses caused in plant. In this study, rGO NPs were synthesized and reduced with Tecoma stans plant leave extract through modified Hummer's methods. The well prepared rGO NPs were characterized by ultra-violet visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Zeta potential, and scanning electron microscopy (SEM). However, pot experiment was conducted with four different concentrations (15, 30, 60, 120 mg/L) of rGO NPs and three different concentrations (300, 500,700 mg/L) of lead (Pb) stress were applied. To observe the mitigative effects of rGO NPs, 30 mg/L of rGO NPs and 700 mg/L of Pb were used in combination. Changes in morphological and biochemical characteristics of wheat plants were observed for both Pb stress and rGO NPs treatments. Pb was found to inhibit the morphological and biochemical characteristics of plants. rGO NPs alone as well as in combination with Pb was found to increase the chlorophyll content of wheat plants. Under Pb stress conditions and rGO NPs treatments, antioxidant enzyme activities like ascorbate peroxidases (APX), superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were observed. Current findings revealed that greenly reduced graphene oxide NPs can effectively promote growth in wheat plants under Pb stress by elevating chlorophyll content of leaves, reducing the Pb uptake, and suppressing ROS produced due to Pb toxicity.


Asunto(s)
Grafito , Plomo , Triticum , Plomo/toxicidad , Plomo/metabolismo , Triticum/efectos de los fármacos , Triticum/metabolismo , Triticum/crecimiento & desarrollo , Antioxidantes/metabolismo , Superóxido Dismutasa/metabolismo , Clorofila/metabolismo
18.
Proteomics ; 13(16): 2455-68, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23744580

RESUMEN

The proteomic profile of hypothalamus, a key organ of CNS, is explored here by employing two widely used MS techniques, i.e. HPLC/ESI-ion trap and HPLC/ESI-quadrupole-TOF MS. Strong cation exchange is used for the fractionation of peptides and protein search engine MASCOT is employed for data query. One hundred and thirty six proteins with 10 973 peptides were identified by HPLC/ESI-ion trap MS, while 140 proteins with 32 183 peptides were characterized by HPLC/ESI-quadrupole-TOF MS. Among the total 198 proteins identified in both experiments, 78 proteins were common in both sets of conditions. The rest of the 120 proteins were identified distinctly in both MS strategies, i.e. 58 unique proteins were found using the quadrupole-TOF while 62 were found with the HPLC/ESI-ion trap. Moreover, these proteins were classified into groups based on their functions performed in the body. Results presented here identified some important signal and cellular defense proteins inevitable for survival in stressed conditions. Additionally, it is also shown that any single MS strategy is not reliable for good results due to loss of data depending on sensitivity of the instrument used.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Hipotálamo/química , Proteínas del Tejido Nervioso/análisis , Proteoma/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Secuencia de Aminoácidos , Animales , Masculino , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/química , Proteoma/química , Proteómica/métodos , Ratas , Ratas Wistar
19.
ACS Omega ; 8(10): 9031-9039, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36936334

RESUMEN

Illuminating the use of nanomaterials, carbon quantum dots (CQDs) have transfigured the food safety arena because of their bright luminescence, optical properties, low toxicity, and enhanced biocompatibility. Therefore, fluorescent resonance energy transfer, photoinduced electron transfer, and an internal filtering effect mechanism allow precise detection of food additives, heavy metal ions, pathogenic bacteria, veterinary drug residues, and food nutrients. In this review, we describe the primal mechanism of CQD-based fluorescence sensors for food safety inspection. This is an abridged description of the nanodesign and future perspectives of more advanced CQD-based sensors for food safety analysis.

20.
Sci Rep ; 13(1): 10923, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37407651

RESUMEN

The indoor cultivation of lettuce in a vertical hydroponic system (VHS) under artificial lighting is an energy-intensive process incurring a high energy cost. This study determines the optimal daily light integral (DLI) as a function of photoperiod on the physiological, morphological, and nutritional parameters, as well as the resource use efficiency of iceberg lettuce (cv. Glendana) grown in an indoor VHS. Seedlings were grown in a photoperiod of 12 h, 16 h, and 20 h with a photosynthetic photon flux density (PPFD) of 200 µmol m-2 s-1 using white LED lights. The results obtained were compared with VHS without artificial lights inside the greenhouse. The DLI values for 12 h, 16 h, and 20 h were 8.64, 11.5, and 14.4 mol m-2 day-1, respectively. The shoot fresh weight at harvest increased from 275.5 to 393 g as the DLI increased from 8.64 to 11.5 mol m-2 day-1. DLI of 14.4 mol m-2 day-1 had a negative impact on fresh weight, dry weight, and leaf area. The transition from VHS without artificial lights to VHS with artificial lights resulted in a 60% increase in fresh weight. Significantly higher water use efficiency of 71 g FW/L and energy use efficiency of 206.31 g FW/kWh were observed under a DLI of 11.5 mol m-2 day-1. The study recommends an optimal DLI of 11.5 mol m-2 day-1 for iceberg lettuce grown in an indoor vertical hydroponic system.


Asunto(s)
Lactuca , Luz , Hidroponía , Fotosíntesis/fisiología , Iluminación/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA