RESUMEN
ConspectusInspired by the biological world, new cross-border disciplines and technologies have emerged. Relevant examples include systems chemistry, which offers a bottom-up approach toward chemical complexity, and bio/chemical information and communication technology (bio/chemical ICT), which explores the conditions for propagating signals among individual microreactors separated by selectively permeable membranes. To fabricate specific arrays of microreactors, microfluidics has been demonstrated as an excellent method. In particular, droplet-based microfluidics is a powerful tool for encapsulating biological entities and chemical reagents in artificial microenvironments, mostly water-in-oil microdroplets. In these systems, the interfaces are liquid-liquid, and their physicochemical properties are key factors for tuning the coupling between molecular diffusion. Simple and double emulsions, where aqueous domains are in equilibrium with oil domains through boundary layers of amphiphilic molecules, are organized assemblies with high interfacial-area-to-volume ratios. These membranes can be engineered to obtain different surface charges, single- or multilayer stacking, and a variable degree of defects in molecular packing. Emulsions find application in many fields, including the food industry, pharmaceutics, and cosmetics. Furthermore, micro- and nanoemulsions can be used to model the propagation of chemical species through long distances, which is not only vital for cell signaling but also significant in molecular computing. Here we present in-depth research on the faceted world of solutions confined in restricted environments. In particular, we focused on the multiscale aspects of structure and dynamics from molecular to micro and macro levels. The Belousov-Zhabotinsky chemical reaction, known for its robustness and well-documented oscillatory behavior, was selected to represent a generic signal emitter/receiver confined within microenvironments separated by liquid-liquid interfaces. In this pulse generator, the temporal and spatial progressions are governed by periodic fluctuations in the concentration of chemical species, which act as activatory or inhibitory messengers over long distances. When organized into "colonies" or arrays, these micro-oscillators exhibit emergent dynamical behaviors at the population level. These behaviors can be finely tuned by manipulating the geometrical distribution of the oscillators and the properties of the interfaces at the nanoscale. By carefully selecting the membrane composition, it is possible to drive the system toward either in-phase, antiphase, or mixed synchronization regimes among individual oscillators, depending on messenger molecules. This relatively simple lab-scale model replicates some of the communication strategies commonly found in biological systems, particularly those based on the passive diffusion of chemical and electrical signals. It can help shed light on fundamental life processes and inspire new implementations in molecular computing and smart materials.
Asunto(s)
Emulsiones , Emulsiones/química , Biomimética/métodos , Materiales Biomiméticos/química , Microfluídica/métodosRESUMEN
Iron oxide nanoparticles, due to their magnetic properties, are versatile tools for biomedical applications serving both diagnostic and therapeutic roles. Their performance is intricately intertwined with their fate in the demanding biological environment. Once inside cells, these nanoparticles can be degraded, implying a loss of magnetic efficacy, but also transformed into neo-synthesized magnetic nanoparticles, potentially restoring functionality. This study aims to delineate biological features governing these processes. Magnetic nanoparticles are internalized in human mesenchymal stem cells (hMSCs), and their biotransformations are investigated from nano- to micro-scale using electron microscopy (STEM-HAADF, HRTEM, SAED), a benchtop magnetic sensor, and fine structural characterizations (synchrotron XRD, VSM). Results evidence a delicate equilibrium between the biodegradation and biosynthesis of magnetic nanoparticles, with biotransformation kinetics depending on cell density at magnetic labeling and on spatial cell configuration (monolayers vs spheroids). The biotransformed nanoparticles, composed of magnetite or maghemite, are localized within endosomal/lysosomal compartments and associated with the recruitment of ferritin proteins.
RESUMEN
It is well established that by modulating various immune functions, host infection may alter the course of concomitant inflammatory diseases, of both infectious and autoimmune etiologies. Beyond the major impact of commensal microbiota on the immune status, host exposure to viral, bacterial, and/or parasitic microorganisms also dramatically influences inflammatory diseases in the host, in a beneficial or harmful manner. Moreover, by modifying pathogen control and host tolerance to tissue damage, a coinfection can profoundly affect the development of a concomitant infectious disease. Here, we review the diverse mechanisms that underlie the impact of (co)infections on inflammatory disorders. We discuss epidemiological studies in the context of the hygiene hypothesis and shed light on the sometimes dual impact of germ exposure on human susceptibility to inflammatory disease. We then summarize the immunomodulatory mechanisms at play, which can involve pleiotropic effects of immune players and discuss the possibility to harness pathogen-derived compounds to the host benefit.
Asunto(s)
Interacciones Huésped-Patógeno , Hipótesis de la Higiene , Inmunomodulación , Inflamación , Microbiota , Animales , Coinfección , Humanos , Tolerancia Inmunológica , SimbiosisRESUMEN
BACKGROUND: People living with HIV are disproportionately represented among people with severe mpox. Mild and self-limiting conjunctival involvement has been well-documented, and severe ocular complications, including keratitis, corneal scarring, and the associated loss of vision, are increasingly recognized. Tecovirimat is the first-line antiviral therapy for severe mpox, but data around the efficacy of systemic antiviral agents for mpox are limited, particularly in cases of ocular mpox. CASE REPORT: Here, we describe a case of sight-threatening necrotic blepharokeratoconjunctivitis in a person with advanced HIV, requiring an extended course of tecovirimat due to persistent mpox viral shedding for nearly 5 months.
RESUMEN
This study aimed to characterize interactions within colloidal silica particles in their concentrated suspensions, using rheo-confocal measurements and imaging, followed by image analysis. We studied the effect of shear rate (0-500 s-1) and solution pH (6, 10) on the dispersion degree of colloidal silica particles via the determination and comparison of interparticle distances and their modeling. Images corresponding to different shear rates were analyzed to identify the coordinates of the particles. These coordinates were further analyzed to calculate the distance among the particles and then their surface-to-surface distance normalized by the particle diameter (H/D). It was found that the population of the particles per unit area of the image and H/D varied with increasing shear rate. The comparison between experimentally measured and theoretically calculated H/D identified that for some particles, the former was shorter than the latter, indicating the unexpected attractions among them against the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Then, the modification of previously reported equations for H/D was suggested and confirmed its validity. Assuming pair potential interaction and hydrodynamic interaction were the main non-DLVO interactions, their magnitudes were calculated and confirmed the significance of pH and shear application strength on particle dispersion/coagulation.
Asunto(s)
Coloides , Tamaño de la Partícula , Dióxido de Silicio , Suspensiones , Dióxido de Silicio/química , Coloides/química , Suspensiones/química , Hidrodinámica , Concentración de Iones de Hidrógeno , Reología/métodosRESUMEN
Cancer has become a burgeoning global healthcare concern marked by its exponential growth and significant economic ramifications. Though advancements in the treatment modalities have increased the overall survival and quality of life, there are no definite treatments for the advanced stages of this malady. Hence, understanding the diseases etiologies and the underlying molecular complexities, will usher in the development of innovative therapeutics. Recently, YAP/TAZ transcriptional regulation has been of immense interest due to their role in development, tissue homeostasis and oncogenic transformations. YAP/TAZ axis functions as coactivators within the Hippo signaling cascade, exerting pivotal influence on processes such as proliferation, regeneration, development, and tissue renewal. In cancer, YAP is overexpressed in multiple tumor types and is associated with cancer stem cell attributes, chemoresistance, and metastasis. Activation of YAP/TAZ mirrors the cellular "social" behavior, encompassing factors such as cell adhesion and the mechanical signals transmitted to the cell from tissue structure and the surrounding extracellular matrix. Therefore, it presents a significant vulnerability in the clogs of tumors that could provide a wide window of therapeutic effectiveness. Natural compounds have been utilized extensively as successful interventions in the management of diverse chronic illnesses, including cancer. Owing to their capacity to influence multiple genes and pathways, natural compounds exhibit significant potential either as adjuvant therapy or in combination with conventional treatment options. In this review, we delineate the signaling nexus of YAP/TAZ axis, and present natural compounds as an alternate strategy to target cancer.
Asunto(s)
Neoplasias , Factores de Transcripción , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Señalizadoras YAP , Animales , Humanos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Productos Biológicos/uso terapéutico , Productos Biológicos/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Transducción de Señal/efectos de los fármacos , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Proteínas Señalizadoras YAP/metabolismoRESUMEN
OBJECTIVE: To evaluate the effect of semirigid ureteroscopy and tamsulosin therapy as dilatation methods before flexible ureteroscopy advancement to the renal collecting system. PATIENTS AND METHODS: This prospective study included patients with renal stones less than 2 cm who underwent retrograde flexible ureteroscopy and laser lithotripsy. The patients were randomized into two groups: group A patients were given a placebo for 1 week before flexible ureteroscopy, and group B patients were administered 0.4 mg of tamsulosin once daily for 1 week before surgery and underwent active dilatation using semirigid ureteroscopy before flexible ureteroscopy. The ability of the flexible ureteroscope to reach the collecting system in both groups during the same operative session was assessed. Operative outcomes and complications were collected and analyzed in both groups. RESULTS: A total of 170 patients were included in our study, with each group comprising 85 patients. In group B, the flexible ureteroscope successfully accessed the kidney in 61 patients, while in group A, the flexible ureteroscope was successful only in 28 cases (71.4% versus 32.9%). In group A, 33 (38.8%) patients had lower urinary tract symptoms compared to 17 (20.2%) patients in group B (P = 0.013). CONCLUSION: Using tamsulosin therapy and semirigid ureteroscopy as dilatation methods before flexible ureteroscopy increased the success of primary flexible ureteroscopy advancement to renal collecting system.
Asunto(s)
Cálculos Renales , Ureteroscopía , Humanos , Ureteroscopios , Tamsulosina/uso terapéutico , Dilatación , Estudios Prospectivos , Cálculos Renales/cirugíaRESUMEN
We report on the fabrication of a novel design of GaAs/(In,Ga)As/GaAs radial nanowire heterostructures on a Si 111 substrate, where, for the first time, the growth of inhomogeneous shells on a lattice mismatched core results in straight nanowires instead of bent. Nanowire bending caused by axial tensile strain induced by the (In,Ga)As shell on the GaAs core is reversed by axial compressive strain caused by the GaAs outer shell on the (In,Ga)As shell. Progressive nanowire bending and reverse bending in addition to the axial strain evolution during the two processes are accessed byin situby x-ray diffraction. The diameter of the core, thicknesses of the shells, as well as the indium concentration and distribution within the (In,Ga)As quantum well are revealed by 2D energy dispersive x-ray spectroscopy using a transmission electron microscope. Shell(s) growth on one side of the core without substrate rotation results in planar-like radial heterostructures in the form of free standing straight nanowires.
RESUMEN
Parsley (Petroselinum crispum) is herb with many biological and medicinal benefits for humans. However, growth on zinc (Zn) and cadmium (Cd) contaminated sites might get severely affected due to over accumulation of heavy metals (HM) in different plant tissues. Antioxidants play a crucial role in minimizing the negative effects of HM. The present study investigates the effects of Zn and Cd stress on P. crispum morphological parameters, enzymatic/non-enzymatic antioxidant profiling and metal accumulation in shoot/root. Plants were exposed to different concentrations of Zn (50, 100, 150 and 200 µM) and Cd (10, 20, 40 and 80 µM) along with control (no stress), in soil-less Hoagland's solution. The results showed that Zn and Cd substantially decrease the growth parameters with increased contents of malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolyte leakage (EL). Non-enzymatic antioxidant activities, like total phenolic contents (TPC) and ferric reducing antioxidant power (FRAP), were induced high in leaves only upon Cd stress and contrarily decreased upon Zn stress. Total flavonoid contents (TFC) were decreased under Zn and Cd stress. Enzymatic antioxidant activities like superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were also strongly induced upon Cd stress. At the same time, SOD and guaiacol peroxidase (GPX) activity was induced significantly upon Zn stress. Cd uptake and accumulation was notably high in roots as compared to shoots, which suggests P. crispum have a reduced ability to translocate Cd towards aboveground parts (leaves). Additionally, strong induction of antioxidants by P. crispum under Cd stress might indicate the capacity to effectively re-modulate its physiological response. However, further investigations regarding other HMs and experiments at the molecular level are still needed.
Asunto(s)
Metales Pesados , Contaminantes del Suelo , Humanos , Antioxidantes/farmacología , Cadmio/farmacología , Petroselinum/metabolismo , Zinc/farmacología , Peróxido de Hidrógeno , Metales Pesados/farmacología , Superóxido Dismutasa/metabolismo , Raíces de Plantas/metabolismo , Estrés OxidativoRESUMEN
Persistent, aged hydrocarbons in soil hinder remediation, posing a significant environmental threat. While bioremediation offers an environmentally friendly and cost-effective approach, its efficacy for complex contaminants relies on enhancing pollutant bioavailability. This study explores the potential of immobilized bacterial consortia combined with biochar and rhamnolipids to accelerate bioremediation of aged total petroleum hydrocarbon (TPH)-contaminated soil. Previous research indicates that biochar and biosurfactants can increase bioremediation rates, while mixed consortia offer sequential degradation and higher hydrocarbon mineralization. The present investigation aimed to assess whether combining these strategies could further enhance degradation in aged, complex soil matrices. The bioaugmentation (BA) with bacterial consortium increased the TPHs degradation in aged soil (over 20% compared to natural attenuation - NA). However, co-application of BA with biochar and rhamnolipid higher did not show a statistically prominent synergistic effect. While biochar application facilitated the maintenance of hydrocarbon degrading bacterial consortium in soil, the present study did not identify a direct influence in TPHs degradation. The biochar application in contaminated soil contributed to TPHs adsorption. Rhamnolipid alone slightly increased the TPHs biodegradation with NA, while the combined bioaugmentation treatment with rhamnolipid and biochar increased the degradation between 27.5 and 29.8%. These findings encourage further exploration of combining bioaugmentation with amendment, like biochar and rhamnolipid, for remediating diverse environmental matrices contaminated with complex and aged hydrocarbons.
Asunto(s)
Biodegradación Ambiental , Carbón Orgánico , Glucolípidos , Hidrocarburos , Contaminantes del Suelo , Contaminantes del Suelo/metabolismo , Glucolípidos/metabolismo , Carbón Orgánico/química , Hidrocarburos/metabolismo , Microbiología del Suelo , Petróleo/metabolismo , Suelo/químicaRESUMEN
INTRODUCTION: The current study aimed to investigate the role of probiotic Lactobacillus reuteri for the treatment and prevention of breast cancer. MATERIALS AND METHODS: Breast cancer was induced by using Cadmium Chloride (Cd) (2 mg/kg) in group II. Tamoxifen was administered to group III. Group IV was treated with Lactobacillus reuteri. Group V was treated with Cd for one month and divided into three subgroups including VA, VB, and VC which were treated with tamoxifen, Lactobacillus reuteri, and tamoxifen + Lactobacillus reuteri, respectively. RESULTS: Significantly higher levels of TNF-α (40.9 ± 4.2 pg/mL), IL-6 (28.0 ± 1.5 pg/mL), IL-10 (60.2 ± 2.0 pg/mL), IFN-γ (60.2 ± 2.0 pg/mL), ALAT (167.2 ± 6.2 U/l), ASAT (451.6 ± 13.9 U/l), and MDA (553.8 ± 19.6 U/l) was observed in Cd group. In comparison, significantly lower levels of TNF-α (18.0 ± 1.1 pg/mL), IL-6 (9.4 ± 0.4 pg/mL), IL-10 (20.8 ± 1.1 pg/mL), IFN-γ (20.8 ± 1.1 pg/mL), ALAT (85.2 ± 3.6 U/l), ASAT (185 ± 6.9 U/l), and MDA (246.0 ± 7.5 U/l) were observed in group Cd + Tam + LR. Liver histopathology of the Cd group showed hemorrhage and ductal aberrations. However, mild inflammation and healthier branched ducts were observed in treatment groups. Furthermore, the renal control group showed normal glomerular tufts, chronic inflammation from the Cd group, and relatively healthier glomerulus with mild inflammation in treatment groups. CONCLUSION: Hence, the preventive and anticancerous role of probiotic Lactobacillus reuteri is endorsed by the findings of the current study.
Asunto(s)
Cloruro de Cadmio , Limosilactobacillus reuteri , Probióticos , Animales , Femenino , Probióticos/uso terapéutico , Probióticos/farmacología , Probióticos/administración & dosificación , Ratones , Neoplasias de la Mama/tratamiento farmacológico , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Citocinas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/inmunología , Neoplasias Mamarias Experimentales/patología , Neoplasias Mamarias Experimentales/prevención & control , Neoplasias Mamarias Experimentales/inducido químicamenteRESUMEN
Ribosomal proteins are considered to be involved in the immunity of different animals against pathogens. The protein level of RPL23 increased after fungal infection in termites, but how it influence active immunity in termites is unknown. The role of RPL23 gene was studied to evaluate its impact on active immunity of termite Reticulitermes chinensis against entomopathogenic fungus (EPF) Metarhizium anisopliae. The RPL23 gene fragment (414 bp) was cloned and phylogenetic analysis revealed that it's very close to termite Coptotermes formosanus. Expression of RPL23 gene was significantly higher in abdomen as compared to thorax and head. Silencing RPL23 gene had no significant impact on the frequency and time of allogrooming towards fungus exposed termites from nestmates, which showed that nestmates acquired spores from infected termites through allogrooming. Expression of immune genes (GNBP1, GNBP2 and phenoloxidase) and apoptosis related genes (TNF-α, caspase 1, caspase 3 and caspase 8) decreased significantly in nestmates of fungus-treated termites after silencing of RPL23 gene as compared to control. Antifungal activity and survival of RPL23 silenced nestmates of fungus-treated termites also decreased. To sum up, this study found that silencing of RPL23 gene broke the active immunity against M. anisopliae infection, reduced the antifungal activity of termites, weakened cell apoptosis, and led to increased mortality of termites, which may help to find a potential alternative for chemical insecticides to control termites.
RESUMEN
AIM: This in vitro study aimed to evaluate and compare the bone-miniscrew contact surface area (BMC) and the cortical bone microcracks (CM) resulting from manual (hand-driven) and automated (motor-driven) orthodontic miniscrew (OM) insertion methods. METHODS: Thirty-three OM were inserted in the femurs of nine New Zealand rabbits using manual (n = 16) and automated (n = 17) insertions. After euthanizing the rabbits, bone blocks, each including one OM, were sawed. Micro-CT scanning was performed, and data analysis included reconstruction, binarization and quantification of morphometric parameters of BMC and the number and length of CM. Means and standard deviations for complete BMC, complete BMC proportion, cortical BMC, cortical BMC proportion, and length and number of CM were calculated. Mixed model analysis was used to adjust for more than one sample/CM per animal. A paired t-test was used to compare the number of CM between the two groups. RESULTS: Compared to the automated insertion, manually inserted miniscrews had significantly lower complete BMC (7.54 ± 1.80 mm2 vs. 11.99 ± 3.64 mm2), cortical BMC (5.91 ± 1.48 mm2 vs. 8.48 ± 1.90 mm2) and cortical BMC proportion (79.44 ± 5.84% vs. 87.94 ± 3.66%). However, it was not statistically significant in complete BMC proportion (p = .052). The automated insertion also resulted in a significantly lower mean number of CM than the manual method (p = .012). However, the length of the cracks was shorter in the manual group but with no significant difference (p = 0.256). CONCLUSION: Motor-driven OM insertion results in superior BMC and reduction in the number of CM, which may lead to better miniscrew stability.
Asunto(s)
Tornillos Óseos , Métodos de Anclaje en Ortodoncia , Microtomografía por Rayos X , Animales , Conejos , Métodos de Anclaje en Ortodoncia/instrumentación , Microtomografía por Rayos X/métodos , Hueso Cortical/diagnóstico por imagen , Fémur/diagnóstico por imagen , Fémur/patología , Técnicas In VitroRESUMEN
Ribbing disease is a rare benign bone dysplasia characterized by progressive cortical thickening of the diaphyses of long bones in adult patients. The literature provides limited insight into its natural radiological progression and anatomical distribution. Single-bone involvement is particularly uncommon, with prior cases exclusively affecting the tibia. This case report outlines the unique presentation of Ribbing disease in a 20-year-old male, localized to the left femur. The patient's history revealed intermittent left thigh pain persisting for more than 2 years, with no identifiable triggers or relief factors. Early radiographic imaging revealed no significant abnormalities, but subsequent imaging, conducted 1 year after the initial presentation, revealed focal fusiform widening and cortical thickening of the mid-diaphysis of the left femur. MRI further revealed circumferential cortical thickening with bone marrow edema, corroborated by CT, which revealed cortical thickening with near-complete obliteration of the intramedullary cavity. The patient was managed with nonsteroidal anti-inflammatory drugs and activity modifications. Misinterpretation of the radiographic findings of the osteoid osteoma led the patient to undergo radiofrequency ablation. This case highlights the challenges in diagnosing Ribbing disease and emphasizes the importance of considering it in the differential diagnosis of chronic limb pain. Continued reporting of cases contributes to enhancing our understanding and management of this rare skeletal dysplasia.
RESUMEN
The chemicals formed from antipyrines are flexible organic building blocks that are employed in the development of pharmaceuticals. By diazotizing (4-arylazo-3-hydroxy-2-thienyl) 4-antipyrine ketones 1a, 1b and 1c and (4-arylazo-3-methyl-2-thienyl) 4-antipyrine ketones (2a, 2b and 2c) further replaced with six other coupling components, a broad spectrum of hybrid molecules have been created. Mass spectra, NMR, FTIR, and elemental analyses have all been used to confirm the structures of the synthesised compounds. The antimicrobial screening was investigated by agar well diffusion and diluting the broth technique against both Gram-negative and positive-tested bacterial strains. (3-methyl-5-(phenylamino)-4-(4-tolylazo)-2-thienyl) 4-antipyrine ketone (2a) was found to be superior to Ciprofloxacin against test strains: Acinetobacter sp (34.33±1.15â mm), Listeria monocytogenes (29.33±1.15â mm) and Streptococcus sp. (19.33±1.15 mm). Also, good to moderate activities were expressed as minimum inhibitory concentration (MIC) and minimum bacterial concentration (MBC) which were recorded at 9±1 to 59.67±4.51â µg/mL and 16±4 to >512â µg/mL, respectively, using compounds 2a, 2b, and 2c. MBC/MIC ratio showed, that only, 2a and 2b have a bactericidal effect but other antipyrines with bacteriostatic strength. To conclude, it was suggested that the use of these novel synthesized (4-arylazo-3-methyl-2-thienyl) 4-antipyrine ketone derivatives molecules as a new chemical class of antimicrobial agents to perform new drug discovery in pharmaceutical preparations and medicinal research.
Asunto(s)
Antibacterianos , Diseño de Fármacos , Cetonas , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Cetonas/química , Cetonas/farmacología , Cetonas/síntesis química , Antipirina/farmacología , Antipirina/química , Antipirina/análogos & derivados , Antipirina/síntesis química , Relación Estructura-Actividad , Estructura Molecular , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacosRESUMEN
PURPOSE: Kilovoltage cone beam computed tomography (kVCBCT)-guided adaptive radiation therapy (ART) uses daily deformed CT (dCT), which is generated automatically through deformable registration methods. These registration methods may perform poorly in reproducing volumes of the target organ, rectum, and bladder during treatment. We analyzed the registration errors between the daily kVCBCTs and corresponding dCTs for these organs using the default optical flow algorithm and two registration procedures. We validated the effectiveness of these registration methods in replicating the geometry for dose calculation on kVCBCT for ART. METHODS: We evaluated three deformable image registration (DIR) methods to assess their registration accuracy and dose calculation effeciency in mapping target and critical organs. The DIR methods include (1) default intensity-based deformable registration, (2) hybrid deformable registration, and (3) a two-step deformable registration process. Each technique was applied to a computerized imaging reference system (CIRS) phantom (Model 062 M) and to five patients who received volumetric modulated arc therapy to the prostate. Registration accuracy was assessed using the 95% Hausdorff distance (HD95) and Dice similarity coefficient (DSC), and each method was compared with the intensity-based registration method. The improvement in the dCT image quality of the CIRS phantom and five patients was assessed by comparing dCT with kVCBCT. Image quality quantitative metrics for the phantom included the signal-to-noise ratio (SNR), uniformity, and contrast-to-noise ratio (CNR), whereas those for the patients included the mean absolute error (MAE), mean error, peak signal-to-noise ratio (PSNR), and structural similarity index measure (SSIM). To determine dose metric differences, we used a dose-volume histogram (DVH) and 3.0%/0.3 mm gamma analysis to compare planning computed tomography (pCT) and kVCBCT recalculations with restimulated CT images used as a reference. RESULTS: The dCT images generated by the hybrid (dCTH) and two-step (dCTC) registration methods resulted in significant improvements compared to kVCBCT in the phantom model. Specifically, the SNR improved by 107% and 107.2%, the uniformity improved by 90% and 75%, and the CNR improved by 212.2% and 225.6 for dCTH and dCTC methods, respectively. For the patient images, the MAEs improved by 98% and 94%, the PSNRs improved by 16.3% and 22.9%, and the SSIMs improved by 1% and 1% in the dCTH and dCTC methods, respectively. For the geometric evaluation, only the two-step registration method improved registration accuracy. The dCTH method yielded an average HD95 of 12 mm and average DSC of 0.73, whereas dCTC yielded an average HD95 of 2.9 mm and average DSC of 0.902. The DVH showed that the dCTC-based dose calculations differed by <2% from the expected results for treatment targets and volumes of organs at risk. Additionally, gamma indices for dCTC-based treatment plans were >95% at all points, whereas they were <95% for kVCBCT-based treatment plans. CONCLUSION: The two-step registration method outperforms the intensity-based and hybrid registration methods. While the hybrid and two-step-based methods improved the image quality of kVCBCT in a linear accelerator, only the two-step method improved the registration accuracy of the corresponding structures among the pCT and kVCBCT datasets. A two-step registration process is recommended for applying kVCBCT to ART, which achieves better registration accuracy for local and global image structures. This method appears to be beneficial for radiotherapy dose calculation in patients with pelvic cancer.
Asunto(s)
Algoritmos , Tomografía Computarizada de Haz Cónico , Procesamiento de Imagen Asistido por Computador , Órganos en Riesgo , Fantasmas de Imagen , Neoplasias de la Próstata , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia Guiada por Imagen , Radioterapia de Intensidad Modulada , Humanos , Tomografía Computarizada de Haz Cónico/métodos , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/diagnóstico por imagen , Masculino , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Radioterapia de Intensidad Modulada/métodos , Órganos en Riesgo/efectos de la radiación , Procesamiento de Imagen Asistido por Computador/métodosRESUMEN
Insulin receptor substrate (IRS) proteins are key mediators in insulin signaling pathway. In social insect lives, IRS proteins played important roles in caste differentiation and foraging, but there function in disease defenses such as active immunization has not been reported yet. To investigate the issue, we successfully suppressed the IRS gene 3 days after dsRNA injection. Suppressing IRS gene increased the contents of glucose, trehalose, glycogen, and triglyceride and decreased the content of pyruvate in termites, and led to the metabolic disorder of glucose and lipids. IRS suppressing significantly enhanced grooming behaviors of nestmates of fungus-contaminated termites and hence increased the conidial load in the guts of the nestmates. Additionally, IRS suppressing led to significant downregulation of the immune genes Gram-negative bacteria-binding protein2 (GNBP2) and termicin and upregulation of the apoptotic gene caspase8, and hence diminished antifungal activity of nestmates of fungus-contaminated termites. The above abnormal behavioral and physiological responses significantly decreased the survival rate of dsIRS-injected nestmates of the fungus-contaminated termites. These findings suggest that IRS is involved in regulation of active immunization in termites, providing a better understanding of the link between insulin signaling and the social immunity of termites.
Asunto(s)
Proteínas Sustrato del Receptor de Insulina , Isópteros , Animales , Isópteros/inmunología , Proteínas Sustrato del Receptor de Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genéticaRESUMEN
BACKGROUND: Sickle cell disease (SCD) is a genetic hematological disorder associated with severe complications, such as vaso-occlusive crises, acute chest syndrome (ACS), and an increased risk of thromboembolic events, including pulmonary embolism (PE). The diagnosis of PE in SCD patients presents challenges due to the overlapping symptoms with other pulmonary conditions. Our previous study revealed that nearly 96% of computed tomography pulmonary angiography (CTPA) scans in SCD patients were negative for PE, highlighting a gap in understanding the significance of CTPA findings when PE is absent. METHODS: In this retrospective follow-up study conducted at the Salmaniya Medical Complex in Bahrain, we examined SCD patients with HbSS genotypes who underwent CTPA from January 1, 2018, to December 31, 2021, for suspected PE, but the results were negative. The aim of this study was to identify alternative diagnoses and incidental findings from CTPA scans. Experienced radiologists reviewed the CTPA images and reports to assess potential alternative diagnoses and incidental findings, incorporating an additional analysis of chest X-rays to evaluate the diagnostic value of CTPA. Incidental findings were classified based on their location and clinical significance. RESULTS: Among the 230 evaluated SCD patients (average age 39.7 years; 53% male) who were CTPA negative for PE, 142 (61.7%) had identifiable alternative diagnoses, primarily pneumonia (49.1%). Notably, 88.0% of these alternative diagnoses had been previously suggested by chest radiographs. Furthermore, incidental findings were noted in 164 (71.3%) patients, with 11.0% deemed clinically significant, necessitating immediate action, and 87.8% considered potentially significant, requiring further assessment. Notable incidental findings included thoracic abnormalities such as cardiomegaly (12.2%) and an enlarged pulmonary artery (11.3%), as well as upper abdominal pathologies such as hepatomegaly (19.6%), splenomegaly (20.9%), and gallstones (10.4%). CONCLUSION: This study underscores the limited additional diagnostic yield of CTPA for identifying alternative diagnoses to PE in SCD patients, with the majority of diagnoses, such as pneumonia, already suggested by chest radiographs. The frequent incidental findings, most of which necessitate further evaluation, highlight the need for a cautious and tailored approach to using CTPA in the SCD population.
Asunto(s)
Anemia de Células Falciformes , Angiografía por Tomografía Computarizada , Hallazgos Incidentales , Embolia Pulmonar , Humanos , Anemia de Células Falciformes/diagnóstico por imagen , Anemia de Células Falciformes/complicaciones , Masculino , Femenino , Embolia Pulmonar/diagnóstico por imagen , Estudios Retrospectivos , Adulto , Diagnóstico Diferencial , Estudios de Seguimiento , Persona de Mediana EdadRESUMEN
Metal contamination in soil poses environmental and health risks requiring effective remediation strategies. This study introduces an innovative approach of synergistically employing biochar and bacterial inoculum of Serratia marcescens to address toxic metal (TM) contamination. Physicochemical, enzymatic, and microbial analyses were conducted, employing integrated biomarker response (IBR) and machine-learning approaches for toxicity estimation. The combined application significantly reduced the Cd, Cr, and Pb concentrations by 71.6, 31.2, and 57.1%, respectively, while the Cu concentration increased by 85% in the individual Serratia marcescens treatment. Biochar enhanced microbial biomass by 33-44% after 25 days. Noteworthy physicochemical improvements included a 44.7% increase in organic content and a decrease in pH and electrical conductivity. The K⺠and Ca2⺠concentrations increased by 196.9 and 21.6%, respectively, while the Mg2⺠content decreased by 86.4%. Network analysis revealed intricate relationships, displaying direct and indirect negative correlations between metals and soil physicochemical parameters. The IBR index values indicated effective mitigation of TM toxicity in Serratia marcescens and biochar with individual and combined treatments. Binary classification demonstrated high sensitivity (80.1%) and specificity (80.5%) in identifying TM-contaminated soil. These findings indicate significant biochar- and Serratia marcescens-induced impacts on toxic metal availability, physicochemical properties, and enzymatic activities in metal-contaminated soil, suggesting that blending soil with biochar and microorganisms is an effective remediation strategy.
RESUMEN
Zero-dimensional graphene quantum dots (GQDs) present unique optoelectronic properties in the large-spectrum range from UV to visible. However, the origin of luminescence in GQDs is still a debatable question. Therefore, the present work investigates the features of trap-mediated and edge-state-functionalized group-associated luminescence enhancement of GQDs. The attached functional groups' involvement in the upsurge of photoluminescence has been discussed theoretically as well as experimentally. In addition, the role of the aromatic ring, the functional group attached, and their positions of attachment to the aromatic ring to tune the emission wavelength and Raman modes have been elucidated theoretically as well as experimentally. We found that in the case of the -OH group attached outside of the aromatic ring, the long-range π hybridization dominates, which suggests that the emission from this model can be dictated by long-range π hybridization. In particular, we found that oxygen-containing functional groups attached outside of the aromatic ring are the main source of the luminescence signature in GQDs. Furthermore, density functional theory (DFT) indicates that the -OH functional group attached outside of the aromatic ring perfectly matched with our experimental results, as the experimental bandgap (2.407 eV) is comparable with the theoretical simulated bandgap (2.399 eV) of the -OH group attached outside of the aromatic ring.