Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Glob Chang Biol ; 27(13): 3066-3078, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33949757

RESUMEN

Trees in northern latitude ecosystems are projected to experience increasing drought stress as a result of rising air temperatures and changes in precipitation patterns in northern latitude ecosystems. However, most drought-related studies on high-latitude boreal forests (>50°N) have been conducted in North America, with few studies quantifying the response in European and Eurasian boreal forests. Here, we tested how daily whole-tree transpiration (Q, Liters day-1 ) and Q normalized for mean daytime vapor pressure deficit (QDZ , Liters day-1 kPa-1 ) were affected by the historic 2018 drought in Europe. More specifically, we examined how tree species, size, and topographic position affected drought response in high-latitude mature boreal forest trees. We monitored 30 Pinus sylvestris (pine) and 30 Picea abies (spruce) trees distributed across a topographic gradient in northern Sweden. In general, pine showed a greater QDZ control compared to spruce during periods of severe drought (standardized precipitation-evapotranspiration index: SPEI < -1.5), suggesting that the latter are more sensitive to drought. Overall, QDZ reductions (using non-drought QDZ as reference) were less pronounced in larger trees during severe drought, but there was a species-specific pattern: QDZ reductions were greater in pine trees at high elevations and greater in spruce trees at lower elevations. Despite lower QDZ during severe drought, drought spells were interspersed with small precipitation events and overcast conditions, and QDZ returned to pre-drought conditions relatively quickly. This study highlights unique species-specific responses to drought, which are additionally driven by a codependent interaction among tree size, relative topographic position, and unique regional climate conditions.


Asunto(s)
Picea , Taiga , Sequías , Ecosistema , Europa (Continente) , Bosques , América del Norte , Suecia , Árboles
2.
Glob Chang Biol ; 25(9): 2900-2914, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31166650

RESUMEN

There is evidence that anthropogenic nitrogen (N) deposition enhances carbon (C) sequestration in boreal forest soils. However, it is unclear how free-living saprotrophs (bacteria and fungi, SAP) and ectomycorrhizal (EM) fungi responses to N addition impact soil C dynamics. Our aim was to investigate how SAP and EM communities are impacted by N enrichment and to estimate whether these changes influence decay of litter and humus. We conducted a long-term experiment in northern Sweden, maintained since 2004, consisting of ambient, low N additions (0, 3, 6, and 12 kg N ha-1  year-1 ) simulating current N deposition rates in the boreal region, as well as a high N addition (50 kg N ha-1  year-1 ). Our data showed that long-term N enrichment impeded mass loss of litter, but not of humus, and only in response to the highest N addition treatment. Furthermore, our data showed that EM fungi reduced the mass of N and P in both substrates during the incubation period compared to when only SAP organisms were present. Low N additions had no effect on microbial community structure, while the high N addition decreased fungal and bacterial biomasses and altered EM fungi and SAP community composition. Actinomycetes were the only bacterial SAP to show increased biomass in response to the highest N addition. These results provide a mechanistic understanding of how anthropogenic N enrichment can influence soil C accumulation rates and suggest that current N deposition rates in the boreal region (≤12 kg N ha-1  year-1 ) are likely to have a minor impact on the soil microbial community and the decomposition of humus and litter.


Asunto(s)
Micorrizas , Nitrógeno , Carbono , Suelo , Microbiología del Suelo , Suecia
3.
Ecology ; 97(4): 1012-22, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27220217

RESUMEN

The central role that ectomycorrhizal (EM) symbioses play in the structure and function of boreal forests pivots around the common assumption that carbon (C) and nitrogen (N) are exchanged at rates favorable for plant growth. However, this may not always be the case. It has been hypothesized that the benefits mycorrhizal fungi convey to their host plants strongly depends upon the availability of C and N, both of which are rapidly changing as a result of intensified human land use and climate change. Using large-scale shading and N addition treatments, we assessed the independent and interactive effects of changes in C and N supply on the transfer of N in intact EM associations with -15 yr. old Scots pine trees. To assess the dynamics of N transfer in EM symbioses, we added trace amounts of highly enriched 5NO3(-) label to the EM-dominated mor-layer and followed the fate of the 15N label in tree foliage, fungal chitin on EM root tips, and EM sporocarps. Despite no change in leaf biomass, shading resulted in reduced tree C uptake, ca. 40% lower fungal biomass on EM root tips, and greater 15N label in tree foliage compared to unshaded control plots, where more 15N label was found in fungal biomass on EM colonized root tips. Short-term addition of N shifted the incorporation of 15N label from EM fungi to tree foliage, despite no significant changes in below-ground tree C allocation to EM fungi. Contrary to the common assumption that C and N are exchanged at rates favorable for plant growth, our results show for the first time that under N-limited conditions greater C allocation to EM fungi in the field results in reduced, not increased, N transfer to host trees. Moreover, given the ubiquitous nature of mycorrhizal symbioses, our results stress the need to incorporate mycorrhizal dynamics into process-based ecosystem models to better predict forest C and N cycles in light of global climate change.


Asunto(s)
Carbono/metabolismo , Bosques , Micorrizas/fisiología , Nitrógeno/metabolismo , Pinus sylvestris/microbiología , Árboles/microbiología , Pinus sylvestris/fisiología , Simbiosis , Árboles/fisiología
4.
Glob Chang Biol ; 21(8): 3169-80, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25711504

RESUMEN

It is proposed that carbon (C) sequestration in response to reactive nitrogen (Nr ) deposition in boreal forests accounts for a large portion of the terrestrial sink for anthropogenic CO2 emissions. While studies have helped clarify the magnitude by which Nr deposition enhances C sequestration by forest vegetation, there remains a paucity of long-term experimental studies evaluating how soil C pools respond. We conducted a long-term experiment, maintained since 1996, consisting of three N addition levels (0, 12.5, and 50 kg N ha(-1) yr(-1) ) in the boreal zone of northern Sweden to understand how atmospheric Nr deposition affects soil C accumulation, soil microbial communities, and soil respiration. We hypothesized that soil C sequestration will increase, and soil microbial biomass and soil respiration will decrease, with disproportionately large changes expected compared to low levels of N addition. Our data showed that the low N addition treatment caused a non-significant increase in the organic horizon C pool of ~15% and a significant increase of ~30% in response to the high N treatment relative to the control. The relationship between C sequestration and N addition in the organic horizon was linear, with a slope of 10 kg C kg(-1) N. We also found a concomitant decrease in total microbial and fungal biomasses and a ~11% reduction in soil respiration in response to the high N treatment. Our data complement previous data from the same study system describing aboveground C sequestration, indicating a total ecosystem sequestration rate of 26 kg C kg(-1) N. These estimates are far lower than suggested by some previous modeling studies, and thus will help improve and validate current modeling efforts aimed at separating the effect of multiple global change factors on the C balance of the boreal region.


Asunto(s)
Secuestro de Carbono , Carbono/análisis , Nitrógeno/análisis , Taiga , Ecosistema , Suelo/química , Microbiología del Suelo , Suecia
5.
Sci Rep ; 14(1): 16772, 2024 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039098

RESUMEN

Secondary tropical forests are at the forefront of deforestation pressures. They store large amounts of carbon, which, if compensated for to avoid net emissions associated with conversion to non-forest uses, may help advance tropical forest conservation. We measured above- and below-ground carbon stocks down to 1 m soil depth across a secondary forest and in oil palm plantations in Malaysia. We calculated net carbon losses when converting secondary forests to oil palm plantations and estimated payments to avoid net emissions arising from land conversion to a 22-year oil palm rotation, based on land opportunity costs per hectare. We explored how estimates would vary between forests by also extracting carbon stock data for primary forest from the literature. When tree and soil carbon was accounted for, payments of US$18-51 tCO2-1 for secondary forests and US$14-40 tCO2-1 for primary forest would equal opportunity costs associated with oil palm plantations per hectare. If detailed assessments of soil carbon were not accounted for, payments to offset opportunity costs would need to be considerably higher for secondary forests (US$28-80 tCO2-1). These results show that assessment of carbon stocks down to 1 m soil depth in tropical forests can substantially influence the estimated value of avoided-emission payments.


Asunto(s)
Carbono , Conservación de los Recursos Naturales , Bosques , Suelo , Clima Tropical , Suelo/química , Carbono/análisis , Conservación de los Recursos Naturales/economía , Conservación de los Recursos Naturales/métodos , Árboles , Malasia
6.
Mycorrhiza ; 21(6): 465-471, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21210158

RESUMEN

Despite their prominent role for tree growth, few studies have examined the occurrence of ectomycorrhizal fungi in lowland, seasonally dry tropical forests (SDTF). Although fruiting bodies of boletes have been observed in a dry tropical forest on the Northern Yucatan Peninsula, Mexico, their occurrence is rare and their mycorrhizal status is uncertain. To determine the trophic status (mycorrhizal vs. saprotrophic) of these boletes, fruiting bodies were collected and isotopically compared to known saprotrophic fungi, foliage, and soil from the same site. Mean δ(15)N and δ(13)C values differed significantly between boletes and saprotrophic fungi, with boletes 8.0‰ enriched and 2.5‰ depleted in (15)N and (13)C, respectively relative to saprotrophic fungi. Foliage was depleted in (13)C relative to both boletes and saprotrophic fungi. Foliar δ(15)N values, on the other hand, were similar to saprotrophic fungi, yet were considerably lower relative to bolete fruiting bodies. Results from this study provide the first isotopic evidence of ectomycorrhizal fungi in lowland SDTF and emphasize the need for further research to better understand the diversity and ecological importance of ectomycorrhizal fungi in these forested ecosystems.


Asunto(s)
Isótopos de Carbono/análisis , Clasificación/métodos , Hongos/clasificación , Hongos/aislamiento & purificación , Micorrizas/clasificación , Micorrizas/aislamiento & purificación , Isótopos de Nitrógeno/análisis , Árboles/microbiología , Cuerpos Fructíferos de los Hongos/química , Cuerpos Fructíferos de los Hongos/clasificación , Cuerpos Fructíferos de los Hongos/crecimiento & desarrollo , Cuerpos Fructíferos de los Hongos/aislamiento & purificación , Hongos/química , Hongos/crecimiento & desarrollo , México , Micorrizas/química , Micorrizas/crecimiento & desarrollo , Microbiología del Suelo , Clima Tropical
7.
Hum Ecol Interdiscip J ; 49(3): 239-247, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33343057

RESUMEN

Forests have long been locations of contestation between people and state bureaucracies, and among the knowledge frameworks of local users, foresters, ecologists, and conservationists. An essential framing of the debate has been between the categories of primary and secondary forest. In this introduction to a collection of papers that address the questions of what basis, in what sense, and for whom primary forest is 'primary' and secondary forest is 'secondary,' and whether these are useful distinctions, we outline this debate and propose a new conceptual model that departs from the simple binary of primary and secondary forests. Rather, we propose that attention should be given to the nature of the disturbance that may alter forest ecology, the forms of regeneration that follow, and the governance context within which this takes place.

8.
New Phytol ; 185(1): 226-36, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19825017

RESUMEN

Here, we explore how interannual variations in environmental factors (i.e. temperature, precipitation and light) influence CO(2) fluxes (gross primary production and ecosystem respiration) in terrestrial ecosystems classified by vegetation type and the mycorrhizal type of dominant plants (arbuscular mycorrhizal (AM) or ectomycorrhizal (EM)). We combined 236 site-year measurements of terrestrial ecosystem CO(2) fluxes and environmental factors from 50 eddy-covariance flux tower sites with information about climate, vegetation type and dominant plant species. Across large geographical distances, interannual variations in ecosystem CO(2) fluxes for EM-dominated sites were primarily controlled by interannual variations in mean annual temperature. By contrast, interannual variations in ecosystem CO(2) fluxes at AM-dominated sites were primarily controlled by interannual variations in precipitation. This study represents the first large-scale assessment of terrestrial CO(2) fluxes in multiple vegetation types classified according to dominant mycorrhizal association. Our results support and complement the hypothesis that bioclimatic conditions influence the distribution of AM and EM systems across large geographical distances, which leads to important differences in the major climatic factors controlling ecosystem CO(2) fluxes.


Asunto(s)
Dióxido de Carbono/fisiología , Clima , Ecosistema , Micorrizas/fisiología , Fenómenos Fisiológicos de las Plantas , Lluvia , Temperatura , Geografía , Luz , Plantas/clasificación
9.
Oecologia ; 164(4): 881-90, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20658152

RESUMEN

Seasonally dry tropical forests (SDTF) are characterized by pronounced seasonality in rainfall, and as a result trees in these forests must endure seasonal variation in soil water availability. Furthermore, SDTF on the northern Yucatan Peninsula, Mexico, have a legacy of disturbances, thereby creating a patchy mosaic of different seral stages undergoing secondary succession. We examined the water status of six canopy tree species, representing contrasting leaf phenology (evergreen vs. drought-deciduous) at three seral stages along a fire chronosequence in order to better understand strategies that trees use to overcome seasonal water limitations. The early-seral forest was characterized by high soil water evaporation and low soil moisture, and consequently early-seral trees exhibited lower midday bulk leaf water potentials (Ψ(L)) relative to late-seral trees (-1.01 ± 0.14 and -0.54 ± 0.07 MPa, respectively). Although Ψ(L) did not differ between evergreen and drought-deciduous trees, results from stable isotope analyses indicated different strategies to overcome seasonal water limitations. Differences were especially pronounced in the early-seral stage where evergreen trees had significantly lower xylem water δ(18)O values relative to drought-deciduous trees (-2.6 ± 0.5 and 0.3 ± 0.6‰, respectively), indicating evergreen species used deeper sources of water. In contrast, drought-deciduous trees showed greater enrichment of foliar (18)O (∆(18)O(l)) and (13)C, suggesting lower stomatal conductance and greater water-use efficiency. Thus, the rapid development of deep roots appears to be an important strategy enabling evergreen species to overcome seasonal water limitation, whereas, in addition to losing a portion of their leaves, drought-deciduous trees minimize water loss from remaining leaves during the dry season.


Asunto(s)
Sequías , Ecosistema , Árboles/crecimiento & desarrollo , Clima Tropical , Isótopos de Carbono/análisis , Isótopos de Carbono/metabolismo , México , Isótopos de Oxígeno/análisis , Isótopos de Oxígeno/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Estaciones del Año , Factores de Tiempo , Árboles/clasificación , Árboles/metabolismo , Agua/metabolismo
10.
Nat Ecol Evol ; 2(9): 1443-1448, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30013133

RESUMEN

Effective societal responses to rapid climate change in the Arctic rely on an accurate representation of region-specific ecosystem properties and processes. However, this is limited by the scarcity and patchy distribution of field measurements. Here, we use a comprehensive, geo-referenced database of primary field measurements in 1,840 published studies across the Arctic to identify statistically significant spatial biases in field sampling and study citation across this globally important region. We find that 31% of all study citations are derived from sites located within 50 km of just two research sites: Toolik Lake in the USA and Abisko in Sweden. Furthermore, relatively colder, more rapidly warming and sparsely vegetated sites are under-sampled and under-recognized in terms of citations, particularly among microbiology-related studies. The poorly sampled and cited areas, mainly in the Canadian high-Arctic archipelago and the Arctic coastline of Russia, constitute a large fraction of the Arctic ice-free land area. Our results suggest that the current pattern of sampling and citation may bias the scientific consensuses that underpin attempts to accurately predict and effectively mitigate climate change in the region. Further work is required to increase both the quality and quantity of sampling, and incorporate existing literature from poorly cited areas to generate a more representative picture of Arctic climate change and its environmental impacts.


Asunto(s)
Cambio Climático , Regiones Árticas , Ecosistema , Sesgo de Selección , Análisis Espacial
11.
Environ Sci Pollut Res Int ; 24(34): 26160-26171, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28386895

RESUMEN

Increased atmospheric nitrogen (N) deposition is known to alter ecosystem carbon source-sink dynamics through changes in soil CO2 fluxes. However, a limited number of experiments have been conducted to assess the effects of realistic N deposition in the Mediterranean Basin, and none of them have explored the effects of N addition on soil respiration (R s ). To fill this gap, we assessed the effects of N supply on R s dynamics in the following two Mediterranean sites: Capo Caccia (Italy), where 30 kg ha-1 year-1 was supplied for 3 years, and El Regajal (Spain), where plots were treated with 10, 20, or 50 kg N ha-1 year-1 for 8 years. Results show a complex, non-linear response of soil respiration (R s ) to N additions with R s overall increasing at Capo Caccia and decreasing at El Regajal. This suggests that the response of R s to N addition depends on dose and duration of N supply, and the existence of a threshold above which the N introduced in the ecosystem can affect the ecosystem's functioning. Soil cover and seasonality of precipitations also play a key role in determining the effects of N on R s as shown by the different responses observed across seasons and in bare soil vs. the soil under canopy of the dominant species. These results show how increasing rates of N addition may influence soil C dynamics in semiarid ecosystems in the Mediterranean Basin and represent a valuable contribution for the understanding and the protection of Mediterranean ecosystems.


Asunto(s)
Ecosistema , Nitrógeno/química , Suelo/química , Secuestro de Carbono , Italia , Nitrógeno/metabolismo , Plantas , Estaciones del Año , Microbiología del Suelo , España
12.
Sci Rep ; 5: 8280, 2015 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-25655192

RESUMEN

Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the (15)N:(14)N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in (15)N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ(15)N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ(15)N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.

13.
Ecol Evol ; 4(15): 3015-26, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25247059

RESUMEN

Although it is well known that nitrogen (N) additions strongly affect ectomycorrhizal (EM) fungal community composition, less is known about how different N application rates and duration of N additions affect the functional role EM fungi play in the forest N cycle.We measured EM sporocarp abundance and species richness as well as determined the δ (15)N in EM sporocarps and tree foliage in two Pinus sylvestris forests characterized by short- and long-term N addition histories and multiple N addition treatments. After 20 and 39 years of N additions, two of the long-term N addition treatments were terminated, thereby providing a unique opportunity to examine the temporal recovery of EM sporocarps after cessation of high N loading.In general, increasing N availability significantly reduced EM sporocarp production, species richness, and the amount of N retained in EM sporocarps. However, these general responses were strongly dependent on the application rate and duration of N additions. The annual addition of 20 kg·N·ha(-1) for the past 6 years resulted in a slight increase in the production and retention of N in EM sporocarps, whereas the addition of 100 kg·N·ha(-1)·yr(-1) during the same period nearly eliminated EM sporocarps. In contrast, long-term additions of N at rates of ca. 35 or 70 kg·N·ha(-1)·yr(-1) for the past 40 years did not eliminate tree carbon allocation to EM sporocarps, although there was a decrease in the abundance and a shift in the dominant EM sporocarp taxa. Despite no immediate recovery, EM sporocarp abundance and species richness approached those of the control 20 years after terminating N additions in the most heavily fertilized treatment, suggesting a recovery of carbon allocation to EM sporocarps after cessation of high N loading.Our results provide evidence for a tight coupling between tree carbon allocation to and N retention in EM sporocarps and moreover highlight the potential use of δ (15)N in EM sporocarps as a relative index of EM fungal sink strength for N. However, nitrogen additions at high dosage rates or over long time periods appear to disrupt this feedback, which could have important ramifications on carbon and nitrogen dynamics in these forested ecosystems.

14.
Am J Bot ; 96(3): 620-6, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21628218

RESUMEN

Recent population expansion throughout the Southwest United States has created an unprecedented demand for already limited water resources, which may have severe consequences on the persistence of some species. Two such species are the federally protected Nitrophila mohavensis (Chenopodiaceae) and Grindelia fraxino-pratensis (Asteraceae) found in Amargosa Valley, one valley east of Death Valley, California. Because both species are federally protected, no plant material could be harvested for analysis. We therefore used a chamber system to collect transpired water for isotopic analysis. After a correction for isotopic enrichment during transpiration, δ(18)O values of plant xylem water were significantly different between N. mohavensis and G. fraxino-pratensis throughout the study. Using a multisource mixing model, we found that both N. mohavensis and G. fraxino-pratensis used soil moisture near the soil surface in early spring when surface water was present. However, during the dry summer months, G. fraxino-pratensis tracked soil moisture to deeper depths, whereas N. mohavensis continued to use soil moisture near the soil surface. These results indicate that pumping groundwater and subsequently lowering the water table may directly prevent G. fraxino-pratensis from accessing water, whereas these same conditions may indirectly affect N. mohavensis by reducing surface soil moisture and thus its ability to access water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA