Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
BMC Plant Biol ; 24(1): 797, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39179978

RESUMEN

The chloroplast (cp.) genome, also known as plastome, plays crucial roles in plant survival, adaptation, and evolution. The stable genetic structure of cp. genomes provides an ideal system for investigating species evolution. We sequenced three complete cp. genome sequences of Capsicum species and analyzed them using sequences of various Capsicum species retrieved from the NCBI database. The cp. genome of Capsicum species maintains a well-preserved quadripartite structure consisting of two inverted repeats (IRs) flanked by a large single copy (LSC) region and a small single copy (SSC) region. The sizes of cp. genome sequences ranged from 156,583 bp (C. lycianthoides) to 157,390 bp (C.pubescens). A total of 127-132 unique genes, including 83-87 protein-coding, 36-37 tRNA, and eight rRNA genes, were predicted. Comparison of cp. genomes of 10 Capsicum species revealed high sequence similarity in genome-wide organization and gene arrangements. Fragments of trnT-UGU/trnL-UAA, ccsA, ndhD, rps12, and ycf1 were identified as variable regions, and nucleotide variability of LSC and SSC was higher than that of IR. Phylogenetic speciation analysis showed that the major domesticated C. annuum species were the most extensively divergent species and closely related to C. tovarii and C. frutescens. Analysis of divergent times suggested that a substantial range of speciation events started occurring ~ 25.79 million years ago (Mya). Overall, comparative analysis of cp. genomes of Capsicum species not only offers new insights into their genetic variation and phylogenetic relationships, but also lays a foundation for evolutionary history, genetic diversity, conservation, and biological breeding of Capsicum species.


Asunto(s)
Capsicum , Evolución Molecular , Genoma del Cloroplasto , Filogenia , Capsicum/genética
2.
Environ Geochem Health ; 46(10): 378, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167275

RESUMEN

Significant efforts have been dedicated to creating recyclable and efficient methods for treating waste dyes, including rhodamine B (RhB). Nevertheless, challenges such as complex operational techniques, high costs, energy consumption, and inefficacy in dye removal persist. Here, the synthesis and application of TiO2/Fe3O4/SiO2 for photocatalytic degradation of RhB dye pollutants have been explored. This research was initiated with magnetite (Fe3O4) synthesis using the coprecipitation method, followed by silica (SiO2) extraction from rice husk waste using the sol-gel process, and a hydrothermal method for synthesizing titanium dioxide (TiO2) and TiO2/Fe3O4/SiO2 nanocomposite. The crystalline structure of TiO2/Fe3O4/SiO2 was obtained with Fe3O4 as the core, while TiO2 and SiO2 as the shell. The particle size analysis showed the nanosize of TiO2/Fe3O4/SiO2 (1.04 ± 0.46 nm). TiO2/Fe3O4/SiO2 nanocomposite boasts a high surface area of 48.025 m2/g, 2.2 times higher than unmodified TiO2. This nanocomposite also displayed paramagnetic properties with a saturation magnetization of 9.117 emu/g, facilitating easy separation in photocatalytic applications. The photocatalytic activity of TiO2/Fe3O4/SiO2 exhibited effectively degraded RhB, achieving a degradation rate of 53.58% and an excellent rate constant of 0.7303 min-1. The RhB photodegradation in this study requires a moderate irradiation time (60 min), uses only a tiny amount of photocatalyst (100 mg), and does not need additional chemicals. Moreover, this study has another advantage of utilizing rice husk as a silica source, offering an eco-friendly and sustainable approach.


Asunto(s)
Nanocompuestos , Rodaminas , Dióxido de Silicio , Titanio , Contaminantes Químicos del Agua , Titanio/química , Rodaminas/química , Dióxido de Silicio/química , Nanocompuestos/química , Contaminantes Químicos del Agua/química , Catálisis , Fotólisis , Óxido Ferrosoférrico/química
3.
Environ Res ; 216(Pt 3): 114749, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36356667

RESUMEN

Development of hybrid graphitic carbon nitride (GCN) nanocomposite is an emerging research area in wastewater treatment. Herein, hybrid visible light active photocatalyst of silver decorated polymeric graphitic carbon nitride and (Ag-GCN) with cerium oxide (CeO2) nanocomposite was prepared and characterized in detail. The Ag-GCN/CeO2 photocatalyst has successfully prepared by an electrostatic self-assembly approach. The synthesized Ag-GCN/CeO2 NCs photocatalysts are characterized by various physio-chemical techniques. Using the Ag-GCN/CeO2 catalyst, the excellent photodegradation efficiency of Acid yellow-36 (AY-36) and Direct yellow-12 (DY-12) dye solution were achieved 100% within 150 min sun light irradiation. The Ag-GCN/CeO2 rate constant values of 0.048 and 0.046/min has been determined for AY-36 and DR-12 dyes, respectively. The extraordinary photocatalytic activity is due to incorporation of CeO2 with Ag-GCN which play a significant role in visible light absorption, superior reactive oxygen generation (ROS) and excellent pollutant catalyst interaction. The toxicity of the photocatalytically degraded AY-36 and DR-12 dyes were measured using the soil nematode Caenorhabditis elegans, a well-established in vivo model in biology, by analyzing survival, physiological functions, intracellular ROS levels, and stress-protective gene expressions.


Asunto(s)
Nanocompuestos , Plata , Plata/toxicidad , Plata/química , Especies Reactivas de Oxígeno , Nanocompuestos/toxicidad , Nanocompuestos/química , Luz , Colorantes/química
4.
Environ Res ; 216(Pt 3): 114705, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36328227

RESUMEN

In this study, the sol-gel technique was used to develop Cobalt Sulfur codoped Titanium Dioxide (Co-S codoped TiO2) photocatalysts. For structural analysis of the prepared resultant TiO2 samples, XRD, FTIR, UV-Vis DRS, SEM, HR-TEM and EDX measurements were used to describe the produced photocatalysts. The characterization findings indicate that the synthesized nanoparticles possessed great crystallinity, high purity, and superior optical characteristics. For the methylene blue (MB) degradation process, Co-S codoped TiO2 nanoparticles were tested for their photocatalytic degradation performance. The Co-S codoped TiO2 nanoparticles had improved catalytic activity when compared with pure, Co-doped, S-doped TiO2 and decomposed 93% of MB in 120 min. When compared to pure and doped TiO2, the catalysts of Co-S codoped TiO2 showed a synergistic effect and improved the performance of the catalysts. Furthermore, the antibacterial applications of synthesized Co-S codoped TiO2 nanoparticles was studied against E. coli (Gram negative) and S. aureus (Gram positive) bacteria and exhibited strong antibacterial activity against the selected strains.


Asunto(s)
Cobalto , Escherichia coli , Staphylococcus aureus , Titanio/química , Luz , Catálisis , Azufre/química , Azufre/farmacología , Azul de Metileno , Antibacterianos/farmacología
5.
Environ Res ; 216(Pt 3): 114634, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36341788

RESUMEN

Titanium dioxide nanoparticles (TiO2 NPs) are becoming more and more renowned as biocompatible nanomaterials with diverse biological functions. In the present study, the aqueous extract of tea residue (tea filtered waste powder) was used to synthesize the TiO2 NPs and treated for effluent bioremediations. Maximum absorption in the UV-Vis spectrum of the TiO2 NPs was seen at 358 nm, and the XRD pattern reveals peaks at 2 h values of 25.78, 38.24, 47.98, 54.76, 55.32, 62.64, 69.05, 70.15, 75.24, and 83.59 that may be indexed to the (101), (004), (200), (105), (211), (204), (116), (220), (215) and (303). The FT-IR spectra of TiO2 NPs showed a peak at 3420, 2925, 1621, 1382, 1098, and 687 cm-1. The spherical form and size were disclosed by FE-SEM analyses, and the EDAX pattern verified the purity of the TiO2 NPs. The average particles size of the TiO2 NPs was 32 nm. The photodegradation of paper mill waste water is significantly deteriorated up to 99.08% for 600 min, but textile waste water is degraded up to 98.06% for the same duration. Furthermore, we reported that TiO2 NPs may rapidly breakdown industrially hazardous effluents when exposed to sunshine. Overall, this new, straightforward, and environmentally beneficial strategy may be of interest to the management of efficient degradation of dye solutions in the polluted regions.


Asunto(s)
Extractos Vegetales , Aguas Residuales , Porosidad , Biodegradación Ambiental , Espectroscopía Infrarroja por Transformada de Fourier , Titanio/química ,
6.
Pestic Biochem Physiol ; 193: 105447, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37248016

RESUMEN

Bacterial leaf blight (BLB) pathogen, Xanthomonas oryzae pv. oryzae (Xoo) is the most devastating bacterial pathogen, which jeopardizes the sustainable rice (Oryza sativa L.) production system. The use of antibiotics and conventional pesticides has become ineffective due to increased pathogen resistance and associated ecotoxicological concerns. Thus, the development of effective and sustainable antimicrobial agents for plant disease management is inevitable. Here, we investigated the toxicity and molecular action mechanisms of bioengineered chitosan­iron nanocomposites (BNCs) against Xoo using transcriptomic and proteomic approaches. The transcriptomic and proteomics analyses revealed molecular antibacterial mechanisms of BNCs against Xoo. Transcriptomic data revealed that various processes related to cell membrane biosynthesis, antioxidant stress, DNA damage, flagellar biosynthesis and transcriptional regulator were impaired upon BNCs exposure, which clearly showing the interaction of BNCs to Xoo pathogen. Similarly, proteomic profiling showed that BNCs treatment significantly altered the levels of functional proteins involved in the integral component of the cell membrane, catalase activity, oxidation-reduction process and metabolic process in Xoo, which is consistent with the results of the transcriptomic analysis. Overall, this study suggested that BNCs has great potential to serve as an eco-friendly, sustainable, and non-toxic alternative to traditional agrichemicals to control the BLB disease in rice.


Asunto(s)
Quitosano , Oryza , Xanthomonas , Transcriptoma , Quitosano/farmacología , Quitosano/metabolismo , Hierro/farmacología , Hierro/metabolismo , Proteómica/métodos , Xanthomonas/metabolismo , Antibacterianos , Oryza/metabolismo , Enfermedades de las Plantas/microbiología
7.
Molecules ; 28(16)2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37630414

RESUMEN

High concentrations of graphene oxide (GO), a nanoparticle substance with rapid manufacturing development, have the ability to penetrate the soil surface down to the mineral-rich subsurface layers. The destiny and distribution of such an unusual sort of nanomaterial in the environment must therefore be fully understood. However, the way the chemistry of solutions impacts GO nanoparticle adsorption on clay minerals is still unclear. Here, the adsorption of GO on clay minerals (e.g., bentonite and kaolinite) was tested under various chemical conditions (e.g., GO concentration, soil pH, and cation valence). Non-linear Langmuir and Freundlich models have been applied to describe the adsorption isotherm by comparing the amount of adsorbed GO nanoparticle to the concentration at the equilibrium of the solution. Our results showed fondness for GO in bentonite and kaolinite under similar conditions, but the GO nanoparticle adsorption with bentonite was superior to kaolinite, mainly due to its higher surface area and surface charge. We also found that increasing the ionic strength and decreasing the pH increased the adsorption of GO nanoparticles to bentonite and kaolinite, mainly due to the interaction between these clay minerals and GO nanoparticles' surface oxygen functional groups. Experimental data fit well to the non-linear pseudo-second-order kinetic model of Freundlich. The model of the Freundlich isotherm was more fitting at a lower pH and higher ionic strength in the bentonite soil while the lowest R2 value of the Freundlich model was recorded at a higher pH and lower ionic strength in the kaolinite soil. These results improve our understanding of GO behavior in soils by revealing environmental factors influencing GO nanoparticle movement and transmission towards groundwater.

8.
Environ Res ; 211: 113079, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35276197

RESUMEN

Silver doped hydroxyapatite and titanium oxide nanocomposites have been obtained by sol-gel techniques with novel antimicrobial activities for biomedical applications. The synthesis of Ca10-X AgX (PO4)6(OH)2 along with titanium oxide nanoparticles with XAg = 0 (HAp/TiO2), 0.1, 0.25 and 0.5 (Ag:HAp/TiO2-NCS) was performed. The developed crystalline phase was characterized via X-ray diffraction (XRD), and the morphological features were executed via scanning and transmission electron microscopy (SEM/TEM). The HAp/TiO2 and silver doped HAp/TiO2 nanocomposites were spherical grains, with needle and flower-like structures. XRD examination revealed the crystalline phases of HAp/TiO2 and Ag-doped HAp/TiO2 nanocomposites. The crystallite size of HAp/TiO2 and Ag-doped HAp/TiO2 nanocomposites determined from the XRD pattern was ranged between 16 nm and 20 nm. The FTIR analysis confirms the presence of stretching and vibrational peaks for the presence of silver doped HAp/TiO2. The EDAX analysis showed the existence of major elements of HAp/TiO2 and Ag-HAp/TiO2 nanostructured composites. HAp/TiO2 and silver doped HAp/TiO2 were active against both Gram-positive and Gram-negative bacteria such as, E. coli (MTCC 443), S. typhi (MTCC 733), and S. aureus (MTCC 3160). The photocatalytic absorption spectrum implied an increased absorption rate of methylene blue by HAp/TiO2 and silver doped HAp/TiO2 nanocomposites. The photocatalytic activity revealed that 50% Ag doped HAp/TiO2 optimally improved photocatalytic activity.


Asunto(s)
Nanocompuestos , Plata , Antibacterianos/química , Antibacterianos/farmacología , Catálisis , Escherichia coli , Bacterias Gramnegativas , Bacterias Grampositivas , Nanocompuestos/química , Plata/química , Staphylococcus aureus , Titanio/química
9.
Environ Res ; 206: 112492, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-34929189

RESUMEN

Textile wastewater threatens people health by alluring diseases and revealing public existing close to the waste to the dangerous products within. Because waste causes a risk to the environment and people, waste management making is the main challenge of the municipal world. Environmental process such as toxic dye degradation can be stepped up through photochemical process such as visible light induced catalytic degradation. Here, the successful synthesis of co-doping of Al and F into TiO2 nanoparticles (Al-F∕TiO2 NPs) by solid state reaction method comprising different proportions of co-dopants is evaluated for the applications of degrading organic synthetic dyes and textile dyeing waste water. Influence of co-dopants was studied in their optical, structural, compositional, morphological and vibrational properties. The average crystallite size of Al-F∕TiO2 NPs was found as 15 nm.FTIR and UV-vis spectrum confirmed F and Al atoms were incorporated into the TiO2 lattice.The absorption edges slightly moved to shorter wavelength by increasing level of dopants and this specifies the control of optical absorption of TiO2 by the incorporation of F and Al3+ ions.The EDS spectrum indicates the purity of the samples. The highest zone of inhibition for the prepared nanoparticles over Staphylococcus aureus reached to 22 mm. The rate constant (kapp) value of MB, MO and textile waste water is 0.0138/min, 0.0174/min and 0.0139/min for the prepared nanoparticles respectively. The study of photocatalytic degradation of visible light assisted MB, MO and real textile waste water by Al-F∕TiO2 NPs revealed that the prepared nanoparticles act as ideal catalyst by tuning the concentration of co-dopants in TiO2.


Asunto(s)
Nanopartículas , Aguas Residuales , Catálisis , Colorantes , Humanos , Nanopartículas/química , Textiles , Titanio/química , Aguas Residuales/química
10.
Environ Res ; 204(Pt A): 111915, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34419472

RESUMEN

For the optimization of silver nanoparticle production, a central composite design was used with three parameters: AgNO3 concentration, green tea extract concentration, and temperature at three different levels. The size of the synthesized silver nanoparticle, its UV absorbance, zeta potential, and polydispersity index were set as the response parameters. Silver nanoparticles obtained in the optimization process were characterized and its efficacy on colorimetric detection of mercury was evaluated. The response variables were significant for the factors analyzed, and each variable had a significant model (P < 0.05). The ideal conditions were: 1 mM AgNO3, 0.5% green tea extract, and 80 °C temperature. To analyze the produced AgNPs under certain ideal conditions, Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray diffraction (XRD) were used. The UV-visible spectra of AgNPs revealed an absorption maxima at 424 nm. The XRD pattern reveals a significant diffraction peak at 38.25°, 44.26°, 64.43°, and 77.49°, which corresponds to the (111), (200), (220), and (311) planes of polycrystalline face-centered cubic (fcc) silver, respectively. The TEM and SEM analyses confirmed that the particles were spherical, and dynamic light scattering study determined the average diameter of AgNPs to be 77.4 nm. The AgNPs have a zeta potential of -62.6 mV, as determined by the zeta sizer analysis. The AgNPs detects mercury at a micromolar concentration. Furthermore, the environmentally friendly generated AgNPs were used to detect mercury in a colorimetric method that was effectively employed for analytical detection of Hg2+ ions in an aqueous environment for the purpose of practical application.


Asunto(s)
Mercurio , Nanopartículas del Metal , Antibacterianos , Colorimetría , Residuos Industriales , Extractos Vegetales , Plata , , Aguas Residuales
11.
Environ Res ; 204(Pt B): 112073, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34537200

RESUMEN

ZnGa2O4 nanocomposites have been widely used for photocatalytic degradation of industrial dyes. In this work, ZnGa2O4 was synthesized from zinc sulphate heptahydrate ZnSO4.10H2O and Gallium (III) oxide (Ga2O3) by hydrothermal method. As prepared, ZnGa2O4 nanocomposites was used as a photocatalyst degradation of three organic dyes rhodamine-B, methylene blue, and methyl orange, under ultraviolet (UV) light irradiation. The ZnGa2O4 nanocomposites structure, morphology, size and optical properties were studied by X-ray diffraction (XRD), Fourier transform Raman spectroscopy (FT-Raman), scanning electron microscopy (SEM), Transmission electron microscopes (TEM) and photoluminescence spectra (PL). Moreover, the results explained the rate-controlling mechanisms of the dye degradation process followed by second-order kinetics. After 100 min of adsorption kinetic models, the decomposition of rhodamine-B (7.2 Ct mg/L, 5.2 Ct mg/L, and 4.1 Ct mg/L), methylene blue (42.8 qt mg/g, 44.8 qt mg/g, and 45.9 qt mg/g), and methyl orange (42.8 qe mg/g, 44.8 qe mg/g, and 45.9 qe mg/g) respectively. This investigation study offers a promising method to design more efficient ZnGa2O4 nanocomposites based photocatalytic degradation of industrial organic dyes.


Asunto(s)
Nanocompuestos , Catálisis , Colorantes , Azul de Metileno , Rayos Ultravioleta
12.
Environ Res ; 214(Pt 1): 113829, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35820654

RESUMEN

Biosynthesis of metal oxide nanoparticles has attracted much attention in recent years owing to the increasing impact for improving hygienic substances, cost effective approaches, environment friendly solvents and reusable resources. The present study has shown the eco synthesis of TiO2 nanoparticles using the aqueous extract of egg shell waste. UV, XRD, FT-IR, and FE-SEM with EDX methods were implied for TiO2 nanoparticles. The agar well approach was used to investigate the antimicrobial properties of biosynthesized nanoparticles against pathogenic organisms. The cytotoxicity analysis was investigated by MTT assay method and photocatalytic activity was studied using methylene blue, methyl orange and Congo red dye. X-ray diffraction studies showed that the presence of tetragonal structure. The crystallite size of synthesized TiO2 nanoparticles is 27.3 nm. FE-SEM analysis indicates that the average grain size of the prepared sample was found to be in the range of 30-40 nm. Eco synthesis of TiO2 nanoparticles displayed amazing antimicrobial efficacies against human pathogenic organisms and obtained excellent cytotoxicity investigation was performed against Osteosarcoma cell lines (MG-63). Further it was also found that the expression of impressive catalytic efficiency, 91.1 percent decreased in 60 min for methylene blue. From the results, we found that eco synthesized TiO2 nanoparticles has promising utility in multidisciplinary like antimicrobial, anticancer and photocatalytic applications.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Animales , Antibacterianos , Catálisis , Cáscara de Huevo , Humanos , Azul de Metileno , Espectroscopía Infrarroja por Transformada de Fourier , Titanio , Difracción de Rayos X
13.
Environ Res ; 209: 112822, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35093306

RESUMEN

Phenol is an organic contaminant widely distributed in wastewater. Biodegradation is one of the suitable methods used to remove phenol from the wastewater. In this study, the bacterial laccase and pectinase were analyzed and phenol degradation potential was studied. A total of six bacterial strains were selected and their phenol degrading potentials were studied. Laccase and pectinase producers were screened on substrate agar plates and several strains produced these enzymes in submerged fermentation. Among these enzyme producing strains, strain PD8 and PD22 exhibited potent phenol degrading ability than other strains. These two bacterial strains (Halomonas halodurans PD8 and Bacillus halodurans PD22) exhibited maximum growth in phenol-supplemented culture medium. These two organisms grown well at wide pH values (pH 3.0 and 10.0), survive well between 20 °C and 50 °C, and showed growth between 1 and 10% sodium chloride concentration. The lyophilized enzyme from PD8 and PD22 were immobilized with alginate beads cross liked with divalent cations. At 1% alginate, the binding efficiency was 40.2 ± 2.9% and it improved up to 2.0% concentration (67.5 ± 4.2%) and further increase on alginate concentration affected binding efficiency. Phenol degradation was maximum within 10 h of treatment in the immobilized packed bed column reactor (83.1 ± 3.2%) and colour removal efficiency was maximum at 12 h treatment (82.1 ± 3.9%). After four successive experimental trials more than 40% efficiency was achieved.


Asunto(s)
Reactores Biológicos , Aguas Residuales , Bacillus , Biodegradación Ambiental , Reactores Biológicos/microbiología , Halomonadaceae , Fenoles/metabolismo , Aguas Residuales/química
14.
Environ Res ; 208: 112686, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35032540

RESUMEN

Piper longum extract as a reducing agent in green synthesis method is used to synthesize ZnO nanoparticles (ZnO-NPs). The impact of the reductant on the structural, optical and surface morphological properties of ZnO-NPs can be analyzed. Piper longum extract has delicately tuned the band gap of ZnO-NPs. Increase in energy band gap indicates an increase in the number of capping molecules in the prepared ZnO nanoparticles. The carbohydrates and proteins not only play a fundamental role in ZnO capping, which is important for its stability, determination and biocompatibility. Thus obtained nanosized ZnO particles are confirmed by the surface morphological studies. Because of various surface interface properties might have different physical-chemical, desorption-adsorption abilities in the direction towards microbes, create different antibacterial performances. S.aureus has maximum inhibition zone of 23 mm and Escherichia coli has minimum inhibition zone of 7 mm. To assess the photocatalytic activity of the prepared ZnO-NPs under UV light irradiation, methyl orange, malachite green and methylene blue dyes were utilized as model contaminants. The degradation efficiency of MG, MB and MO dyes solution is found that 96%, 69% and 48% of degradation efficiency respectively under ultraviolet light irradiation. The properties of synthetic nanopowders suggest that they have important potential for a variety of biochemical and environmental applications.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Piper , Óxido de Zinc , Antibacterianos/farmacología , Catálisis , Nanopartículas del Metal/química , Staphylococcus aureus , Óxido de Zinc/química
15.
Environ Monit Assess ; 195(1): 12, 2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36271213

RESUMEN

The goal of this study was to come up with an efficient method for treating cheese production wastewater. Because the effluent has a higher concentration of organic and inorganic materials, the indigenous microbial treatment process was used to effectively remove total dissolved solids (TDS), chemical oxygen demand (COD), and color without the addition of any nutrients. The indigenous microorganisms were tested for color, TDS, and COD elimination by growing them in "nutrient broth medium" loaded with different amounts of cheese effluent. The isolates were identified by 16S rRNA sequencing, and the results revealed that strain 1 was Enterobacter cloacae, strain 2 was Lactococcus garvieae, and strains 3 and 4 were Bacillus cereus and Bacillus mycoides, respectively. After 36 h of incubation, the data were evaluated. Among all the microbes, E. cloacae reduced TDS and COD from the effluent the most (80 ± 0.2% and 87 ± 0.4% COD, respectively). When compared to individual species, consortia were more efficient (86 ± 0.2% TDS and 90 ± 0.3% COD). On treatment, the correlation coefficient "r" for TDS and COD elimination was found to be 1, resulting in a positive linear connection. The current study suggests that microbial therapies are both effective and environmentally beneficial.


Asunto(s)
Queso , Contaminantes Ambientales , Monitoreo del Ambiente , ARN Ribosómico 16S , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química
16.
Environ Res ; 199: 111370, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34043971

RESUMEN

Heavy metal ions in aqueous solutions are taken into account as one of the most harmful environmental issues that ominously affect human health. Pb(II) is a common pollutant among heavy metals found in industrial wastewater, and various methods were developed to remove the Pb(II). The adsorption method was more efficient, cheap, and eco-friendly to remove the Pb(II) from aqueous solutions. The removal efficiency depends on the process parameters (initial concentration, the adsorbent dosage of T-Fe3O4 nanocomposites, residence time, and adsorbent pH). The relationship between the process parameters and output is non-linear and complex. The purpose of the present study is to develop an artificial neural networks (ANN) model to estimate and analyze the relationship between Pb(II) removal and adsorption process parameters. The model was trained with the backpropagation algorithm. The model was validated with the unseen datasets. The correlation coefficient adj.R2 values for total datasets is 0.991. The relationship between the parameters and Pb(II) removal was analyzed by sensitivity analysis and creating a virtual adsorption process. The study determined that the ANN modeling was a reliable tool for predicting and optimizing adsorption process parameters for maximum lead removal from aqueous solutions.


Asunto(s)
Nanocompuestos , Contaminantes Químicos del Agua , Adsorción , Compuestos Férricos , Humanos , Concentración de Iones de Hidrógeno , Cinética , Plomo , Redes Neurales de la Computación , Soluciones , Contaminantes Químicos del Agua/análisis
17.
Anal Methods ; 16(18): 2869-2877, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38639075

RESUMEN

A nucleophilic addition based chemodosimeter was designed and synthesized with a carbazole donor and an indole acceptor. The addition of a cyanide ion to an electron-deficient indole moiety disrupts the acceptor-donor relationship, resulting in noticeable color shifts and spectrum differences in both the absorption and emission profiles. The design has a D-π-A molecular arrangement. Selectivity was investigated in 90% aqueous DMSO solution of probe CI with various anions such as SCN-, PF6-, NO3-, N3-, I-, HSO4-, CN-, H2PO4-, F-, HS-, ClO4-, Cl-, Br-, and AcO-. An intermolecular charge transfer (ICT) band at 506 nm in the UV-visible spectra vanished and the intensity of emission was quenched at 624 nm upon the addition of CN- ions. These outcomes demonstrate the effective nucleophilic addition of cyanide ions to the electron-deficient indole moiety of the probe, resulting in the formation of a new adduct in which the ICT transition is interrupted when π conjugation is blocked. The Job plot, 1H NMR spectroscopy, and HRMS analysis confirmed the formation of a new product. An outstanding response was shown by paper test strips made using probe molecules for the easy detection of cyanide ions in aqueous solutions. Besides, the probe selectively senses cyanide ions in different water samples.

18.
PeerJ ; 12: e16944, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495762

RESUMEN

Background: The chickpea pod borer Helicoverpa armigera (Hübner) is a significant insect pest of chickpea crops, causing substantial global losses. Methods: Field experiments were conducted in Central Punjab, Pakistan, to investigate the impact of biotic and abiotic factors on pod borer population dynamics and infestation in nine kabuli chickpea genotypes during two cropping seasons (2020-2021 and 2021-2022). The crops were sown in November in both years, with row-to-row and plant-to-plant distances of 30 and 15 cm, respectively, following a randomized complete block design (RCBD). Results: Results showed a significant difference among the tested genotypes in trichome density, pod wall thickness, and leaf chlorophyll contents. Significantly lower larval population (0.85 and 1.10 larvae per plant) and percent damage (10.65% and 14.25%) were observed in genotype Noor-2019 during 2020-2021 and 2021-2022, respectively. Pod trichome density, pod wall thickness, and chlorophyll content of leaves also showed significant variation among the tested genotypes. Pod trichome density and pod wall thickness correlated negatively with larval infestation, while chlorophyll content in leaves showed a positive correlation. Additionally, the larval population positively correlated with minimum and maximum temperatures, while relative humidity negatively correlated with the larval population. Study results explore natural enemies as potential biological control agents and reduce reliance on chemical pesticides.


Asunto(s)
Cicer , Mariposas Nocturnas , Animales , Clorofila , Cicer/genética , Productos Agrícolas/genética , Genotipo , Helicoverpa armigera , Larva/genética , Mariposas Nocturnas/genética
19.
Int J Pharm ; 651: 123749, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38159587

RESUMEN

Polycystic ovary syndrome (PCOS), a prevalent endocrine disorder in women of reproductive age, is linked to hormonal imbalances and oxidative stress. Our study investigates the regenerative potential of apigenin (AP, hydrophobic) and ascorbic acid (AC, hydrophilic) encapsulated within poly (allylamine hydrochloride) and dextran sulfate (PAH/DS) hollow microcapsules for PCOS. These microcapsules, constructed using a layer-by-layer (LbL) assembly, are found to be 4 ± 0.5 µm in size. Our research successfully demonstrates the co-encapsulation of AP and AC in a single PAH/DS system with high encapsulation efficiency followed by successful release at physiological conditions by CLSM investigations. In vitro tests with testosterone-treated CHO cells reveal that the dual-drug-loaded PAH/DS capsules effectively reduce intracellular ROS levels and apoptosis and offering protection. In an in-vivo zebrafish model, these capsules demonstrate active biodistribution to targeted ovaries and reduce testosterone levels through radical scavenging. Histopathological examinations show that the injected dual-drug-loaded PAH/DS microcapsules assist in the development of ovarian follicles in testosterone-treated zebrafish. Hence, this dual-drug-loaded system, capable of co-encapsulating two natural compounds, effectively interacts with ovarian cells, reducing cellular damage and normalizing PCOS conditions.


Asunto(s)
Síndrome del Ovario Poliquístico , Animales , Cricetinae , Femenino , Humanos , Polielectrolitos , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Apigenina , Pez Cebra , Cápsulas/química , Ácido Ascórbico , Distribución Tisular , Cricetulus , Testosterona
20.
Drug Des Devel Ther ; 18: 597-612, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38436040

RESUMEN

Purpose: New bioactive anthraquinone derivatives are investigated for antibacterial, tyrosinase inhibitory, antioxidant cytotoxic activity, and molecular docking. Methods: The compounds were produced using the grindstone method, yielding 69 to 89%. These compounds were analyzed using IR, 1H, and 13C NMR and elemental and mass spectral methods. Additionally, the antibacterial, antioxidant, and tyrosinase inhibitory activities of all the synthesised compounds were evaluated. Results: Compound 2 showed remarkable tyrosinase inhibition activity, with an (IC50: 13.45 µg/mL), compared to kojic acid (IC50: 19.40 µg/mL). It also exhibited moderate antioxidant and antibacterial activities with respect to the references BHT and ampicillin, respectively. Kinetic analysis revealed that the tyrosinase inhibitory activity of compound 2 was non-competitive and competitive, whereas that of compound 1 was low. All compounds (1-8) were significantly less active than doxorubicin (LC50: 0.74±0.01µg/mL). However, compound 2 affinity for the 2Y9X protein was lower than kojic acid, with a lower docking score (-8.6 kcal/mol compared to (-4.7 kcal/mol), making it more effective. Conclusion: All synthesized compounds displayed remarkable antibacterial, tyrosinase inhibitory, antioxidant, and cytotoxic activities, with compound 2 showing exceptional potency as a multitarget agent. Anthraquinone substituent groups may offer the potential for the development of treatments. The derivatives were synthesized using the grindstone method, and their antibacterial, antioxidant, tyrosinase inhibitory, and cytotoxic activities were inspected. Molecular docking and molecular dynamics simulations were performed using compound 2 and kojic acid to validate the results and confirm the stability of the compounds.


Asunto(s)
Agaricales , Antineoplásicos , Ciclopentanos , Monofenol Monooxigenasa , Simulación del Acoplamiento Molecular , Antioxidantes/farmacología , Cinética , Antibacterianos/farmacología , Antraquinonas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA