Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell ; 184(16): 4284-4298.e27, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34233164

RESUMEN

Many organisms evolved strategies to survive desiccation. Plant seeds protect dehydrated embryos from various stressors and can lay dormant for millennia. Hydration is the key trigger to initiate germination, but the mechanism by which seeds sense water remains unresolved. We identified an uncharacterized Arabidopsis thaliana prion-like protein we named FLOE1, which phase separates upon hydration and allows the embryo to sense water stress. We demonstrate that biophysical states of FLOE1 condensates modulate its biological function in vivo in suppressing seed germination under unfavorable environments. We find intragenic, intraspecific, and interspecific natural variation in FLOE1 expression and phase separation and show that intragenic variation is associated with adaptive germination strategies in natural populations. This combination of molecular, organismal, and ecological studies uncovers FLOE1 as a tunable environmental sensor with direct implications for the design of drought-resistant crops, in the face of climate change.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Germinación , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Priones/metabolismo , Semillas/crecimiento & desarrollo , Agua/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/ultraestructura , Deshidratación , Imagenología Tridimensional , Péptidos y Proteínas de Señalización Intercelular/química , Mutación/genética , Latencia en las Plantas , Plantas Modificadas Genéticamente , Dominios Proteicos , Isoformas de Proteínas/metabolismo , Semillas/ultraestructura
2.
New Phytol ; 238(6): 2313-2328, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36856334

RESUMEN

Spatiotemporal patterns of phenology may be affected by mosaics of environmental and genetic variation. Environmental drivers may have temporally lagged impacts, but patterns and mechanisms remain poorly known. We combine multiple genomic, remotely sensed, and physically modeled datasets to determine the spatiotemporal patterns and drivers of canopy phenology in quaking aspen, a widespread clonal dioecious tree species with diploid and triploid cytotypes. We show that over 391 km2 of southwestern Colorado: greenup date, greendown date, and growing season length vary by weeks and differ across sexes, cytotypes, and genotypes; phenology has high phenotypic plasticity and heritabilities of 31-61% (interquartile range); and snowmelt date, soil moisture, and air temperature predict phenology, at temporal lags of up to 3 yr. Our study shows that lagged environmental effects are needed to explain phenological variation and that the effect of cytotype on phenology is obscured by its correlation with topography. Phenological patterns are consistent with responses to multiyear accumulation of carbon deficit or hydraulic damage.


Asunto(s)
Populus , Populus/genética , Clima , Estaciones del Año , Árboles/genética , Carbono , Temperatura , Cambio Climático
3.
Genomics ; 108(3-4): 158-167, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27621057

RESUMEN

Altered gravity can perturb normal development and induce corresponding changes in gene expression. Understanding this relationship between the physical environment and a biological response is important for NASA's space travel goals. We use RNA-Seq and qRT-PCR techniques to profile changes in early Drosophila melanogaster pupae exposed to chronic hypergravity (3g, or three times Earth's gravity). During the pupal stage, D. melanogaster rely upon gravitational cues for proper development. Assessing gene expression changes in the pupae under altered gravity conditions helps highlight gravity-dependent genetic pathways. A robust transcriptional response was observed in hypergravity-treated pupae compared to controls, with 1513 genes showing a significant (q<0.05) difference in gene expression. Five major biological processes were affected: ion transport, redox homeostasis, immune response, proteolysis, and cuticle development. This outlines the underlying molecular and biological changes occurring in Drosophila pupae in response to hypergravity; gravity is important for many biological processes on Earth.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Hipergravedad , Transcriptoma , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Pupa/genética
4.
Science ; 377(6613): 1431-1435, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36137047

RESUMEN

Anthropogenic habitat loss and climate change are reducing species' geographic ranges, increasing extinction risk and losses of species' genetic diversity. Although preserving genetic diversity is key to maintaining species' adaptability, we lack predictive tools and global estimates of genetic diversity loss across ecosystems. We introduce a mathematical framework that bridges biodiversity theory and population genetics to understand the loss of naturally occurring DNA mutations with decreasing habitat. By analyzing genomic variation of 10,095 georeferenced individuals from 20 plant and animal species, we show that genome-wide diversity follows a mutations-area relationship power law with geographic area, which can predict genetic diversity loss from local population extinctions. We estimate that more than 10% of genetic diversity may already be lost for many threatened and nonthreatened species, surpassing the United Nations' post-2020 targets for genetic preservation.


Asunto(s)
Efectos Antropogénicos , Cambio Climático , Extinción Biológica , Variación Genética , Animales , Biodiversidad
5.
Nat Commun ; 12(1): 6442, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34750360

RESUMEN

The genetic architecture of atrial fibrillation (AF) encompasses low impact, common genetic variants and high impact, rare variants. Here, we characterize a high impact AF-susceptibility allele, KCNQ1 R231H, and describe its transcontinental geographic distribution and history. Induced pluripotent stem cell-derived cardiomyocytes procured from risk allele carriers exhibit abbreviated action potential duration, consistent with a gain-of-function effect. Using identity-by-descent (IBD) networks, we estimate the broad- and fine-scale population ancestry of risk allele carriers and their relatives. Analysis of ancestral migration routes reveals ancestors who inhabited Denmark in the 1700s, migrated to the Northeastern United States in the early 1800s, and traveled across the Midwest to arrive in Utah in the late 1800s. IBD/coalescent-based allele dating analysis reveals a relatively recent origin of the AF risk allele (~5000 years). Thus, our approach broadens the scope of study for disease susceptibility alleles to the context of human migration and ancestral origins.


Asunto(s)
Fibrilación Atrial/genética , Predisposición Genética a la Enfermedad/genética , Canal de Potasio KCNQ1/genética , Mutación Missense , Polimorfismo de Nucleótido Simple , Potenciales de Acción , Alelos , Dinamarca , Emigrantes e Inmigrantes , Femenino , Genotipo , Geografía , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Persona de Mediana Edad , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Linaje , Factores de Riesgo , Utah
6.
NPJ Microgravity ; 6: 4, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32047838

RESUMEN

While it has been shown that astronauts suffer immune disorders after spaceflight, the underlying causes are still poorly understood and there are many variables to consider when investigating the immune system in a complex environment. Additionally, there is growing evidence that suggests that not only is the immune system being altered, but the pathogens that infect the host are significantly influenced by spaceflight and ground-based spaceflight conditions. In this study, we demonstrate that Serratia marcescens (strain Db11) was significantly more lethal to Drosophila melanogaster after growth on the International Space Station than ground-based controls, but the increased virulence phenotype of S. marcescens did not persist after the bacterial cultures were passaged on the ground. Increased virulence was also observed in bacteria that were grown in simulated microgravity conditions on the ground using the rotating wall vessel. Increased virulence of the space-flown bacteria was similar in magnitude between wild-type flies and those that were mutants for the well-characterized immune pathways Imd and Toll, suggesting that changes to the host immune system after infection are likely not a major factor contributing towards increased susceptibility of ground-reared flies infected with space-flown bacteria. Characterization of the bacteria shows that at later timepoints spaceflight bacteria grew at a greater rate than ground controls in vitro, and in the host. These results suggest complex physiological changes occurring in pathogenic bacteria in space environments, and there may be novel mechanisms mediating these physiological effects that need to be characterized.

9.
Sci Transl Med ; 3(65): 65ra4, 2011 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-21228398

RESUMEN

Of 7028 disorders with suspected Mendelian inheritance, 1139 are recessive and have an established molecular basis. Although individually uncommon, Mendelian diseases collectively account for ~20% of infant mortality and ~10% of pediatric hospitalizations. Preconception screening, together with genetic counseling of carriers, has resulted in remarkable declines in the incidence of several severe recessive diseases including Tay-Sachs disease and cystic fibrosis. However, extension of preconception screening to most severe disease genes has hitherto been impractical. Here, we report a preconception carrier screen for 448 severe recessive childhood diseases. Rather than costly, complete sequencing of the human genome, 7717 regions from 437 target genes were enriched by hybrid capture or microdroplet polymerase chain reaction, sequenced by next-generation sequencing (NGS) to a depth of up to 2.7 gigabases, and assessed with stringent bioinformatic filters. At a resultant 160x average target coverage, 93% of nucleotides had at least 20x coverage, and mutation detection/genotyping had ~95% sensitivity and ~100% specificity for substitution, insertion/deletion, splicing, and gross deletion mutations and single-nucleotide polymorphisms. In 104 unrelated DNA samples, the average genomic carrier burden for severe pediatric recessive mutations was 2.8 and ranged from 0 to 7. The distribution of mutations among sequenced samples appeared random. Twenty-seven percent of mutations cited in the literature were found to be common polymorphisms or misannotated, underscoring the need for better mutation databases as part of a comprehensive carrier testing strategy. Given the magnitude of carrier burden and the lower cost of testing compared to treating these conditions, carrier screening by NGS made available to the general population may be an economical way to reduce the incidence of and ameliorate suffering associated with severe recessive childhood disorders.


Asunto(s)
Genes Recesivos/genética , Tamización de Portadores Genéticos/métodos , Pruebas Genéticas/métodos , Análisis de Secuencia de ADN/métodos , Secuencia de Bases , Niño , Bases de Datos Genéticas , Femenino , Pruebas Genéticas/economía , Genoma Humano , Heterocigoto , Humanos , Datos de Secuencia Molecular , Mutación , Embarazo , Diagnóstico Prenatal , Alineación de Secuencia , Análisis de Secuencia de ADN/economía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA