Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
N Engl J Med ; 383(24): 2320-2332, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-32877576

RESUMEN

BACKGROUND: NVX-CoV2373 is a recombinant severe acute respiratory syndrome coronavirus 2 (rSARS-CoV-2) nanoparticle vaccine composed of trimeric full-length SARS-CoV-2 spike glycoproteins and Matrix-M1 adjuvant. METHODS: We initiated a randomized, placebo-controlled, phase 1-2 trial to evaluate the safety and immunogenicity of the rSARS-CoV-2 vaccine (in 5-µg and 25-µg doses, with or without Matrix-M1 adjuvant, and with observers unaware of trial-group assignments) in 131 healthy adults. In phase 1, vaccination comprised two intramuscular injections, 21 days apart. The primary outcomes were reactogenicity; laboratory values (serum chemistry and hematology), according to Food and Drug Administration toxicity scoring, to assess safety; and IgG anti-spike protein response (in enzyme-linked immunosorbent assay [ELISA] units). Secondary outcomes included unsolicited adverse events, wild-type virus neutralization (microneutralization assay), and T-cell responses (cytokine staining). IgG and microneutralization assay results were compared with 32 (IgG) and 29 (neutralization) convalescent serum samples from patients with Covid-19, most of whom were symptomatic. We performed a primary analysis at day 35. RESULTS: After randomization, 83 participants were assigned to receive the vaccine with adjuvant and 25 without adjuvant, and 23 participants were assigned to receive placebo. No serious adverse events were noted. Reactogenicity was absent or mild in the majority of participants, more common with adjuvant, and of short duration (mean, ≤2 days). One participant had mild fever that lasted 1 day. Unsolicited adverse events were mild in most participants; there were no severe adverse events. The addition of adjuvant resulted in enhanced immune responses, was antigen dose-sparing, and induced a T helper 1 (Th1) response. The two-dose 5-µg adjuvanted regimen induced geometric mean anti-spike IgG (63,160 ELISA units) and neutralization (3906) responses that exceeded geometric mean responses in convalescent serum from mostly symptomatic Covid-19 patients (8344 and 983, respectively). CONCLUSIONS: At 35 days, NVX-CoV2373 appeared to be safe, and it elicited immune responses that exceeded levels in Covid-19 convalescent serum. The Matrix-M1 adjuvant induced CD4+ T-cell responses that were biased toward a Th1 phenotype. (Funded by the Coalition for Epidemic Preparedness Innovations; ClinicalTrials.gov number, NCT04368988).


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Glicoproteína de la Espiga del Coronavirus/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Adolescente , Adulto , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/efectos adversos , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Esquemas de Inmunización , Inmunogenicidad Vacunal , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad , Nanopartículas , Pandemias , Saponinas , Células TH1/inmunología , Vacunas Sintéticas/efectos adversos , Vacunas Sintéticas/inmunología , Adulto Joven
2.
Nat Commun ; 14(1): 1130, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36854666

RESUMEN

SARS-CoV-2 variants have emerged with elevated transmission and a higher risk of infection for vaccinated individuals. We demonstrate that a recombinant prefusion-stabilized spike (rS) protein vaccine based on Beta/B.1.351 (rS-Beta) produces a robust anamnestic response in baboons against SARS-CoV-2 variants when given as a booster one year after immunization with NVX-CoV2373. Additionally, rS-Beta is highly immunogenic in mice and produces neutralizing antibodies against WA1/2020, Beta/B.1.351, and Omicron/BA.1. Mice vaccinated with two doses of Novavax prototype NVX-CoV2373 (rS-WU1) or rS-Beta alone, in combination, or heterologous prime-boost, are protected from challenge. Virus titer is undetectable in lungs in all vaccinated mice, and Th1-skewed cellular responses are observed. We tested sera from a panel of variant spike protein vaccines and find broad neutralization and inhibition of spike:ACE2 binding from the rS-Beta and rS-Delta vaccines against a variety of variants including Omicron. This study demonstrates that rS-Beta vaccine alone or in combination with rS-WU1 induces antibody-and cell-mediated responses that are protective against challenge with SARS-CoV-2 variants and offers broader neutralizing capacity than a rS-WU1 prime/boost regimen alone. Together, these nonhuman primate and murine data suggest a Beta variant booster dose could elicit a broad immune response to fight new and future SARS-CoV-2 variants.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Nanopartículas , Animales , Humanos , Ratones , Anticuerpos Neutralizantes , COVID-19/prevención & control , Papio , SARS-CoV-2/genética , Vacunas/química , Vacunas/inmunología , Vacunas contra la COVID-19/química , Vacunas contra la COVID-19/inmunología
3.
Sci Transl Med ; 14(629): eabj5305, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-34783582

RESUMEN

Global deployment of vaccines that can provide protection across several age groups is still urgently needed to end the COVID-19 pandemic, especially in low- and middle-income countries. Although vaccines against SARS-CoV-2 based on mRNA and adenoviral vector technologies have been rapidly developed, additional practical and scalable SARS-CoV-2 vaccines are required to meet global demand. Protein subunit vaccines formulated with appropriate adjuvants represent an approach to address this urgent need. The receptor binding domain (RBD) is a key target of SARS-CoV-2 neutralizing antibodies but is poorly immunogenic. We therefore compared pattern recognition receptor (PRR) agonists alone or formulated with aluminum hydroxide (AH) and benchmarked them against AS01B and AS03-like emulsion-based adjuvants for their potential to enhance RBD immunogenicity in young and aged mice. We found that an AH and CpG adjuvant formulation (AH:CpG) produced an 80-fold increase in anti-RBD neutralizing antibody titers in both age groups relative to AH alone and protected aged mice from the SARS-CoV-2 challenge. The AH:CpG-adjuvanted RBD vaccine elicited neutralizing antibodies against both wild-type SARS-CoV-2 and the B.1.351 (beta) variant at serum concentrations comparable to those induced by the licensed Pfizer-BioNTech BNT162b2 mRNA vaccine. AH:CpG induced similar cytokine and chemokine gene enrichment patterns in the draining lymph nodes of both young adult and aged mice and enhanced cytokine and chemokine production in human mononuclear cells of younger and older adults. These data support further development of AH:CpG-adjuvanted RBD as an affordable vaccine that may be effective across multiple age groups.


Asunto(s)
Hidróxido de Aluminio , COVID-19 , Anciano , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacuna BNT162 , Vacunas contra la COVID-19 , Humanos , Ratones , Pandemias , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunas Sintéticas , Vacunas de ARNm
4.
Vaccine ; 39(36): 5205-5213, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34362603

RESUMEN

Influenza A virus (IAV) is a leading cause of respiratory disease worldwide often resulting in hospitalization or death. In this study, TLR4 immunostimulatory molecules, Bacterial Enzymatic Combinatorial Chemistry (BECC) 438 and BECC470 were found to be superior IAV vaccine adjuvants when compared to the classic adjuvant alhydrogel (alum) and Phosphorylated Hexa-Acyl Disaccharide (PHAD), a synthetic TLR4 agonist. BECC molecules allow for antigen sparing of a recombinant HA (rHA) protein, elicit a more balanced IgG1/IgG2a response, and were protective in a prime only dosing schedule. Importantly, BECC molecules afford protection from a heterologous IAV strain demonstrating that a cross-protective influenza vaccine is possible when the antigen is effectively adjuvanted.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Adyuvantes Inmunológicos , Anticuerpos Antivirales , Humanos , Inmunoglobulina G , Gripe Humana/prevención & control , Infecciones por Orthomyxoviridae/prevención & control , Receptor Toll-Like 4
5.
bioRxiv ; 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34031655

RESUMEN

Global deployment of vaccines that can provide protection across several age groups is still urgently needed to end the COVID-19 pandemic especially for low- and middle-income countries. While vaccines against SARS-CoV-2 based on mRNA and adenoviral-vector technologies have been rapidly developed, additional practical and scalable SARS-CoV-2 vaccines are needed to meet global demand. In this context, protein subunit vaccines formulated with appropriate adjuvants represent a promising approach to address this urgent need. Receptor-binding domain (RBD) is a key target of neutralizing antibodies (Abs) but is poorly immunogenic. We therefore compared pattern recognition receptor (PRR) agonists, including those activating STING, TLR3, TLR4 and TLR9, alone or formulated with aluminum hydroxide (AH), and benchmarked them to AS01B and AS03-like emulsion-based adjuvants for their potential to enhance RBD immunogenicity in young and aged mice. We found that the AH and CpG adjuvant formulation (AH:CpG) demonstrated the highest enhancement of anti-RBD neutralizing Ab titers in both age groups (∼80-fold over AH), and protected aged mice from the SARS-CoV-2 challenge. Notably, AH:CpG-adjuvanted RBD vaccine elicited neutralizing Abs against both wild-type SARS-CoV-2 and B.1.351 variant at serum concentrations comparable to those induced by the authorized mRNA BNT162b2 vaccine. AH:CpG induced similar cytokine and chemokine gene enrichment patterns in the draining lymph nodes of both young adult and aged mice and synergistically enhanced cytokine and chemokine production in human young adult and elderly mononuclear cells. These data support further development of AH:CpG-adjuvanted RBD as an affordable vaccine that may be effective across multiple age groups. ONE SENTENCE SUMMARY: Alum and CpG enhance SARS-CoV-2 RBD protective immunity, variant neutralization in aged mice and Th1-polarizing cytokine production by human elder leukocytes.

6.
Nat Commun ; 12(1): 6055, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34663813

RESUMEN

COVID-19 caused by the SARS-CoV-2 virus has become a global pandemic. 3CL protease is a virally encoded protein that is essential across a broad spectrum of coronaviruses with no close human analogs. PF-00835231, a 3CL protease inhibitor, has exhibited potent in vitro antiviral activity against SARS-CoV-2 as a single agent. Here we report, the design and characterization of a phosphate prodrug PF-07304814 to enable the delivery and projected sustained systemic exposure in human of PF-00835231 to inhibit coronavirus family 3CL protease activity with selectivity over human host protease targets. Furthermore, we show that PF-00835231 has additive/synergistic activity in combination with remdesivir. We present the ADME, safety, in vitro, and in vivo antiviral activity data that supports the clinical evaluation of PF-07304814 as a potential COVID-19 treatment.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Proteasa de Coronavirus/administración & dosificación , Indoles/administración & dosificación , Leucina/administración & dosificación , Pirrolidinonas/administración & dosificación , Adenosina Monofosfato/administración & dosificación , Adenosina Monofosfato/efectos adversos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacocinética , Alanina/administración & dosificación , Alanina/efectos adversos , Alanina/análogos & derivados , Alanina/farmacocinética , Animales , COVID-19/virología , Chlorocebus aethiops , Coronavirus Humano 229E/efectos de los fármacos , Coronavirus Humano 229E/enzimología , Inhibidores de Proteasa de Coronavirus/efectos adversos , Inhibidores de Proteasa de Coronavirus/farmacocinética , Modelos Animales de Enfermedad , Diseño de Fármacos , Sinergismo Farmacológico , Quimioterapia Combinada , Células HeLa , Humanos , Indoles/efectos adversos , Indoles/farmacocinética , Infusiones Intravenosas , Leucina/efectos adversos , Leucina/farmacocinética , Ratones , Pirrolidinonas/efectos adversos , Pirrolidinonas/farmacocinética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Células Vero
7.
bioRxiv ; 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-32935104

RESUMEN

COVID-19 caused by the SARS-CoV-2 virus has become a global pandemic. 3CL protease is a virally encoded protein that is essential across a broad spectrum of coronaviruses with no close human analogs. The designed phosphate prodrug PF-07304814 is metabolized to PF-00835321 which is a potent inhibitor in vitro of the coronavirus family 3CL pro, with selectivity over human host protease targets. Furthermore, PF-00835231 exhibits potent in vitro antiviral activity against SARS-CoV-2 as a single agent and it is additive/synergistic in combination with remdesivir. We present the ADME, safety, in vitro , and in vivo antiviral activity data that supports the clinical evaluation of this compound as a potential COVID-19 treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA