Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 134(16): 1298-1311, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31416800

RESUMEN

Therapeutic gene delivery to hematopoietic stem cells (HSCs) holds great potential as a life-saving treatment of monogenic, oncologic, and infectious diseases. However, clinical gene therapy is severely limited by intrinsic HSC resistance to modification with lentiviral vectors (LVs), thus requiring high doses or repeat LV administration to achieve therapeutic gene correction. Here we show that temporary coapplication of the cyclic resveratrol trimer caraphenol A enhances LV gene delivery efficiency to human and nonhuman primate hematopoietic stem and progenitor cells with integrating and nonintegrating LVs. Although significant ex vivo, this effect was most dramatically observed in human lineages derived from HSCs transplanted into immunodeficient mice. We further show that caraphenol A relieves restriction of LV transduction by altering the levels of interferon-induced transmembrane (IFITM) proteins IFITM2 and IFITM3 and their association with late endosomes, thus augmenting LV core endosomal escape. Caraphenol A-mediated IFITM downregulation did not alter the LV integration pattern or bias lineage differentiation. Taken together, these findings compellingly demonstrate that the pharmacologic modification of intrinsic immune restriction factors is a promising and nontoxic approach for improving LV-mediated gene therapy.


Asunto(s)
Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/virología , Proteínas de la Membrana/efectos de los fármacos , Resveratrol/farmacología , Transducción Genética/métodos , Animales , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Vectores Genéticos , Xenoinjertos , Humanos , Lentivirus , Proteínas de la Membrana/metabolismo , Ratones , Transporte de Proteínas/efectos de los fármacos
2.
Nature ; 519(7541): 87-91, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25707797

RESUMEN

Long-term in vivo expression of a broad and potent entry inhibitor could circumvent the need for a conventional vaccine for HIV-1. Adeno-associated virus (AAV) vectors can stably express HIV-1 broadly neutralizing antibodies (bNAbs). However, even the best bNAbs neutralize 10-50% of HIV-1 isolates inefficiently (80% inhibitory concentration (IC80) > 5 µg ml(-1)), suggesting that high concentrations of these antibodies would be necessary to achieve general protection. Here we show that eCD4-Ig, a fusion of CD4-Ig with a small CCR5-mimetic sulfopeptide, binds avidly and cooperatively to the HIV-1 envelope glycoprotein (Env) and is more potent than the best bNAbs (geometric mean half-maximum inhibitory concentration (IC50) < 0.05 µg ml(-1)). Because eCD4-Ig binds only conserved regions of Env, it is also much broader than any bNAb. For example, eCD4-Ig efficiently neutralized 100% of a diverse panel of neutralization-resistant HIV-1, HIV-2 and simian immunodeficiency virus isolates, including a comprehensive set of isolates resistant to the CD4-binding site bNAbs VRC01, NIH45-46 and 3BNC117. Rhesus macaques inoculated with an AAV vector stably expressed 17-77 µg ml(-1) of fully functional rhesus eCD4-Ig for more than 40 weeks, and these macaques were protected from several infectious challenges with SHIV-AD8. Rhesus eCD4-Ig was also markedly less immunogenic than rhesus forms of four well-characterized bNAbs. Our data suggest that AAV-delivered eCD4-Ig can function like an effective HIV-1 vaccine.


Asunto(s)
Antígenos CD4/inmunología , Dependovirus/genética , Inmunoglobulinas/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Virus de la Inmunodeficiencia de los Simios/inmunología , Internalización del Virus , Vacunas contra el SIDA/genética , Vacunas contra el SIDA/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Antagonistas de los Receptores CCR5/inmunología , Antígenos CD4/genética , Femenino , Terapia Genética , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , VIH-2/inmunología , Inmunoglobulinas/genética , Macaca mulatta , Masculino , Pruebas de Neutralización , Receptores CCR5/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/virología
3.
Nat Mater ; 18(10): 1124-1132, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31133730

RESUMEN

Ex vivo CRISPR gene editing in haematopoietic stem and progenitor cells has opened potential treatment modalities for numerous diseases. The current process uses electroporation, sometimes followed by virus transduction. While this complex manipulation has resulted in high levels of gene editing at some genetic loci, cellular toxicity was observed. We have developed a CRISPR nanoformulation based on colloidal gold nanoparticles with a unique loading design capable of cellular entry without the need for electroporation or viruses. This highly monodispersed nanoformulation avoids lysosomal entrapment and localizes to the nucleus in primary human blood progenitors without toxicity. Nanoformulation-mediated gene editing is efficient and sustained with different CRISPR nucleases at multiple loci of therapeutic interest. The engraftment kinetics of nanoformulation-treated primary cells in humanized mice are better relative to those of non-treated cells, with no differences in differentiation. Here we demonstrate non-toxic delivery of the entire CRISPR payload into primary human blood progenitors.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Nanopartículas del Metal/química , Células Madre/citología , Animales , Sangre , Electroporación , Oro/química , Humanos
4.
Mol Ther ; 27(1): 164-177, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30391142

RESUMEN

Broadly neutralizing antibodies (bNAbs) are among the most promising strategies to achieve long-term control of HIV-1 in the absence of combination antiretroviral therapy. Passive administration of such antibodies in patients efficiently decreases HIV-1 viremia, but is limited by the serum half-life of the protein. Here, we investigated whether antibody-secreting hematopoietic cells could overcome this problem. We genetically modified human CD34+ hematopoietic stem and progenitor cells (HSPCs) to secrete bNAbs and transplanted them into immunodeficient mice. We found that the gene-modified cells engraft and stably secrete antibodies in the peripheral blood of the animals for the 9 months of the study. Antibodies were predominantly expressed by human HSPC-derived T- and B cells. Importantly, we found that secreted PGT128 was able to delay HIV-1 viremia in vivo and also prevent a decline in CD4+ cells. Gene-modified cells were maintained in bone marrow and were also detected in spleen, thymus, lymph nodes, and gut-associated lymphoid tissue. These data indicate that the bNAb secretion from HSPC-derived cells in mice is functional and can affect viral infection and CD4+ cell maintenance. This study paves the way for potential applications to other diseases requiring long-lasting protein or antibody delivery.


Asunto(s)
Anticuerpos Neutralizantes/metabolismo , Células Madre Hematopoyéticas/metabolismo , Animales , Animales Recién Nacidos , Antígenos CD34/metabolismo , Linfocitos B/metabolismo , Infecciones por VIH/inmunología , Infecciones por VIH/metabolismo , Humanos , Antígenos Comunes de Leucocito/metabolismo , Hígado/metabolismo , Tejido Linfoide/metabolismo , Ratones , ARN Viral/genética , ARN Viral/metabolismo , Linfocitos T/metabolismo , Carga Viral , Viremia/genética , Viremia/metabolismo
5.
J Gene Med ; 20(10-11): e3050, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30129972

RESUMEN

BACKGROUND: Gene therapy approaches for the treatment of Fanconi anemia (FA) hold promise for patients without a suitably matched donor for an allogeneic bone marrow transplant. However, significant limitations include the collection of sufficient stem cell numbers from patients, the fragility of these cells during ex vivo manipulation, and clinically meaningful engraftment following transplantation. With these challenges in mind, we were interested in determining (i) whether gene-corrected cells at progressively lower numbers can successfully engraft in FA; (ii) whether low-dose conditioning facilitates this engraftment; and (iii) whether these cells can be selected for post-transplant. METHODS: Utilizing a well characterized mouse model of FA, we infused donor bone marrow from healthy heterozygote littermates that are unaffected carriers of the FANCA mutation to mimic a gene-corrected product, after administering low-dose conditioning. Once baseline engraftment was observed, we administered a second, very-low selective dose to determine whether gene-corrected cells could be selected for in vivo. RESULTS: We demonstrate that upfront low-dose conditioning greatly increases successful engraftment of hematopoietic corrected cells in a pre-clinical animal model of FA. Additionally, without conditioning, cells can still engraft and demonstrate a selective advantage in vivo over time following transplantation, and these corrected cells can be directly selected for in vivo after engraftment. CONCLUSIONS: Minimal conditioning prior to bone marrow transplant in Fanconi anemia promotes the multi-lineage engraftment of 10-fold fewer cells compared to nonconditioned controls. These data provide important insights into the potential of minimally toxic conditioning protocols for FA gene therapy applications.


Asunto(s)
Trasplante de Médula Ósea/métodos , Ciclofosfamida/administración & dosificación , Proteína del Grupo de Complementación A de la Anemia de Fanconi/metabolismo , Anemia de Fanconi/terapia , Terapia Genética/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Animales , Recuento de Células , Relación Dosis-Respuesta a Droga , Anemia de Fanconi/genética , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Vectores Genéticos/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Inmunosupresores/administración & dosificación , Lentivirus/genética , Ratones Noqueados
6.
Blood ; 128(18): 2206-2217, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27554082

RESUMEN

Current protocols for hematopoietic stem/progenitor cell (HSPC) gene therapy, involving the transplantation of ex vivo genetically modified HSPCs are complex and not without risk for the patient. We developed a new approach for in vivo HSPC transduction that does not require myeloablation and transplantation. It involves subcutaneous injections of granulocyte-colony-stimulating factor/AMD3100 to mobilize HSPCs from the bone marrow (BM) into the peripheral blood stream and the IV injection of an integrating, helper-dependent adenovirus (HD-Ad5/35++) vector system. These vectors target CD46, a receptor that is uniformly expressed on HSPCs. We demonstrated in human CD46 transgenic mice and immunodeficient mice with engrafted human CD34+ cells that HSPCs transduced in the periphery home back to the BM where they stably express the transgene. In hCD46 transgenic mice, we showed that our in vivo HSPC transduction approach allows for the stable transduction of primitive HSPCs. Twenty weeks after in vivo transduction, green fluorescent protein (GFP) marking in BM HSPCs (Lin-Sca1+Kit- cells) in most of the mice was in the range of 5% to 10%. The percentage of GFP-expressing primitive HSPCs capable of forming multilineage progenitor colonies (colony-forming units [CFUs]) increased from 4% of all CFUs at week 4 to 16% at week 12, indicating transduction and expansion of long-term surviving HSPCs. Our approach was well tolerated, did not result in significant transduction of nonhematopoietic tissues, and was not associated with genotoxicty. The ability to stably genetically modify HSPCs without the need of myeloablative conditioning is relevant for a broader clinical application of gene therapy.


Asunto(s)
Terapia Genética/métodos , Movilización de Célula Madre Hematopoyética/métodos , Proteína Cofactora de Membrana/biosíntesis , Transducción Genética/métodos , Adenoviridae , Animales , Vectores Genéticos/administración & dosificación , Células Madre Hematopoyéticas , Xenoinjertos , Humanos , Inyecciones Intravenosas , Ratones , Ratones Endogámicos C57BL
7.
Haematologica ; 103(11): 1806-1814, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29976742

RESUMEN

A hallmark of Fanconi anemia is accelerated decline in hematopoietic stem and progenitor cells (CD34 +) leading to bone marrow failure. Long-term treatment requires hematopoietic cell transplantation from an unaffected donor but is associated with potentially severe side-effects. Gene therapy to correct the genetic defect in the patient's own CD34+ cells has been limited by low CD34+ cell numbers and viability. Here we demonstrate an altered ratio of CD34Hi to CD34Lo cells in Fanconi patients relative to healthy donors, with exclusive in vitro repopulating ability in only CD34Hi cells, underscoring a need for novel strategies to preserve limited CD34+ cells. To address this need, we developed a clinical protocol to deplete lineage+(CD3+, CD14+, CD16+ and CD19+) cells from blood and marrow products. This process depletes >90% of lineage+cells while retaining ≥60% of the initial CD34+cell fraction, reduces total nucleated cells by 1-2 logs, and maintains transduction efficiency and cell viability following gene transfer. Importantly, transduced lineage- cell products engrafted equivalently to that of purified CD34+ cells from the same donor when xenotransplanted at matched CD34+ cell doses. This novel selection strategy has been approved by the regulatory agencies in a gene therapy study for Fanconi anemia patients (NCI Clinical Trial Reporting Program Registry ID NCI-2011-00202; clinicaltrials.gov identifier: 01331018).


Asunto(s)
Proteína del Grupo de Complementación A de la Anemia de Fanconi , Anemia de Fanconi , Terapia Genética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas , Transducción Genética , Autoinjertos , Niño , Preescolar , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Anemia de Fanconi/patología , Anemia de Fanconi/terapia , Proteína del Grupo de Complementación A de la Anemia de Fanconi/biosíntesis , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Femenino , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Humanos , Masculino , Persona de Mediana Edad
8.
Cytotherapy ; 19(11): 1325-1338, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28751153

RESUMEN

Human immunodeficiency virus (HIV) was first reported and characterized more than three decades ago. Once thought of as a death sentence, HIV infection has become a chronically manageable disease. However, it is estimated that a staggering 0.8% of the world's population is infected with HIV, with more than 1 million deaths reported in 2015 alone. Despite the development of effective anti-retroviral drugs, a permanent cure has only been documented in one patient to date. In 2007, an HIV-positive patient received a bone marrow transplant to treat his leukemia from an individual who was homozygous for a mutation in the CCR5 gene. This mutation, known as CCR5Δ32, prevents HIV replication by inhibiting the early stage of viral entry into cells, resulting in resistance to infection from the majority of HIV isolates. More than 10 years after his last dose of anti-retroviral therapy, the transplant recipient remains free of replication-competent virus. Multiple groups are now attempting to replicate this success through the use of other CCR5-negative donor cell sources. Additionally, developments in the use of lentiviral vectors and targeted nucleases have opened the doors of precision medicine and enabled new treatment methodologies to combat HIV infection through targeted ablation or down-regulation of CCR5 expression. Here, we review historical cases of CCR5-edited cell-based therapies, current clinical trials and future benefits and challenges associated with this technology.


Asunto(s)
Trasplante de Médula Ósea/métodos , Edición Génica/métodos , Infecciones por VIH/terapia , Receptores CCR5/genética , Animales , Ensayos Clínicos como Asunto , Sangre Fetal/citología , Vectores Genéticos , VIH-1/patogenicidad , Humanos , Lentivirus/genética , Mutación , Trasplante Homólogo/métodos , Resultado del Tratamiento
9.
J Virol ; 89(16): 8428-43, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26041296

RESUMEN

UNLABELLED: Certain members of the Arenaviridae family are category A agents capable of causing severe hemorrhagic fevers in humans. Specific antiviral treatments do not exist, and the only commonly used drug, ribavirin, has limited efficacy and can cause severe side effects. The discovery and development of new antivirals are inhibited by the biohazardous nature of the viruses, making them a relatively poorly understood group of human pathogens. We therefore adapted a reverse-genetics minigenome (MG) rescue system based on Junin virus, the causative agent of Argentine hemorrhagic fever, for high-throughput screening (HTS). The MG rescue system recapitulates all stages of the virus life cycle and enables screening of small-molecule libraries under biosafety containment level 2 (BSL2) conditions. The HTS resulted in the identification of four candidate compounds with potent activity against a broad panel of arenaviruses, three of which were completely novel. The target for all 4 compounds was the stage of viral entry, which positions the compounds as potentially important leads for future development. IMPORTANCE: The arenavirus family includes several members that are highly pathogenic, causing acute viral hemorrhagic fevers with high mortality rates. No specific effective treatments exist, and although a vaccine is available for Junin virus, the causative agent of Argentine hemorrhagic fever, it is licensed for use only in areas where Argentine hemorrhagic fever is endemic. For these reasons, it is important to identify specific compounds that could be developed as antivirals against these deadly viruses.


Asunto(s)
Antivirales/farmacología , Infecciones por Arenaviridae/prevención & control , Arenavirus/fisiología , Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Internalización del Virus/efectos de los fármacos , Antivirales/aislamiento & purificación , Humanos , Virus Junin/genética , Genética Inversa/métodos
10.
Retrovirology ; 12: 67, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26248668

RESUMEN

BACKGROUND: The interferon-inducible factor BST-2/tetherin blocks the release of nascent virions from the surface of infected cells for certain enveloped virus families. The primate lentiviruses have evolved several counteracting mechanisms which, in the case of HIV-2, is a function of its Env protein. We sought to further understand the features of the Env protein and tetherin that are important for this interaction, and to evaluate the selective pressure on HIV-2 to maintain such an activity. RESULTS: By examining Env mutants with changes in the ectodomain of the protein (virus ROD14) or the cytoplasmic tail (substitution Y707A) that render the proteins unable to counteract tetherin, we determined that an interaction between Env and tetherin is important for this activity. Furthermore, this Env-tetherin interaction required an alanine face in the tetherin ectodomain, although insertion of this domain into an artificial tetherin-like protein was not sufficient to confer sensitivity to the HIV-2 Env. The replication of virus carrying the ROD14 substitutions was significantly slower than the matched wild-type virus, but it acquired second-site mutations during passaging in the cytoplasmic tail of Env which restored the ability of the protein to both bind to and counteract tetherin. CONCLUSIONS: These results shed light on the interaction between HIV-2 and tetherin, suggesting a physical interaction that maps to the ectodomains of both proteins and indicating a strong selection pressure to maintain an anti-tetherin activity in the HIV-2 Env.


Asunto(s)
Antígenos CD/química , Antígenos CD/metabolismo , VIH-2/genética , VIH-2/metabolismo , Interacciones Huésped-Patógeno/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Secuencias de Aminoácidos , Proteínas Ligadas a GPI/antagonistas & inhibidores , Proteínas Ligadas a GPI/química , Proteínas Ligadas a GPI/metabolismo , Células HEK293 , VIH-2/inmunología , Humanos , Mutación , Dominios y Motivos de Interacción de Proteínas , Proteínas Reguladoras y Accesorias Virales/metabolismo , Virión , Replicación Viral , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
12.
J Virol ; 86(10): 5467-80, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22398279

RESUMEN

BST-2/tetherin is an interferon-inducible host restriction factor that blocks the release of newly formed enveloped viruses. It is enriched in lipid raft membrane microdomains, which are also the sites of assembly of several enveloped viruses. Viral anti-tetherin factors, such as the HIV-1 Vpu protein, typically act by removing tetherin from the cell surface. In contrast, the Ebola virus glycoprotein (GP) is unusual in that it blocks tetherin restriction without apparently altering its cell surface localization. We explored the possibility that GP acts to exclude tetherin from the specific sites of virus assembly without overtly removing it from the cell surface and that lipid raft exclusion is the mechanism involved. However, we found that neither GP nor Vpu had any effect on tetherin's distribution within lipid raft domains. Furthermore, GP did not prevent the colocalization of tetherin and budding viral particles. Contrary to previous reports, we also found no evidence that GP is itself a raft protein. Together, our data indicate that the exclusion of tetherin from lipid rafts is not the mechanism used by either HIV-1 Vpu or Ebola virus GP to counteract tetherin restriction.


Asunto(s)
Antígenos CD/metabolismo , Ebolavirus/metabolismo , Infecciones por VIH/metabolismo , VIH-1/metabolismo , Fiebre Hemorrágica Ebola/metabolismo , Proteínas del Virus de la Inmunodeficiencia Humana/metabolismo , Microdominios de Membrana/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Antígenos CD/genética , Línea Celular , Ebolavirus/genética , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Infecciones por VIH/virología , VIH-1/genética , Fiebre Hemorrágica Ebola/virología , Proteínas del Virus de la Inmunodeficiencia Humana/genética , Humanos , Membrana Dobles de Lípidos/metabolismo , Microdominios de Membrana/virología , Unión Proteica , Transporte de Proteínas , Proteínas del Envoltorio Viral/genética , Proteínas Reguladoras y Accesorias Virales/genética
13.
Retrovirology ; 8: 78, 2011 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-21955466

RESUMEN

BACKGROUND: HIV-1 viruses are categorized into four distinct groups: M, N, O and P. Despite the same genomic organization, only the group M viruses are responsible for the world-wide pandemic of AIDS, suggesting better adaptation to human hosts. Previously, it has been reported that the group M Vpu protein is capable of both down-modulating CD4 and counteracting BST-2/tetherin restriction, while the group O Vpu cannot antagonize tetherin. This led us to investigate if group O, and the related group P viruses, possess functional anti-tetherin activities in Vpu or another viral protein, and to further map the residues required for group M Vpu to counteract human tetherin. RESULTS: We found a lack of activity against human tetherin for both the Vpu and Nef proteins from group O and P viruses. Furthermore, we found no evidence of anti-human tetherin activity in a fully infectious group O proviral clone, ruling out the possibility of an alternative anti-tetherin factor in this virus. Interestingly, an activity against primate tetherins was retained in the Nef proteins from both a group O and a group P virus. By making chimeras between a functional group M and non-functional group O Vpu protein, we were able to map the first 18 amino acids of group M Vpu as playing an essential role in the ability of the protein to antagonize human tetherin. We further demonstrated the importance of residue alanine-18 for the group M Vpu activity. This residue lies on a diagonal face of conserved alanines in the TM domain of the protein, and is necessary for specific Vpu-tetherin interactions. CONCLUSIONS: The absence of human specific anti-tetherin activities in HIV-1 group O and P suggests a failure of these viruses to adapt to human hosts, which may have limited their spread.


Asunto(s)
Antígenos CD/metabolismo , Infecciones por VIH/metabolismo , VIH-1/clasificación , VIH-1/metabolismo , Proteínas del Virus de la Inmunodeficiencia Humana/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Antígenos CD/genética , Línea Celular , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Infecciones por VIH/genética , Infecciones por VIH/virología , VIH-1/química , VIH-1/genética , Proteínas del Virus de la Inmunodeficiencia Humana/química , Proteínas del Virus de la Inmunodeficiencia Humana/genética , Humanos , Unión Proteica , Transporte de Proteínas , Proteínas Reguladoras y Accesorias Virales/química , Proteínas Reguladoras y Accesorias Virales/genética
14.
J Virol ; 84(14): 7243-55, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20444895

RESUMEN

BST-2/tetherin is an interferon-inducible protein that restricts the release of enveloped viruses from the surface of infected cells by physically linking viral and cellular membranes. It is present at both the cell surface and in a perinuclear region, and viral anti-tetherin factors including HIV-1 Vpu and HIV-2 Env have been shown to decrease the cell surface population. To map the domains of human tetherin necessary for both virus restriction and sensitivity to viral anti-tetherin factors, we constructed a series of tetherin derivatives and assayed their activity. We found that the cytoplasmic tail (CT) and transmembrane (TM) domains of tetherin alone produced its characteristic cellular distribution, while the ectodomain of the protein, which includes a glycosylphosphatidylinositol (GPI) anchor, was sufficient to restrict virus release when presented by the CT/TM regions of a different type II membrane protein. To counteract tetherin restriction and remove it from the cell surface, HIV-1 Vpu required the specific sequence present in the TM domain of human tetherin. In contrast, the HIV-2 Env required only the ectodomain of the protein and was sensitive to a point mutation in this region. Strikingly, the anti-tetherin factor, Ebola virus GP, was able to overcome restriction conferred by both tetherin and a series of functional tetherin derivatives, including a wholly artificial tetherin molecule. Moreover, GP overcame restriction without significantly removing tetherin from the cell surface. These findings suggest that Ebola virus GP uses a novel mechanism to circumvent tetherin restriction.


Asunto(s)
Antígenos CD/metabolismo , Ebolavirus/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Secuencia de Aminoácidos , Animales , Antígenos CD/química , Antígenos CD/genética , Secuencia de Bases , Membrana Celular/metabolismo , Ebolavirus/genética , Proteínas Ligadas a GPI , Células HeLa , Proteínas del Virus de la Inmunodeficiencia Humana/genética , Proteínas del Virus de la Inmunodeficiencia Humana/metabolismo , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Proteínas del Envoltorio Viral/genética , Proteínas Reguladoras y Accesorias Virales/genética , Proteínas Reguladoras y Accesorias Virales/metabolismo , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo
15.
Retrovirology ; 7: 13, 2010 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-20167081

RESUMEN

BACKGROUND: The anti-viral activity of the cellular restriction factor, BST-2/tetherin, was first observed as an ability to block the release of Vpu-minus HIV-1 from the surface of infected cells. However, tetherin restriction is also counteracted by primate lentiviruses that do not express a Vpu protein, where anti-tetherin functions are provided by either the Env protein (HIV-2, SIVtan) or the Nef protein (SIVsm/mac and SIVagm). Within the primate lentiviruses, Vpu is also present in the genomes of SIVcpz and certain SIVsyk viruses. We asked whether, in these viruses, anti-tetherin activity was always a property of Vpu, or if it had selectively evolved in HIV-1 to perform this function. RESULTS: We found that despite the close relatedness of HIV-1 and SIVcpz, the chimpanzee viruses use Nef instead of Vpu to counteract tetherin. Furthermore, SIVcpz Nef proteins had activity against chimpanzee but not human tetherin. This specificity mapped to a short sequence that is present in the cytoplasmic tail of primate but not human tetherins, and this also accounts for the specificity of SIVsm/mac Nef for primate but not human tetherins. In contrast, Vpu proteins from four diverse members of the SIVsyk lineage all displayed an anti-tetherin activity that was active against macaque tetherin. Interestingly, Vpu from a SIVgsn isolate was also found to have activity against human tetherin. CONCLUSIONS: Primate lentiviruses show a high degree of flexibility in their use of anti-tetherin factors, indicating a strong selective pressure to counteract tetherin restriction. The identification of an activity against human tetherin in SIVgsn Vpu suggests that the presence of Vpu in the ancestral SIVmus/mon/gsn virus believed to have contributed the 3' half of the HIV-1 genome may have played a role in the evolution of viruses that could counteract human tetherin and infect humans.


Asunto(s)
Antígenos CD/metabolismo , Proteínas del Virus de la Inmunodeficiencia Humana/fisiología , Lentivirus de los Primates/fisiología , Proteínas Reguladoras y Accesorias Virales/fisiología , Liberación del Virus , Replicación Viral , Animales , Proteínas Ligadas a GPI , Humanos , Lentivirus de los Primates/patogenicidad , Glicoproteínas de Membrana/antagonistas & inhibidores , Pan troglodytes
16.
Mol Ther Methods Clin Dev ; 17: 796-809, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32355868

RESUMEN

In vivo tracking of retrovirus-tagged blood stem and progenitor cells is used to study hematopoiesis. Two techniques are used most frequently: sequencing the locus of retrovirus insertion, termed integration site analysis, or retrovirus DNA barcode sequencing. Of these, integration site analysis is currently the only available technique for monitoring clonal pools in patients treated with retrovirus-modified blood cells. A key question is how these two techniques compare in their ability to detect and quantify clonal contributions. In this study, we assessed both methods simultaneously in a clinically relevant nonhuman primate model of autologous, myeloablative transplantation. Our data demonstrate that both methods track abundant clones; however, DNA barcode sequencing is at least 5-fold more efficient than integration site analysis. Using computational simulation to identify the sources of low efficiency, we identify sampling depth as the major factor. We show that the sampling required for integration site analysis to achieve minimal coverage of the true clonal pool is likely prohibitive, especially in cases of low gene-modified cell engraftment. We also show that early subsampling of different blood cell lineages adds value to clone tracking information in terms of safety and hematopoietic biology. Our analysis demonstrates DNA barcode sequencing as a useful guide to maximize integration site analysis interpretation in gene therapy patients.

17.
Mol Ther Methods Clin Dev ; 17: 455-464, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32226796

RESUMEN

Conditioning chemotherapy is used to deplete hematopoietic stem cells in the recipient's marrow, facilitating donor cell engraftment. Although effective, a major issue with chemotherapy is the systemic genotoxicity that increases the risk for secondary malignancies. Antibody conjugates targeting hematopoietic cells are an emerging non-genotoxic method of opening the marrow niche and promoting engraftment of transplanted cells while maintaining intact marrow cellularity. Specifically, this platform would be useful in diseases associated with DNA damage or cancer predisposition, such as dyskeratosis congenita, Schwachman-Diamond syndrome, and Fanconi anemia (FA). Our approach utilizes antibody-drug conjugates (ADC) as an alternative conditioning regimen in an FA mouse model of autologous transplantation. Antibodies targeting either CD45 or CD117 were conjugated to saporin (SAP), a ribosomal toxin. FANCA knockout mice were conditioned with either CD45-SAP or CD117-SAP prior to receiving whole marrow from a heterozygous healthy donor. Bone marrow and peripheral blood analysis revealed equivalent levels of donor engraftment, with minimal toxicity in ADC-treated groups as compared with cyclophosphamide-treated controls. Our findings suggest ADCs may be an effective conditioning strategy in stem cell transplantation not only for diseases where traditional chemotherapy is not tolerated, but also more broadly for the field of blood and marrow transplantation.

18.
J Vis Exp ; (144)2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30829324

RESUMEN

Hematopoietic stem and progenitor cell (HSPC) transplantation has been a cornerstone therapy for leukemia and other cancers for nearly half a century, underlies the only known cure of human immunodeficiency virus (HIV-1) infection, and shows immense promise in the treatment of genetic diseases such as beta thalassemia. Our group has developed a protocol to model HSPC gene therapy in nonhuman primates (NHPs), allowing scientists to optimize many of the same reagents and techniques that are applied in the clinic. Here, we describe methods for purifying CD34+ HSPCs and long-term persisting hematopoietic stem cell (HSC) subsets from primed bone marrow (BM). Identical techniques can be employed for the purification of other HSPC sources (e.g., mobilized peripheral blood stem cells [PBSCs]). Outlined is a 2 day protocol in which cells are purified, cultured, modified with lentivirus (LV), and prepared for infusion back into the autologous host. Key readouts of success include the purity of the CD34+ HSPC population, the ability of purified HSPCs to form morphologically distinct colonies in semisolid media, and, most importantly, gene modification efficiency. The key advantage to HSPC gene therapy is the ability to provide a source of long-lived cells that give rise to all hematopoietic cell types. As such, these methods have been used to model therapies for cancer, genetic diseases, and infectious diseases. In each case, therapeutic efficacy is established by enhancing the function of distinct HSPC progeny, including red blood cells, T cells, B cells, and/or myeloid subsets. The methods to isolate, modify, and prepare HSPC products are directly applicable and translatable to multiple diseases in human patients.


Asunto(s)
Terapia Genética/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Acondicionamiento Pretrasplante/métodos , Animales , Primates
19.
JCI Insight ; 3(13)2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29997284

RESUMEN

The genomic integration of HIV into cells results in long-term persistence of virally infected cell populations. This integration event acts as a heritable mark that can be tracked to monitor infected cells that persist over time. Previous reports have documented clonal expansion in people and have linked them to proto-oncogenes; however, their significance or contribution to the latent reservoir has remained unclear. Here, we demonstrate that a directed pattern of clonal expansion occurs in vivo, specifically in gene pathways important for viral replication and persistence. These biological processes include cellular division, transcriptional regulation, RNA processing, and posttranslational modification pathways. This indicates preferential expansion when integration events occur within genes or biological pathways beneficial for HIV replication and persistence. Additionally, these expansions occur quickly during unsuppressed viral replication in vivo, reinforcing the importance of early intervention for individuals to limit reservoir seeding of clonally expanded HIV-infected cells.


Asunto(s)
Genes Virales/genética , Infecciones por VIH/genética , VIH-1/genética , Integración Viral/genética , Replicación Viral/genética , Vacunas contra el SIDA , Animales , Linfocitos T CD4-Positivos , División Celular , Cromosomas Humanos/genética , Regulación Viral de la Expresión Génica , Genoma Viral , Infecciones por VIH/inmunología , VIH-1/patogenicidad , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/fisiología , Humanos , Masculino , Ratones Endogámicos NOD , Integración Viral/fisiología
20.
Mol Ther Methods Clin Dev ; 8: 52-64, 2018 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-29255741

RESUMEN

We recently reported on an in vivo hematopoietic stem cell (HSC) gene therapy approach. It involves the subcutaneous injections of G-CSF/AMD3100 to mobilize HSCs from the bone marrow into the peripheral blood stream and the intravenous injection of an integrating helper-dependent adenovirus vector system. HSCs transduced in the periphery homed back to the bone marrow, where they persisted long-term. However, high transgene marking rates found in primitive bone marrow HSCs were not reflected in peripheral blood cells. Here, we tested small-molecule drugs to achieve selective mobilization and transduction of HSCs. We found more efficient GFP marking in bone marrow HSCs but no increased marking in the peripheral blood cells. We then used an in vivo HSC chemo-selection based on a mutant of the O6-methylguanine-DNA methyltransferase (mgmtP140K) gene that confers resistance to O6-BG/BCNU and should give stably transduced HSCs a proliferation stimulus and allow for the selective survival and expansion of progeny cells. Short-term exposure of G-CSF/AMD3100-mobilized, in vivo-transduced mice to relatively low selection drug doses resulted in stable GFP expression in up to 80% of peripheral blood cells. Overall, the further improvement of our in vivo HSC transduction approach creates the basis for a simpler HSC gene therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA