Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Intervalo de año de publicación
1.
PLoS Comput Biol ; 19(3): e1010885, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36972311

RESUMEN

Surface antigens of pathogens are commonly targeted by vaccine-elicited antibodies but antigenic variability, notably in RNA viruses such as influenza, HIV and SARS-CoV-2, pose challenges for control by vaccination. For example, influenza A(H3N2) entered the human population in 1968 causing a pandemic and has since been monitored, along with other seasonal influenza viruses, for the emergence of antigenic drift variants through intensive global surveillance and laboratory characterisation. Statistical models of the relationship between genetic differences among viruses and their antigenic similarity provide useful information to inform vaccine development, though accurate identification of causative mutations is complicated by highly correlated genetic signals that arise due to the evolutionary process. Here, using a sparse hierarchical Bayesian analogue of an experimentally validated model for integrating genetic and antigenic data, we identify the genetic changes in influenza A(H3N2) virus that underpin antigenic drift. We show that incorporating protein structural data into variable selection helps resolve ambiguities arising due to correlated signals, with the proportion of variables representing haemagglutinin positions decisively included, or excluded, increased from 59.8% to 72.4%. The accuracy of variable selection judged by proximity to experimentally determined antigenic sites was improved simultaneously. Structure-guided variable selection thus improves confidence in the identification of genetic explanations of antigenic variation and we also show that prioritising the identification of causative mutations is not detrimental to the predictive capability of the analysis. Indeed, incorporating structural information into variable selection resulted in a model that could more accurately predict antigenic assay titres for phenotypically-uncharacterised virus from genetic sequence. Combined, these analyses have the potential to inform choices of reference viruses, the targeting of laboratory assays, and predictions of the evolutionary success of different genotypes, and can therefore be used to inform vaccine selection processes.


Asunto(s)
COVID-19 , Virus de la Influenza A , Gripe Humana , Humanos , Gripe Humana/prevención & control , Subtipo H3N2 del Virus de la Influenza A/genética , Teorema de Bayes , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , SARS-CoV-2 , Antígenos Virales/genética , Genotipo , Fenotipo , Anticuerpos Antivirales/genética
2.
PLoS Pathog ; 12(4): e1005526, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27057693

RESUMEN

Determining phenotype from genetic data is a fundamental challenge. Identification of emerging antigenic variants among circulating influenza viruses is critical to the vaccine virus selection process, with vaccine effectiveness maximized when constituents are antigenically similar to circulating viruses. Hemagglutination inhibition (HI) assay data are commonly used to assess influenza antigenicity. Here, sequence and 3-D structural information of hemagglutinin (HA) glycoproteins were analyzed together with corresponding HI assay data for former seasonal influenza A(H1N1) virus isolates (1997-2009) and reference viruses. The models developed identify and quantify the impact of eighteen amino acid substitutions on the antigenicity of HA, two of which were responsible for major transitions in antigenic phenotype. We used reverse genetics to demonstrate the causal effect on antigenicity for a subset of these substitutions. Information on the impact of substitutions allowed us to predict antigenic phenotypes of emerging viruses directly from HA gene sequence data and accuracy was doubled by including all substitutions causing antigenic changes over a model incorporating only the substitutions with the largest impact. The ability to quantify the phenotypic impact of specific amino acid substitutions should help refine emerging techniques that predict the evolution of virus populations from one year to the next, leading to stronger theoretical foundations for selection of candidate vaccine viruses. These techniques have great potential to be extended to other antigenically variable pathogens.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Gripe Humana/virología , Infecciones por Orthomyxoviridae/inmunología , Filogenia , Sustitución de Aminoácidos , Animales , Variación Antigénica/genética , Variación Antigénica/inmunología , Antígenos Virales/genética , Antígenos Virales/inmunología , Humanos , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/inmunología , Ratones
3.
Proc Natl Acad Sci U S A ; 109(52): 21474-9, 2012 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-23236176

RESUMEN

The hemagglutinin (HA) of influenza A(H3N2) virus responsible for the 1968 influenza pandemic derived from an avian virus. On introduction into humans, its receptor binding properties had changed from a preference for avian receptors (α2,3-linked sialic acid) to a preference for human receptors (α2,6-linked sialic acid). By 2001, the avidity of human H3 viruses for avian receptors had declined, and since then the affinity for human receptors has also decreased significantly. These changes in receptor binding, which correlate with increased difficulties in virus propagation in vitro and in antigenic analysis, have been assessed by virus hemagglutination of erythrocytes from different species and quantified by measuring virus binding to receptor analogs using surface biolayer interferometry. Crystal structures of HA-receptor analog complexes formed with HAs from viruses isolated in 2004 and 2005 reveal significant differences in the conformation of the 220-loop of HA1, relative to the 1968 structure, resulting in altered interactions between the HA and the receptor analog that explain the changes in receptor affinity. Site-specific mutagenesis shows the HA1 Asp-225→Asn substitution to be the key determinant of the decreased receptor binding in viruses circulating since 2005. Our results indicate that the evolution of human influenza A(H3N2) viruses since 1968 has produced a virus with a low propensity to bind human receptor analogs, and this loss of avidity correlates with the marked reduction in A(H3N2) virus disease impact in the last 10 y.


Asunto(s)
Evolución Molecular , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Receptores Virales/metabolismo , Animales , Sitios de Unión , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Humanos , Interferometría , Células de Riñón Canino Madin Darby , Modelos Moleculares , Ácido N-Acetilneuramínico/metabolismo , Unión Proteica , Multimerización de Proteína , Electricidad Estática
4.
PLoS Pathog ; 8(9): e1002914, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23028314

RESUMEN

Two classes of antiviral drugs, neuraminidase inhibitors and adamantanes, are approved for prophylaxis and therapy against influenza virus infections. A major concern is that antiviral resistant viruses emerge and spread in the human population. The 2009 pandemic H1N1 virus is already resistant to adamantanes. Recently, a novel neuraminidase inhibitor resistance mutation I223R was identified in the neuraminidase of this subtype. To understand the resistance mechanism of this mutation, the enzymatic properties of the I223R mutant, together with the most frequently observed resistance mutation, H275Y, and the double mutant I223R/H275Y were compared. Relative to wild type, K(M) values for MUNANA increased only 2-fold for the single I223R mutant and up to 8-fold for the double mutant. Oseltamivir inhibition constants (K(I)) increased 48-fold in the single I223R mutant and 7500-fold in the double mutant. In both cases the change was largely accounted for by an increased dissociation rate constant for oseltamivir, but the inhibition constants for zanamivir were less increased. We have used X-ray crystallography to better understand the effect of mutation I223R on drug binding. We find that there is shrinkage of a hydrophobic pocket in the active site as a result of the I223R change. Furthermore, R223 interacts with S247 which changes the rotamer it adopts and, consequently, binding of the pentoxyl substituent of oseltamivir is not as favorable as in the wild type. However, the polar glycerol substituent present in zanamivir, which mimics the natural substrate, is accommodated in the I223R mutant structure in a similar way to wild type, thus explaining the kinetic data. Our structural data also show that, in contrast to a recently reported structure, the active site of 2009 pandemic neuraminidase can adopt an open conformation.


Asunto(s)
Antivirales/farmacología , Farmacorresistencia Viral/genética , Inhibidores Enzimáticos/farmacología , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/enzimología , Gripe Humana/virología , Neuraminidasa/química , Adamantano/farmacología , Sustitución de Aminoácidos , Sitios de Unión/genética , Cristalografía por Rayos X , Inhibidores Enzimáticos/uso terapéutico , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Subtipo H1N1 del Virus de la Influenza A/genética , Gripe Humana/tratamiento farmacológico , Mutación , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/genética , Oseltamivir/farmacología , Oseltamivir/uso terapéutico , Pandemias , Conformación Proteica , Zanamivir/farmacología , Zanamivir/uso terapéutico
5.
Nature ; 453(7199): 1258-61, 2008 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-18480754

RESUMEN

The potential impact of pandemic influenza makes effective measures to limit the spread and morbidity of virus infection a public health priority. Antiviral drugs are seen as essential requirements for control of initial influenza outbreaks caused by a new virus, and in pre-pandemic plans there is a heavy reliance on drug stockpiles. The principal target for these drugs is a virus surface glycoprotein, neuraminidase, which facilitates the release of nascent virus and thus the spread of infection. Oseltamivir (Tamiflu) and zanamivir (Relenza) are two currently used neuraminidase inhibitors that were developed using knowledge of the enzyme structure. It has been proposed that the closer such inhibitors resemble the natural substrate, the less likely they are to select drug-resistant mutant viruses that retain viability. However, there have been reports of drug-resistant mutant selection in vitro and from infected humans. We report here the enzymatic properties and crystal structures of neuraminidase mutants from H5N1-infected patients that explain the molecular basis of resistance. Our results show that these mutants are resistant to oseltamivir but still strongly inhibited by zanamivir owing to an altered hydrophobic pocket in the active site of the enzyme required for oseltamivir binding. Together with recent reports of the viability and pathogenesis of H5N1 (ref. 7) and H1N1 (ref. 8) viruses with neuraminidases carrying these mutations, our results indicate that it would be prudent for pandemic stockpiles of oseltamivir to be augmented by additional antiviral drugs, including zanamivir.


Asunto(s)
Farmacorresistencia Viral , Subtipo H5N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H5N1 del Virus de la Influenza A/enzimología , Mutación/genética , Neuraminidasa/química , Neuraminidasa/genética , Oseltamivir/farmacología , Sitios de Unión , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/enzimología , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/genética , Gripe Humana/virología , Cinética , Modelos Moleculares , Conformación Molecular , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/metabolismo , Oseltamivir/química , Oseltamivir/metabolismo , Unión Proteica , Zanamivir/farmacología
6.
Mol Biol Evol ; 28(6): 1755-67, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21109586

RESUMEN

Four influenza pandemics have struck the human population during the last 100 years causing substantial morbidity and mortality. The pandemics were caused by the introduction of a new virus into the human population from an avian or swine host or through the mixing of virus segments from an animal host with a human virus to create a new reassortant subtype virus. Understanding which changes have contributed to the adaptation of the virus to the human host is essential in assessing the pandemic potential of current and future animal viruses. Here, we develop a measure of the level of adaptation of a given virus strain to a particular host. We show that adaptation to the human host has been gradual with a timescale of decades and that none of the virus proteins have yet achieved full adaptation to the selective constraints. When the measure is applied to historical data, our results indicate that the 1918 influenza virus had undergone a period of preadaptation prior to the 1918 pandemic. Yet, ancestral reconstruction of the avian virus that founded the classical swine and 1918 human influenza lineages shows no evidence that this virus was exceptionally preadapted to humans. These results indicate that adaptation to humans occurred following the initial host shift from birds to mammals, including a significant amount prior to 1918. The 2009 pandemic virus seems to have undergone preadaptation to human-like selective constraints during its period of circulation in swine. Ancestral reconstruction along the human virus tree indicates that mutations that have increased the adaptation of the virus have occurred preferentially along the trunk of the tree. The method should be helpful in assessing the potential of current viruses to found future epidemics or pandemics.


Asunto(s)
Adaptación Biológica , Interacciones Huésped-Patógeno , Infecciones por Orthomyxoviridae/inmunología , Orthomyxoviridae/inmunología , Algoritmos , Animales , Aves , Bases de Datos Genéticas , Perros , Aptitud Genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Modelos Biológicos , Infecciones por Orthomyxoviridae/epidemiología , Pandemias , Filogenia , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/genética
7.
Nature ; 443(7107): 45-9, 2006 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-16915235

RESUMEN

The worldwide spread of H5N1 avian influenza has raised concerns that this virus might acquire the ability to pass readily among humans and cause a pandemic. Two anti-influenza drugs currently being used to treat infected patients are oseltamivir (Tamiflu) and zanamivir (Relenza), both of which target the neuraminidase enzyme of the virus. Reports of the emergence of drug resistance make the development of new anti-influenza molecules a priority. Neuraminidases from influenza type A viruses form two genetically distinct groups: group-1 contains the N1 neuraminidase of the H5N1 avian virus and group-2 contains the N2 and N9 enzymes used for the structure-based design of current drugs. Here we show by X-ray crystallography that these two groups are structurally distinct. Group-1 neuraminidases contain a cavity adjacent to their active sites that closes on ligand binding. Our analysis suggests that it may be possible to exploit the size and location of the group-1 cavity to develop new anti-influenza drugs.


Asunto(s)
Antivirales/química , Diseño de Fármacos , Subtipo H5N1 del Virus de la Influenza A/enzimología , Gripe Aviar/tratamiento farmacológico , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/química , Acetamidas/metabolismo , Acetamidas/farmacología , Animales , Antivirales/metabolismo , Antivirales/farmacología , Sitios de Unión , Aves/virología , Farmacorresistencia Viral/genética , Humanos , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H5N1 del Virus de la Influenza A/genética , Gripe Aviar/virología , Modelos Moleculares , Mutación/genética , Neuraminidasa/clasificación , Neuraminidasa/genética , Oseltamivir , Conformación Proteica
8.
Antiviral Res ; 197: 105227, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34933044

RESUMEN

The International Society for Influenza and other Respiratory Virus Diseases (isirv) and the WHO held a joint virtual conference from 19th-21st October 2021. While there was a major focus on the global response to the SARS-CoV-2 pandemic, including antivirals, vaccines and surveillance strategies, papers were also presented on treatment and prevention of influenza and respiratory syncytial virus (RSV). Potential therapeutics for SARS-CoV-2 included host-targeted therapies baricitinib, a JAK inhibitor, tocilizumab, an IL-6R inhibitor, verdinexor and direct acting antivirals ensovibep, S-217622, AT-527, and monoclonal antibodies casirivimab and imdevimab, directed against the spike protein. Data from trials of nirsevimab, a monoclonal antibody with a prolonged half-life which binds to the RSV F-protein, and an Ad26.RSV pre-F vaccine were also presented. The expanded role of the WHO Global Influenza Surveillance and Response System to address the SARS-CoV-2 pandemic was also discussed. This report summarizes the oral presentations given at this meeting for the benefit of the broader medical and scientific community involved in surveillance, treatment and prevention of respiratory virus diseases.


Asunto(s)
COVID-19/terapia , Gripe Humana/terapia , Infecciones por Virus Sincitial Respiratorio/terapia , COVID-19/prevención & control , Salud Global , Humanos , Gripe Humana/prevención & control , Infecciones por Virus Sincitial Respiratorio/prevención & control , Organización Mundial de la Salud
9.
Antiviral Res ; 194: 105158, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34363859

RESUMEN

It is more than 20 years since the neuraminidase inhibitors, oseltamivir and zanamivir were approved for the treatment and prevention of influenza. Guidelines for global surveillance and methods for evaluating resistance were established initially by the Neuraminidase Inhibitor Susceptibility Network (NISN), which merged 10 years ago with the International Society for influenza and other Respiratory Virus Diseases (isirv) to become the isirv-Antiviral Group (isirv-AVG). With the ongoing development of new influenza polymerase inhibitors and recent approval of baloxavir marboxil, the isirv-AVG held a closed meeting in August 2019 to discuss the impact of resistance to these inhibitors. Following this meeting and review of the current literature, this article is intended to summarize current knowledge regarding the clinical impact of resistance to polymerase inhibitors and approaches for surveillance and methods for laboratory evaluation of resistance, both in vitro and in animal models. We highlight limitations and gaps in current knowledge and suggest some strategies for addressing these gaps, including the need for additional clinical studies of influenza antiviral drug combinations. Lessons learned from influenza resistance monitoring may also be helpful for establishing future drug susceptibility surveillance and testing for SARS-CoV-2.


Asunto(s)
Antivirales/uso terapéutico , Gripe Humana/tratamiento farmacológico , Animales , Antivirales/efectos adversos , Antivirales/farmacología , Dibenzotiepinas/farmacología , Farmacorresistencia Viral , Inhibidores Enzimáticos/farmacología , Humanos , Gripe Humana/virología , Conocimiento , Morfolinas/farmacología , Neuraminidasa/uso terapéutico , Oseltamivir/farmacología , Piridonas/farmacología , SARS-CoV-2/efectos de los fármacos , Triazinas/farmacología , Replicación Viral/efectos de los fármacos , Zanamivir/farmacología
10.
PLoS Pathog ; 4(5): e1000058, 2008 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-18451985

RESUMEN

The rapid evolution of influenza viruses presents difficulties in maintaining the optimal efficiency of vaccines. Amino acid substitutions result in antigenic drift, a process whereby antisera raised in response to one virus have reduced effectiveness against future viruses. Interestingly, while amino acid substitutions occur at a relatively constant rate, the antigenic properties of H3 move in a discontinuous, step-wise manner. It is not clear why this punctuated evolution occurs, whether this represents simply the fact that some substitutions affect these properties more than others, or if this is indicative of a changing relationship between the virus and the host. In addition, the role of changing glycosylation of the haemagglutinin in these shifts in antigenic properties is unknown. We analysed the antigenic drift of HA1 from human influenza H3 using a model of sequence change that allows for variation in selective pressure at different locations in the sequence, as well as at different parts of the phylogenetic tree. We detect significant changes in selective pressure that occur preferentially during major changes in antigenic properties. Despite the large increase in glycosylation during the past 40 years, changes in glycosylation did not correlate either with changes in antigenic properties or with significantly more rapid changes in selective pressure. The locations that undergo changes in selective pressure are largely in places undergoing adaptive evolution, in antigenic locations, and in locations or near locations undergoing substitutions that characterise the change in antigenicity of the virus. Our results suggest that the relationship of the virus to the host changes with time, with the shifts in antigenic properties representing changes in this relationship. This suggests that the virus and host immune system are evolving different methods to counter each other. While we are able to characterise the rapid increase in glycosylation of the haemagglutinin during time in human influenza H3, an increase not present in influenza in birds, this increase seems unrelated to the observed changes in antigenic properties.


Asunto(s)
Variación Antigénica/genética , Evolución Molecular , Flujo Genético , Virus de la Influenza A/genética , Gripe Humana/virología , Selección Genética , Animales , Variación Antigénica/inmunología , Antígenos Virales/inmunología , Células COS , Fusión Celular , Chlorocebus aethiops , ADN Viral/genética , Células HeLa , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Virus de la Influenza A/inmunología , Virus de la Influenza A/patogenicidad , Gripe Humana/genética , Gripe Humana/inmunología , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/virología , Macrófagos/inmunología , Macrófagos/virología
11.
PLoS Comput Biol ; 5(11): e1000564, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19911053

RESUMEN

The natural reservoir of Influenza A is waterfowl. Normally, waterfowl viruses are not adapted to infect and spread in the human population. Sometimes, through reassortment or through whole host shift events, genetic material from waterfowl viruses is introduced into the human population causing worldwide pandemics. Identifying which mutations allow viruses from avian origin to spread successfully in the human population is of great importance in predicting and controlling influenza pandemics. Here we describe a novel approach to identify such mutations. We use a sitewise non-homogeneous phylogenetic model that explicitly takes into account differences in the equilibrium frequencies of amino acids in different hosts and locations. We identify 172 amino acid sites with strong support and 518 sites with moderate support of different selection constraints in human and avian viruses. The sites that we identify provide an invaluable resource to experimental virologists studying adaptation of avian flu viruses to the human host. Identification of the sequence changes necessary for host shifts would help us predict the pandemic potential of various strains. The method is of broad applicability to investigating changes in selective constraints when the timing of the changes is known.


Asunto(s)
Biología Computacional/métodos , Interacciones Huésped-Patógeno/genética , Virus de la Influenza A , Modelos Genéticos , Selección Genética , Animales , Anseriformes , Flujo Genético , Humanos , Virus de la Influenza A/genética , Virus de la Influenza A/patogenicidad , Filogenia , Análisis de Secuencia de Proteína
12.
Zhonghua Yi Xue Za Zhi ; 90(27): 1924-8, 2010 Jul 20.
Artículo en Zh | MEDLINE | ID: mdl-20979914

RESUMEN

OBJECTIVE: To study the impact of avian influenza virus H5N1 neuraminidase mutations I117V, I314V and I117V + I314V on the sensibility of neuraminidase inhibitors (NAIs) and the activity of neuraminidase (NA). METHODS: The mutations were introduced into NA genes of virus strain A/Vietnam/1203/04 (H5N1) by site-directed mutagenesis. With the A/WSN/33 (H1N1) background, recombinant influenza viruses containing NA mutations were rescued by reverse genetics. After viral propagation in chicken embryos, fluorimetric assays were conducted to assess the sensibility to NAIs and NA activity (IC(50), Km & Ki). RESULTS: Compared to the wild-type virus VN1203, the mutation I117V decreased the susceptibility to oseltamivir (17-fold increment of IC(50) value, 20-fold increment of Ki value) and the NA activity (23-fold increment of Km value) while there was little impact on zanamivir sensitivity (2-fold increment of IC(50) value, 3-fold increment of Ki value). The mutation I314V had no marked influence on either the NA activity or the NAIs susceptibility. CONCLUSION: It appears that the NA mutations of I117V and I314V can not cause NAIs resistance. Oseltamivir or zanamivir may still be prescribed for anti-viral treatment.


Asunto(s)
Antivirales/farmacología , Inhibidores Enzimáticos/farmacología , Subtipo H5N1 del Virus de la Influenza A/efectos de los fármacos , Neuraminidasa/genética , Animales , Células Cultivadas , Embrión de Pollo/virología , Perros , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/genética , Mutagénesis Sitio-Dirigida , Mutación , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/metabolismo , Oseltamivir/farmacología , Zanamivir/farmacología
13.
J Mol Evol ; 69(4): 333-45, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19787384

RESUMEN

Nonhomogeneous Markov models of nucleotide substitution have received scant attention. Here we explore the possibility of using nonhomogeneous models to identify host shift nodes along phylogenetic trees of pathogens evolving in different hosts. It has been noticed that influenza viruses show marked differences in nucleotide composition in human and avian hosts. We take advantage of this fact to identify the host shift event that led to the 1918 'Spanish' influenza. This disease killed over 50 million people worldwide, ranking it as the deadliest pandemic in recorded history. Our model suggests that the eight RNA segments which eventually became the 1918 viral genome were introduced into a mammalian host around 1882-1913. The viruses later diverged into the classical swine and human H1N1 influenza lineages around 1913-1915. The last common ancestor of human strains dates from February 1917 to April 1918. Because pigs are more readily infected with avian influenza viruses than humans, it would seem that they were the original recipient of the virus. This would suggest that the virus was introduced into humans sometime between 1913 and 1918.


Asunto(s)
Evolución Biológica , Interacciones Huésped-Patógeno/genética , Subtipo H1N1 del Virus de la Influenza A/genética , Gripe Humana/epidemiología , Gripe Humana/virología , Modelos Genéticos , Nucleótidos/genética , Animales , Composición de Base/genética , Calibración , Brotes de Enfermedades , Humanos , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Funciones de Verosimilitud , Infecciones por Orthomyxoviridae/virología , Filogenia , Porcinos/virología
15.
Arch Virol ; 154(1): 147-51, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19082683

RESUMEN

A series of M2/NB chimeras were used to investigate the ion channel activity of the IAV M2 protein. Replacing the M2 cytoplasmic domain with the equivalent NB domain (AAB chimera) did not influence ion channel activity, while replacement of N-terminal domains (BAA and BAB chimeras) resulted in loss of activity. Extension of the M2 protein N-terminal domain resulted in full restoration of ion channel activity in BAA chimeras but only partial restoration in BAB. While not directly involved in ion channel activity, the N- and C-terminals of M2 are important for stabilization of the transmembrane domain structure.


Asunto(s)
Citoplasma/metabolismo , Espacio Extracelular/metabolismo , Virus de la Influenza A/genética , Virus de la Influenza A/metabolismo , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Regulación Viral de la Expresión Génica , Orden Génico , Estabilidad Proteica , Estructura Terciaria de Proteína/fisiología , Proteínas de la Matriz Viral/genética
16.
Arch Virol ; 154(10): 1619-24, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19763781

RESUMEN

Co-expression of the BM2 protein with pH-sensitive HA reduces the conversion of HA to its low-pH conformation during transport to the cell surface in the same way as human M2 proteins. BM2 protein is capable of increasing vesicular pH by as much as 0.4 pH units. Mutation analysis showed that replacement of H19 in BM2 protein by A and L resulted in loss of activity, while M2, with the mutation H37A, remained active, but its severe toxicity was intolerable for cells. Whereas substitution of L or A for W23 abolished detectable activity of the BM2 channel, substitution of L for W41 in the M2 protein resulted in a functional ion channel but with reduced activity. W41 was not essential for functional activity of the M2 protein. Our results show some differences in the nature of the interaction of the histidine and tryptophan in the transmembrane domains of BM2 and M2 ion channels.


Asunto(s)
Virus de la Influenza A/metabolismo , Virus de la Influenza B/metabolismo , Proteínas de la Matriz Viral/metabolismo , Proteínas Virales/metabolismo , Western Blotting , Línea Celular , Ensayo de Inmunoadsorción Enzimática , Humanos , Concentración de Iones de Hidrógeno , Virus de la Influenza A/genética , Virus de la Influenza B/genética , Polimorfismo de Nucleótido Simple , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/fisiología , Proteínas Virales/genética , Proteínas Virales/fisiología , Ensamble de Virus , Red trans-Golgi/metabolismo
17.
Bioorg Med Chem Lett ; 18(23): 6156-60, 2008 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-18947998

RESUMEN

The new 2-alkyl-2-aminoadamantanes and analogues 4-10 were designed and synthesized by simplification of the structure of the potent anti-influenza virus A spiranic aminoadamantane heterocycles 2 and 3. The aim of the present work was to examine the effects of bulky and extended lipophilic moieties attached to amantadine 1 on binding to the M2 channel and the resulting antiviral potency. The binding affinities of the compounds to the M2 protein of influenza virus A/chicken/Germany/27 (Weybridge strain; H7N7) were measured for the first time using an assay based on quenching of Trp-41 fluorescence by His-37 protonation, and their antiviral potencies were evaluated against the replication of influenza virus A H2N2 and H3N2 subtypes and influenza virus B in MDCK cells. Of the various 2-alkyl-2-aminoadamantanes, and analogues, spiro[piperidine-2,2'-adamantane] 3 had the strongest M2 binding and antiviral potency, which were similar those of amantadine 1. The relative binding affinities suggested that the rigid carbon framework provided by the pyrrolidine or piperidine rings results in a more favorable orientation inside the M2 channel pore as compared to large, freely rotating alkyl groups. The aminoadamantane derivatives exhibited similar NMDA antagonistic activity to amantadine 1. A striking finding was the antiviral activity of the adamantanols 4, and 6, which lack any NMDA antagonist activity.


Asunto(s)
Adamantano , Virus de la Influenza A/efectos de los fármacos , N-Metilaspartato/antagonistas & inhibidores , Proteínas de la Matriz Viral/efectos de los fármacos , Adamantano/análogos & derivados , Adamantano/síntesis química , Adamantano/química , Adamantano/farmacología , Amantadina/farmacología , Antivirales/química , Antivirales/farmacología , Estructura Molecular , Relación Estructura-Actividad
18.
Influenza Other Respir Viruses ; 12(5): 551-557, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29722140

RESUMEN

In the centenary year of the devastating 1918-19 pandemic, it seems opportune to reflect on the success of the WHO Global Influenza Surveillance and Response System (GISRS) initiated 70 years ago to provide early warning of changes in influenza viruses circulating in the global population to help mitigate the consequences of such a pandemic and maintain the efficacy of seasonal influenza vaccines. Three pandemics later and in the face of pandemic threats from highly pathogenic zoonotic infections by different influenza A subtypes, it continues to represent a model platform for global collaboration and timely sharing of viruses, reagents and information to forestall and respond to public health emergencies.


Asunto(s)
Control de Enfermedades Transmisibles/organización & administración , Epidemias , Monitoreo Epidemiológico , Salud Global , Gripe Humana/epidemiología , Orthomyxoviridae/aislamiento & purificación , Organización Mundial de la Salud , Humanos , Gripe Humana/prevención & control , Gripe Humana/virología , Cooperación Internacional , Orthomyxoviridae/clasificación
19.
Clin Infect Dis ; 40(9): 1282-7, 2005 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-15825030

RESUMEN

BACKGROUND: Influenza outbreaks have been reported among travelers, but attack rates and incidence are unknown. METHODS: A cohort study was conducted. Travelers to subtropical and tropical countries recruited at the University of Zurich Travel Clinic (Switzerland), January 1998 to March 2000, were investigated with pre- and posttravel assessment of hemagglutination inhibition and by questionnaire. RESULTS: Among 1450 travelers recruited who completed questionnaires and provided serum samples before departure, 289 (19.9%) reported febrile illness during or after traveling abroad; of these, 211 (73.0%) provided paired serum samples. Additionally, paired serum samples were collected from 321 frequency-matched afebrile control subjects among the remaining 1161 subjects of the study population. Seroconversion for influenza virus infection was demonstrated in 40 (2.8%) of all travelers; 18 participants (1.2%) had a > or = 4-fold increase in antibody titers. This corresponds to an incidence of 1.0 influenza-associated events per 100 person-months abroad. Among the 211 febrile participants, 27 (12.8%) had seroconversion, 13 (6.2%) with a > or = 4-fold increase; among the 321 afebrile control subjects, 13 (4.0%) had seroconversion, 5 (1.6%) with a > or = 4-fold increase. Twenty-five seroconverters (62.5%; P = .747) acquired influenza outside of the European epidemic season. Sixteen patients (40.0%) sought medical attention either abroad or at home, and 32 (80.0%) were asymptomatic at the time of completion of the survey. CONCLUSIONS: This survey indicates that influenza is the most frequent vaccine-preventable infection among travelers to subtropical and tropical countries. Infections occur mainly outside the domestic epidemic season, and they have a considerable impact. Pretravel vaccination should be considered for travelers to subtropical and tropical countries.


Asunto(s)
Encuestas Epidemiológicas , Gripe Humana/epidemiología , Viaje , Clima Tropical , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Brotes de Enfermedades , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Factores de Riesgo , Encuestas y Cuestionarios , Suiza/epidemiología , Suiza/etnología , Factores de Tiempo
20.
Influenza Other Respir Viruses ; 9(6): 331-340, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26073976

RESUMEN

OBJECTIVES: The identification of antigenic variants and the selection of influenza viruses for vaccine production are based largely on antigenic characterisation of the haemagglutinin (HA) of circulating viruses using the haemagglutination inhibition (HI) assay. However, in addition to evolution related to escape from host immunity, variants emerging as a result of propagation in different cell substrates can complicate the interpretation of HI results. The objective was to develop further a micro-neutralisation (MN) assay to complement the HI assay in antigenic characterisation of influenza viruses to assess the emergence of new antigenic variants and reinforce the selection of vaccine viruses. DESIGN AND SETTING: A 96-well-plate plaque reduction MN assay based on the measurement of infected cell population using a simple imaging technique. SAMPLE: Representative influenza A (H1N1) pdm09, A(H3N2) and B viruses isolated between 2004 and 2013 MAIN OUTCOME MEASURES AND RESULTS: Improvements to the plaque reduction MN assay included selection of the most suitable cell line according to virus type or subtype, and optimisation of experimental design and data quantitation. Comparisons of the results of MN and HI assays showed the importance of complementary data in determining the true antigenic relationships among recent human influenza A(H1N1)pdm09, A(H3N2) and type B viruses. CONCLUSIONS: Our study demonstrates that the improved MN assay has certain advantages over the HI assay: it is not significantly influenced by the cell-selected amino acid substitutions in the neuraminidase (NA) of A(H3N2) viruses, and it is particularly useful for antigenic characterisation of viruses which either grow to low HA titre and/or undergo an abortive infection resulting in an inability to form plaques in cultured cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA