Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Microbiol ; 119(5): 599-611, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36929159

RESUMEN

Phototrophic bacteria face diurnal variations of environmental conditions such as light and osmolarity that affect their carbon metabolism and ability to generate organic compounds. The model cyanobacterium, Synechocystis sp. PCC 6803 forms a biofilm when it encounters extreme conditions like high salt stress, but the molecular mechanisms involved in perception of environmental changes that lead to biofilm formation are unknown. Here, we studied two two-component regulatory systems (TCSs) that contain diguanylate cyclases (DGCs), which produce the second messenger c-di-GMP, as potential components of the biofilm-inducing signaling pathway in Synechocystis. Analysis of single mutants provided evidence for involvement of the response regulators, Rre2 and Rre8 in biofilm formation. A bacterial two-hybrid assay showed that Rre2 and Rre8 each formed a TCS with a specific histidine kinase, Hik12 and Hik14, respectively. The in vitro assay showed that Rre2 had DGC activity regardless of its de/phosphorylation status, whereas Rre8 required phosphorylation for DGC activity. Hik14-Rre8 likely functioned as an inducible sensing system in response to environmental change. Biofilm assays with Synechocystis mutants suggested that pairs of hik12-rre2 and hik14-rre8 responded to high salinity-induced biofilm formation. Inactivation of hik12-rre2 and hik14-rre8 did not affect the performance of the light reactions of photosynthesis. These data suggest that Hik12-Rre2 and Hik14-Rre8 participate in biofilm formation in Synechocystis by regulating c-di-GMP production via the DGC activity of Rre2 and Rre8.


Asunto(s)
Proteínas de Escherichia coli , Synechocystis , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Biopelículas , Synechocystis/genética , Synechocystis/metabolismo , GMP Cíclico/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
2.
Int J Mol Sci ; 25(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38791327

RESUMEN

Cancer cells adeptly manipulate their metabolic processes to evade immune detection, a phenomenon intensifying the complexity of cancer progression and therapy. This review delves into the critical role of cancer cell metabolism in the immune-editing landscape, highlighting how metabolic reprogramming facilitates tumor cells to thrive despite immune surveillance pressures. We explore the dynamic interactions within the tumor microenvironment (TME), where cancer cells not only accelerate their glucose and amino acid metabolism but also induce an immunosuppressive state that hampers effective immune response. Recent findings underscore the metabolic competition between tumor and immune cells, particularly focusing on how this interaction influences the efficacy of emerging immunotherapies. By integrating cutting-edge research on the metabolic pathways of cancer cells, such as the Warburg effect and glutamine addiction, we shed light on potential therapeutic targets. The review proposes that disrupting these metabolic pathways could enhance the response to immunotherapy, offering a dual-pronged strategy to combat tumor growth and immune evasion.


Asunto(s)
Inmunoterapia , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/terapia , Neoplasias/patología , Microambiente Tumoral/inmunología , Inmunoterapia/métodos , Animales , Efecto Warburg en Oncología , Glutamina/metabolismo , Escape del Tumor , Redes y Vías Metabólicas
3.
Glycoconj J ; 40(2): 259-267, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36877384

RESUMEN

Characterization of O-glycans linked to serine or threonine residues in glycoproteins has mostly been achieved using chemical reaction approaches because there are no known O-glycan-specific endoglycosidases. Most O-glycans are modified with sialic acid residues at the non-reducing termini through various linkages. In this study, we developed a novel approach for sialic acid linkage-specific O-linked glycan analysis through lactone-driven ester-to-amide derivatization combined with non-reductive ß-elimination in the presence of hydroxylamine. O-glycans released by non-reductive ß-elimination were efficiently purified using glycoblotting via chemoselective ligation between carbohydrates and a hydrazide-functionalized polymer, followed by modification of methyl or ethyl ester groups of sialic acid residues on solid-phase. In-solution lactone-driven ester-to-amide derivatization of ethyl-esterified O-glycans was performed, and the resulting sialylated glycan isomers were discriminated by mass spectrometry. In combination with PNGase F digestion, we carried out simultaneous, quantitative, and sialic acid linkage-specific N- and O-linked glycan analyses of a model glycoprotein and human cartilage tissue. This novel glycomic approach will facilitate detailed characterization of biologically relevant sialylated N- and O-glycans on glycoproteins.


Asunto(s)
Ésteres , Ácido N-Acetilneuramínico , Humanos , Ácido N-Acetilneuramínico/química , Glicoproteínas/química , Polisacáridos/química , Lactonas
4.
Cancer Sci ; 113(10): 3321-3329, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35766417

RESUMEN

T-cell receptor (TCR)-like Abs that specifically recognize antigenic peptides presented on MHC molecules have been developed for next-generation cancer immunotherapy. Recently, we reported a rapid and efficient method to generate TCR-like Abs using a rabbit system. We humanized previously generated rabbit-derived TCR-like Abs reacting Epstein-Barr virus peptide (BRLF1p, TYPVLEEMF) in the context of HLA-A24 molecules, produced chimeric antigen receptor (CAR)-T cells, and evaluated their antitumor effects using in vitro and in vivo tumor models. Humanization of the rabbit-derived TCR-like Abs using the complementarity-determining region grafting technology maintained their specificity and affinity. We prepared a second-generation CAR using single-chain variable fragment of the humanized TCR-like Abs and then transduced them into human T cells. The CAR-T cells specifically recognized BRLF1p/MHC molecules and lysed the target cells in an antigen-specific manner in vitro. They also demonstrated antitumor activity in a mouse xenograft model. We report the generation of CAR-T cells using humanized rabbit-derived TCR-like Abs. Together with our established and efficient generation procedure for TCR-like Abs using rabbits, our platform for the clinical application of humanized rabbit-derived TCR-like Abs to CAR-T cells will help improve next-generation cancer immunotherapy.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Neoplasias , Receptores Quiméricos de Antígenos , Anticuerpos de Cadena Única , Animales , Regiones Determinantes de Complementariedad , Antígeno HLA-A24 , Herpesvirus Humano 4 , Humanos , Ratones , Neoplasias/terapia , Conejos , Receptores de Antígenos de Linfocitos T
5.
Anal Chem ; 94(46): 15948-15955, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36345688

RESUMEN

The glycoform of a therapeutic monoclonal antibody (mAb) has a significant impact on its effector function as well as its safety and pharmacokinetics. Glycoform heterogeneity is influenced by various factors, including the producing cells and cell culture processes. Therefore, accurate glycoform characterization is essential for drug design, process optimization, manufacturing, and quality control of therapeutic mAbs. In this study, we developed a fast, quantitative, and highly sensitive analytical platform for glycan profiling by supercritical fluid chromatography-tandem mass spectrometry (SFC-MS/MS) and applied the technique to the glycan structural analysis of mAbs. To achieve both the highest sensitivity and the most comprehensive glycan profiling, we integrated our energy-resolved oxonium ion monitoring (Erexim) method with SFC-MS to construct a new SFC-Erexim technology. An 8 min analysis of bevacizumab, nivolumab, ramucirumab, rituximab, and trastuzumab by SFC-Erexim detected a total of 102 glycoforms, with a detection limit of 5 attomoles. The dynamic range of glycan abundance was over 6 orders of magnitude for bevacizumab analysis by SFC-Erexim compared to 3 orders of magnitude for conventional fluorescence HPLC analysis. This method revealed the glycan profile characteristics and lot-to-lot heterogeneity of various therapeutic mAbs. We were also able to detect a series of structural variations in pharmacologically important glycan structures. The SFC-MS-based glycoform profiling method will provide an ideal platform for the in-depth analysis of precise glycan structure and abundance.


Asunto(s)
Cromatografía con Fluido Supercrítico , Cromatografía con Fluido Supercrítico/métodos , Espectrometría de Masas en Tándem/métodos , Bevacizumab , Cromatografía Líquida de Alta Presión , Polisacáridos , Anticuerpos Monoclonales
6.
Biol Pharm Bull ; 45(10): 1564-1571, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36184517

RESUMEN

Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a potential target for inflammatory-breast cancer treatment as it participates in its pathogenesis, such as tumor initiation, progression, survival, metastasis, and recurrence. In this study, we aimed to discover a novel anti-cancer treatment from natural products by targeting NF-κB activity. Using the 4T1-NFκB-luciferase reporter cell line, we tested three pregnane glycosides extracted from the herb Caralluma tuberculata and discovered that Russelioside A markedly suppressed NF-κB activity in breast cancer. Russelioside A inhibited NF-κB (p65) transcriptional activity and its phosphorylation. Following NF-κB inhibition, Russelioside A exerted anti-proliferative and anti-metastatic effects in breast cancer cells in vitro. Moreover, it inhibited the NF-κB constitutive expression of downstream pathways, such as VEGF-b, MMP-9, and IL-6 in 4T1 cells. In addition, it reduced the metastatic capacity in a 4T1 breast cancer model in vivo. Collectively, our conclusions reveal that Russelioside A is an attractive natural compound for treating triple-negative breast cancer growth and metastasis through regulating NF-κB activation.


Asunto(s)
Apocynaceae , Productos Biológicos , Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Apocynaceae/metabolismo , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Femenino , Glicósidos/farmacología , Glicósidos/uso terapéutico , Humanos , Interleucina-6/metabolismo , Metaloproteinasa 9 de la Matriz , FN-kappa B/metabolismo , Pregnanos/farmacología , Pregnanos/uso terapéutico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Factor B de Crecimiento Endotelial Vascular
7.
Planta Med ; 88(11): 913-920, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34474490

RESUMEN

Three new flavanols, (2R,3S)-7-methoxy-flavan-3-ol (1: ), (2R,3S)-7-hydroxy-flavan-3-ol (2: ), and (2R,3S)-2'-hydroxy-7-methoxy-flavan-3-ol (3: ), together with two known flavans (4: and 5: ), were isolated from the chloroform extract of Crinum asiaticum. Their structures were elucidated by various spectroscopic methods, including 1D and 2D NMR, HR-ESI-MS, and CD data. The isolated compounds 1: and 3: -5: showed inhibitory activity toward LPS-induced nitric oxide (NO) production. Further investigation of the NF-κB pathway mechanisms indicated that 1: and 3: -5: inhibited the LPS-induced IL-6 production and p65 subunit phosphorylation of NF-κB in RAW264.7 cells, with an effective dose of 10 µM.


Asunto(s)
Crinum , Flavonoides/química , FN-kappa B , Animales , Crinum/metabolismo , Lipopolisacáridos/farmacología , Ratones , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Polifenoles , Células RAW 264.7 , Transducción de Señal
8.
Biochem J ; 478(1): 41-59, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33196080

RESUMEN

Flocculation has been recognized for hundreds of years as an important phenomenon in brewing and wastewater treatment. However, the underlying molecular mechanisms remain elusive. The lack of a distinct phenotype to differentiate between slow-growing mutants and floc-forming mutants prevents the isolation of floc-related gene by conventional mutant screening. To overcome this, we performed a two-step Escherichia coli mutant screen. The initial screen of E. coli for mutants conferring floc production during high salt treatment yielded a mutant containing point mutations in 61 genes. The following screen of the corresponding single-gene mutants identified two genes, mrcB, encoding a peptidoglycan-synthesizing enzyme and cpxA, encoding a histidine kinase of a two-component signal transduction system that contributed to salt tolerance and flocculation prevention. Both single mutants formed flocs during high salt shock, these flocs contained cytosolic proteins. ΔcpxA exhibited decreased growth with increasing floc production and addition of magnesium to ΔcpxA suppressed floc production effectively. In contrast, the growth of ΔmrcB was inconsistent under high salt conditions. In both strains, flocculation was accompanied by the release of membrane vesicles containing inner and outer membrane proteins. Of 25 histidine kinase mutants tested, ΔcpxA produced the highest amount of proteins in floc. Expression of cpxP was up-regulated by high salt in ΔcpxA, suggesting that high salinity and activation of CpxR might promote floc formation. The finding that ΔmrcB or ΔcpxA conferred floc production indicates that cell envelope stress triggered by unfavorable environmental conditions cause the initiation of flocculation in E. coli.


Asunto(s)
Membrana Celular/metabolismo , Pared Celular/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano Glicosiltransferasa/metabolismo , Proteínas Quinasas/metabolismo , Tolerancia a la Sal/genética , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Citosol/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Floculación , Proteínas de la Membrana/metabolismo , Proteínas de Unión a las Penicilinas/genética , Peptidoglicano Glicosiltransferasa/genética , Mutación Puntual , Proteínas Quinasas/genética , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/genética
9.
Molecules ; 27(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35744993

RESUMEN

The present study aimed to investigate the effect of acridone alkaloids on cancer cell lines and elucidate the underlying molecular mechanisms. The ten acridone alkaloids from Atalantia monophyla were screened for cytotoxicity against LNCaP cell lines by a WST-8 assay. Then, the most potential acridone, buxifoliadine E, was evaluated on four types of cancer cells, namely prostate cancer (LNCaP), neuroblastoma (SH SY5Y), hepatoblastoma (HepG2), and colorectal cancer (HT29). The results showed that buxifoliadine E was able to significantly inhibit the proliferation of all four types of cancer cells, having the most potent cytotoxicity against the HepG2 cell line. Western blotting analysis was performed to assess the expression of signaling proteins in the cancer cells. In HepG2 cells, buxifoliadine E induced changes in the levels of Bid as well as cleaved caspase-3 and Bax through MAPKs, including Erk and p38. Moreover, the binding interaction between buxifoliadine E and Erk was investigated by using the Autodock 4.2.6 and Discovery Studio programs. The result showed that buxifoliadine E bound at the ATP-binding site, located at the interface between the N- and C-terminal lobes of Erk2. The results of this study indicate that buxifoliadine E suppressed cancer cell proliferation by inhibiting the Erk pathway.


Asunto(s)
Alcaloides , Neoplasias , Rutaceae , Acridonas/química , Acridonas/farmacología , Alcaloides/química , Alcaloides/farmacología , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Sistema de Señalización de MAP Quinasas , Rutaceae/química
10.
Cancer Sci ; 112(12): 4883-4893, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34632664

RESUMEN

From a mouse triple-negative breast cancer cell line, 4T1, we previously established 4T1.3 clone with a high capacity to metastasize to bone after its orthotopic injection into mammary fat pad of immunocompetent mice. Subsequent analysis demonstrated that the interaction between cancer cells and fibroblasts in a bone cavity was crucial for bone metastasis focus formation arising from orthotopic injection of 4T1.3 cells. Here, we demonstrated that a member of the adhesion G-protein-coupled receptor (ADGR) family, G-protein-coupled receptor 56 (GPR56)/adhesion G-protein-coupled receptor G1 (ADGRG1), was expressed selectively in 4T1.3 grown in a bone cavity but not under in vitro conditions. Moreover, fibroblasts present in bone metastasis sites expressed type III collagen, a ligand for GPR56/ADGRG1. Consistently, GPR56/ADGRG1 proteins were detected in tumor cells in bone metastasis foci of human breast cancer patients. Deletion of GPR56/ADGRG1 from 4T1.3 cells reduced markedly intraosseous tumor formation upon their intraosseous injection. Conversely, intraosseous injection of GPR56/ADGRG1-transduced 4T1, TS/A (mouse breast cancer cell line), or MDA-MB-231 (human breast cancer cell line) exhibited enhanced intraosseous tumor formation. Furthermore, we proved that the cleavage at the extracellular region was indispensable for GPR56/ADGRG1-induced increase in breast cancer cell growth upon its intraosseous injection. Finally, inducible suppression of Gpr56/Adgrg1 gene expression in 4T1.3 cells attenuated bone metastasis formation with few effects on primary tumor formation in the spontaneous breast cancer bone metastasis model. Altogether, GPR56/ADGRG1 can be a novel target molecule to develop a strategy to prevent and/or treat breast cancer metastasis to bone.


Asunto(s)
Neoplasias Óseas/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Mamarias Experimentales/genética , Receptores Acoplados a Proteínas G/genética , Animales , Neoplasias Óseas/metabolismo , Neoplasias Óseas/secundario , Línea Celular Tumoral , Proliferación Celular/genética , Colágeno Tipo III/metabolismo , Femenino , Eliminación de Gen , Humanos , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones Endogámicos BALB C , Ratones SCID , Unión Proteica , Receptores Acoplados a Proteínas G/metabolismo , Carga Tumoral/genética
11.
Cancer Sci ; 112(9): 3484-3490, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34187084

RESUMEN

For successful immunotherapy for cancer, it is important to understand the immunological status of tumor antigen-specific CD8+ T cells in the tumor microenvironment during tumor progression. In this study, we monitored the behavior of B16OVA-Luc cells in mice immunized with a model tumor antigen ovalbumin (OVA). Using bioluminescence imaging, we identified the time series of OVA-specific CD8+ T-cell responses during tumor progression: initial progression, immune control, and the escape phase. As a result of analyzing the status of tumor antigen-specific CD8+ cells in those 3 different phases, we found that the expression of NKG2D defines tumor-reacting effector CD8+ T cells. NKG2D may control the fate and TOX expression of tumor-reacting CD8+ T cells, considering that NKG2D blockade in OVA-vaccinated mice delayed the growth of the B16OVA-Luc2 tumor and increased the presence of tumor-infiltrating OVA-specific CD8+ T cells.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Melanoma Experimental/inmunología , Melanoma Experimental/metabolismo , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/metabolismo , Microambiente Tumoral/inmunología , Animales , Antígenos de Neoplasias/administración & dosificación , Antígenos de Neoplasias/metabolismo , Antimetabolitos Antineoplásicos/administración & dosificación , Antimetabolitos Antineoplásicos/farmacocinética , Bromodesoxiuridina/administración & dosificación , Bromodesoxiuridina/farmacocinética , Interferón gamma/deficiencia , Interferón gamma/genética , Luciferasas/metabolismo , Mediciones Luminiscentes/métodos , Linfocitos Infiltrantes de Tumor/inmunología , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ovalbúmina/administración & dosificación , Ovalbúmina/metabolismo , Neoplasias Cutáneas/patología , Vacunación/métodos
12.
Cancer Sci ; 112(4): 1633-1643, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33565179

RESUMEN

Tumor metastasis is the leading cause of death worldwide and involves an extremely complex process composed of multiple steps. Our previous study demonstrated that apoptosis signal-regulating kinase 1 (ASK1) deficiency in mice attenuates tumor metastasis in an experimental lung metastasis model. However, the steps of tumor metastasis regulated by ASK1 remain unclear. Here, we showed that ASK1 deficiency in mice promotes natural killer (NK) cell-mediated intravascular tumor cell clearance in the initial hours of metastasis. In response to tumor inoculation, ASK1 deficiency upregulated immune response-related genes, including interferon-gamma (IFNγ). We also revealed that NK cells are required for these anti-metastatic phenotypes. ASK1 deficiency augmented cytokine production chemoattractive to NK cells possibly through induction of the ligand for NKG2D, a key activating receptor of NK cells, leading to further recruitment of NK cells into the lung. These results indicate that ASK1 negatively regulates NK cell-dependent anti-tumor immunity and that ASK1-targeted therapy can provide a new tool for cancer immunotherapy to overcome tumor metastasis.


Asunto(s)
Células Asesinas Naturales/inmunología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , MAP Quinasa Quinasa Quinasa 5/metabolismo , Metástasis de la Neoplasia/patología , Animales , Línea Celular , Línea Celular Tumoral , Femenino , Células HEK293 , Humanos , Inmunoterapia/métodos , Interferón gamma/metabolismo , Células Asesinas Naturales/metabolismo , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Neoplasias Pulmonares/inmunología , Ratones , Ratones Endogámicos C57BL , Metástasis de la Neoplasia/inmunología , Células RAW 264.7
13.
Bioorg Chem ; 113: 105033, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34089945

RESUMEN

STAT3 signaling is known to be associated with tumorigenesis and further cancer cell-intrinsic activation of STAT3 leads to altered regulation of several oncogenic processes. Given the importance of STAT3 in cancer development and progression particularly breast cancer, it is crucial to discover new chemical entities of STAT3 inhibitor to develop anti-breast cancer drug candidates. Herein, 4-benzyl-2-benzylthio-5-methyl-1H-imidazole (2a) and 4-benzyl-5-methyl-2-[(2,6-difluorobenzyl)thio]-1H-imidazole (2d) from a group of thirty imidazole-bearing compounds showed greater STAT3 inhibition than their lead compounds VS1 and the oxadiazole derivative MD77. Within all tested compounds, ten derivatives effectively inhibited the growth of the two tested breast cancer cells with IC50 values ranging from 6.66 to 26.02 µM. In addition, the most potent derivatives 2a and 2d inhibited the oncogenic function of STAT3 as seen in the inhibition of colony formation and IL-6 production of breast cancer cell lines. Modeling studies provided evidence for the possible interactions of the synthesized compounds with the key residues of the STAT3-SH2 domain. Collectively, our present study suggests 2-substituted-4-benzyl-5-methylimidazoles are a new class of anti-cancer drug candidates to inhibit oncogenic STAT3 function.


Asunto(s)
Antineoplásicos/síntesis química , Diseño de Fármacos , Imidazoles/química , Factor de Transcripción STAT3/metabolismo , Antineoplásicos/metabolismo , Antineoplásicos/uso terapéutico , Sitios de Unión , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Imidazoles/metabolismo , Imidazoles/farmacología , Imidazoles/uso terapéutico , Interleucina-6/metabolismo , Simulación del Acoplamiento Molecular , Factor de Transcripción STAT3/antagonistas & inhibidores , Relación Estructura-Actividad , Dominios Homologos src
14.
Biol Pharm Bull ; 44(5): 686-690, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33952824

RESUMEN

Although more than 400 species of Cordyceps s.l. have been identified, most have not been well explored regarding their potential for medicinal use. In this study, the profiles of constituents of ten different species of Ophiocordyceps, which is an unexplored species of Cordyceps, were analyzed and their anti-tumor effects were further examined. Although all Ophiocordyceps samples exhibited similar peak patterns, Ophiocordyceps gracilioides (O. grac) had a distinct constituent profile from the other samples. Furthermore, O. grac was the most active in suppressing the transcriptional activities of both nuclear factor-kappa B (NF-κB) and signal transducer and activator of transcription (STAT)3, and the production of interleukin (IL)-6 from breast cancer cells. This study demonstrated that O. grac is a relatively unexplored Cordyceps s.l. that may have medicinal potential to inhibit the NFκB-STAT3-IL-6 inflammatory pathway in cancer.


Asunto(s)
Productos Biológicos/farmacología , Hypocreales/química , Neoplasias/tratamiento farmacológico , Animales , Productos Biológicos/aislamiento & purificación , Productos Biológicos/uso terapéutico , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Interleucina-6/metabolismo , Ratones , FN-kappa B/metabolismo , Neoplasias/inmunología , Neoplasias/patología , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología
15.
Biomed Chromatogr ; 35(6): e5067, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33450064

RESUMEN

Several drugs are administered to lung-transplanted patients, which are monitored using therapeutic drug monitoring (TDM). Therefore, we developed and validated a liquid chromatography-tandem mass spectrometry method to simultaneously analyze immunosuppressive drugs such as mycophenolic acid, antifungal drugs such as voriconazole and itraconazole, and its metabolite hydroxyitraconazole. Chromatographic separation was achieved using a C18 column and gradient flow of mobile phase comprising 20 mM aqueous ammonium formate and 20 mM ammonium formate-methanol solution. A simple protein precipitation treatment was performed using acetonitrile/methanol and mycophenolic acid-2 H3 , voriconazole-2 H3 , itraconazole-2 H4 , and hydroxyitraconazole-2 H4 as internal standards. The linearity ranges of mycophenolic acid, voriconazole, itraconazole, and hydroxyitraconazole were 100-20,000, 50-10,000, 5-1000, and 5-1000 ng/mL, respectively. The retention time of each target was less than 2 min. The relative errors in intra- and inter-day were within ±7.6%, the coefficient of variation was 8.9% or less for quality control low, medium, and high, and it was 15.8% or less for lower limit of quantitation. Moreover, the patient samples were successfully quantified, and they were within the linear range of measurements. Therefore, our new method may be useful for TDM in lung-transplanted patients.


Asunto(s)
Cromatografía Liquida/métodos , Monitoreo de Drogas/métodos , Trasplante de Pulmón , Espectrometría de Masas en Tándem/métodos , Adulto , Antifúngicos/sangre , Antifúngicos/farmacocinética , Antifúngicos/uso terapéutico , Femenino , Humanos , Inmunosupresores/sangre , Inmunosupresores/farmacocinética , Inmunosupresores/uso terapéutico , Modelos Lineales , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
16.
Biomed Chromatogr ; 35(7): e5094, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33599311

RESUMEN

Clozapine (CLZ) is a key drug in treatment-resistant schizophrenia. Therapeutic drug monitoring (TDM) of CLZ and its metabolites, N-desmethylclozapine and clozapine N-oxide, is required to monitor and manage the risks of side effects. Although quantification methods for TDM have been developed for CLZ and its metabolites, they were not sufficiently accurate for the quantification of CLZ owing to the upper limits of the calibration curves. An analytical method using high-performance liquid chromatography/electrospray ionization tandem mass spectrometry was developed and validated for the simultaneous measurement of CLZ and its metabolites in human plasma. To expand the concentration range of the calibration curves, we used a linear range shift technique using in-source collision-induced dissociation (CID). Using our approach, the linearity and quantitative range were improved compared to those reported by previous studies, and were sufficient for TDM in clinical practice. The intra- and inter-assay accuracy was 84.6%-114.8%, and the intra- and inter-assay precisions were ≤9.1% and ≤9.9%, respectively. Moreover, all samples from patients with treatment-resistant schizophrenia were successfully quantified. Therefore, our novel analytical method using in-source CID had the appropriate performance to measure the plasma concentrations of CLZ and its metabolites for TDM in clinical practice.


Asunto(s)
Antipsicóticos/sangre , Cromatografía Líquida de Alta Presión/métodos , Clozapina/sangre , Espectrometría de Masa por Ionización de Electrospray/métodos , Antipsicóticos/metabolismo , Antipsicóticos/uso terapéutico , Clozapina/metabolismo , Clozapina/uso terapéutico , Monitoreo de Drogas , Femenino , Humanos , Masculino , Esquizofrenia/tratamiento farmacológico , Espectrometría de Masas en Tándem/métodos
17.
Cancer Sci ; 111(6): 1869-1875, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32301190

RESUMEN

Natural killer (NK) cells are innate lymphocytes that rapidly respond to cancer cells without prior sensitization or restriction to the cognate antigen in comparison with tumor antigen-specific T cells. Recent advances in understanding NK-cell biology have elucidated the molecular mechanisms underlying the differentiation and maturation of NK cells, in addition to the control of their effector functions by investigating the receptors and ligands involved in the recognition of cancer cells by NK cells. Such clarification of NK-cell recognition of cancer cells also revealed the mechanism by which cancer cells potentially evade NK-cell-dependent immune surveillance. Furthermore, the recent clinical results of T-cell-targeted cancer immunotherapy have increased the expectations for new immunotherapies by targeting NK cells. However, the potential use of NK cells in cancer immunotherapy is not fully understood. In this review, we discuss the current evidence and future potential of pharmacological targeting of NK cells in cancer immunotherapy.


Asunto(s)
Inmunoterapia/métodos , Células Asesinas Naturales/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Animales , Humanos
18.
Cancer Sci ; 111(8): 2770-2778, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32573072

RESUMEN

Thalidomide and its analogues are known as immunomodulatory drugs (IMiDs) that possess direct antimyeloma effects, in addition to other secondary effects, including antiangiogenic, antiinflammatory, and immunomodulatory effects. Although the involvement of natural killer (NK) cells in the antitumor effects of IMiDs has been reported, it is unclear whether IMiDs inhibit cancer cell metastasis by regulating the antitumor function of NK cells. In this study, we examined the protective effects of thalidomide against cancer metastasis by focusing on its immunomodulatory effects through NK cells. Using experimental lung metastasis models, we found that pharmacological effects of thalidomide on host cells, but not its direct anticancer tumor effects, are responsible for the inhibition of lung metastases. To exert the antimetastatic effects of thalidomide, both γ-interferon (IFN-γ) production and direct cytotoxicity of NK cells were essential, without notable contribution from T cells. In thalidomide-treated mice, there was a significant increase in the terminally differentiated mature CD27lo NK cells in the peripheral tissues and NK cells in thalidomide-treated mice showed significantly higher cytotoxicity and IFN-γ production. The NK cell expression of T-bet was upregulated by thalidomide treatment and the downregulation of glycogen synthase kinase-3ß expression was observed in thalidomide-treated NK cells. Collectively, our study suggests that thalidomide induces the functional maturation of peripheral NK cells through alteration of T-bet expression to inhibit lung metastasis of cancer cells.


Asunto(s)
Citotoxicidad Inmunológica/efectos de los fármacos , Factores Inmunológicos/farmacología , Células Asesinas Naturales/inmunología , Neoplasias Pulmonares/tratamiento farmacológico , Talidomida/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/inmunología , Línea Celular Tumoral/trasplante , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/inmunología , Ensayos de Selección de Medicamentos Antitumorales , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/inmunología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Factores Inmunológicos/uso terapéutico , Interferón gamma/genética , Interferón gamma/inmunología , Interferón gamma/metabolismo , Células Asesinas Naturales/efectos de los fármacos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/secundario , Ratones , Ratones Noqueados , Proteínas de Dominio T Box/metabolismo , Talidomida/uso terapéutico , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/inmunología
19.
Microbiology (Reading) ; 166(7): 659-668, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32478657

RESUMEN

Bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) is a second messenger known to control a variety of bacterial processes. The model cyanobacterium, Synechocystis sp. PCC 6803, has a score of genes encoding putative enzymes for c-di-GMP synthesis and degradation. However, most of them have not been functionally characterized. Here, we chose four genes in Synechocystis (dgcA-dgcD), which encode proteins with a GGDEF, diguanylate cyclase (DGC) catalytic domain and multiple Per-ARNT-Sim (PAS) conserved regulatory motifs, for detailed analysis. Purified DgcA, DgcB and DgcC were able to catalyze synthesis of c-di-GMP from two GTPs in vitro. DgcA had the highest activity, compared with DgcB and DgcC. DgcD did not show detectable activity. DgcA activity was specific for GTP and stimulated by the divalent cations, magnesium or manganese. Full activity of DgcA required the presence of the multiple PAS domains, probably because of their role in protein dimerization or stability. Synechocystis mutants carrying single deletions of dgcA-dgcD were not affected in their growth rate or biofilm production during salt stress, suggesting that there was functional redundancy in vivo. In contrast, overexpression of dgcA resulted in increased biofilm formation in the absence of salt stress. In this study, we characterize the enzymatic and physiological function of DgcA-DgcD, and propose that the PAS domains in DgcA function in maintaining the enzyme in its active form.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de Escherichia coli/genética , Liasas de Fósforo-Oxígeno/genética , Synechocystis/enzimología , Synechocystis/genética , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/aislamiento & purificación , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Mutación con Pérdida de Función , Liasas de Fósforo-Oxígeno/aislamiento & purificación , Liasas de Fósforo-Oxígeno/metabolismo , Dominios Proteicos/genética , Estrés Salino
20.
Bioorg Med Chem Lett ; 30(2): 126841, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31836445

RESUMEN

Inflammation is an extensively recognized link to many pathological diseases. It is a host response for protection from infections and tissue damage. Infections trigger acute inflammation; however, persistent infection will contribute to chronic inflammation and higher disease susceptibility. Deregulated inflammatory responses can cause excessive or long-lasting tissue damage, manifested as cancer, immune disorders, diabetes, etc. NF-κB is a central mediator of pro-inflammatory gene induction and functions in both innate and adaptive immune cells; therefore, the anti-inflammatory regulation of NF-κB is needed. Natural products reportedly play an important role in controlling the inflammatory response pathways. However, the anti-inflammatory activities of isopimara-8-(14),15-diene diterpenoids have not yet been fully elucidated. To elucidate the anti-inflammatory activities of the isopimara-8(14),15-diene diterpenoids, we investigated 21 isopimara-8(14),15-diene diterpenoids previously isolated from Kaempferia pulchra rhizomes. Eleven compounds exhibited NO inhibitory activity against lipopolysaccharide (LPS)-induced RAW264.7 cells, with IC50 values ranging from 30 to 100 µM. Furthermore, the most potent kaempulchraols P and Q, with IC50 values of 39.88 and 36.05 µM, respectively, inhibited the NF-κB-mediated transactivation of a luciferase reporter gene, IL-6 production, and COX-2 expression, with an effective dose of 25 µM. These findings provide new insights into the anti-inflammatory activities of the isopimara-8(14),15-diene diterpenoids.


Asunto(s)
Antiinflamatorios/uso terapéutico , Diterpenos/uso terapéutico , Inflamación/tratamiento farmacológico , Rizoma/química , Antiinflamatorios/farmacología , Diterpenos/farmacología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA