Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(1): e17004, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37961789

RESUMEN

Climate warming and the feminization of populations due to temperature-dependent sex determination may threaten sea turtles with extinction. To identify sites of heightened risk, we examined sex ratio data and patterns of climate change over multiple decades for 64 nesting sites spread across the globe. Over the last 62 years the mean change in air temperature was 0.85°C per century (SD = 0.65°C, range = -0.53 to +2.5°C, n = 64 nesting sites). Temperatures increased at 40 of the 64 study sites. Female-skewed hatchling or juvenile sex ratios occurred at 57 of the 64 sites, with skews >90% female at 17 sites. We did not uncover a relationship between the extent of warming and sex ratio (r62 = -0.03, p = .802, n = 64 nesting sites). Hence, our results suggest that female-hatchling sex ratio skews are not simply a consequence of recent warming but have likely persisted at some sites for many decades. So other factors aside from recent warming must drive these variations in sex ratios across nesting sites, such as variations in nesting behaviour (e.g. nest depth), substrate (e.g. sand albedo), shading available and rainfall patterns. While overall across sites recent warming is not linked to hatchling sex ratio, at some sites there is both is a high female skew and high warming, such as Raine Island (Australia; 99% female green turtles; 1.27°C warming per century), nesting beaches in Cyprus (97.1% female green turtles; 1.68°C warming per century) and in the Dutch Caribbean (St Eustatius; 91.5% female leatherback turtles; 1.15°C warming per century). These may be among the first sites where management intervention is needed to increase male production. Continued monitoring of sand temperatures and sex ratios are recommended to help identify when high incubation temperatures threaten population viability.


Asunto(s)
Tortugas , Animales , Femenino , Masculino , Razón de Masculinidad , Arena , Temperatura , Cambio Climático
2.
Glob Chang Biol ; 29(23): 6546-6557, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37795641

RESUMEN

Projection models are being increasingly used to manage threatened taxa by estimating their responses to climate change. Sea turtles are particularly susceptible to climate change as they have temperature-dependent sex determination and increased sand temperatures on nesting beaches could result in the 'feminisation' of hatchling sex ratios for some populations. This study modelled likely long-term trends in sand temperatures and hatchling sex ratios at an equatorial nesting site for endangered green turtles (Chelonia mydas) and critically endangered hawksbill turtles (Eretmochelys imbricata). A total of 1078 days of sand temperature data were collected from 28 logger deployments at nest depth between 2018 and 2022 in Papua New Guinea (PNG). Long-term trends in sand temperature were generated from a model using air temperature as an environmental proxy. The influence of rainfall and seasonal variation on sand temperature was also investigated. Between 1960 and 2019, we estimated that sand temperature increased by ~0.6°C and the average hatchling sex ratio was relatively balanced (46.2% female, SD = 10.7). No trends were observed in historical rainfall anomalies and projections indicated no further changes to rainfall until 2100. Therefore, the sex ratio models were unlikely to be influenced by changing rainfall patterns. A relatively balanced sex ratio such as this is starkly different to the extremely female-skewed hatchling sex ratio (>99% female) reported for another Coral Sea nesting site, Raine Island (~850 km West). This PNG nesting site is likely rare in the global context, as it is less threatened by climate-induced feminisation. Although there is no current need for 'cooling' interventions, the mean projected sex ratios for 2020-2100 were estimated 76%-87% female, so future interventions may be required to increase male production. Our use of long-term sand temperature and rainfall trends has advanced our understanding of climate change impacts on sea turtles.


Asunto(s)
Tortugas , Animales , Femenino , Masculino , Temperatura , Tortugas/fisiología , Arena , Cambio Climático , Estaciones del Año , Razón de Masculinidad
3.
Proc Biol Sci ; 289(1976): 20220696, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35673864

RESUMEN

With some taxa, a reduction in the mean size of individuals may reflect over-harvesting and/or trophy hunting. However, we show that in sea turtles, a reduction in the mean size of breeding individuals may be part of the good news story of an expanding population. We describe a 70-fold increase in annual nest numbers on the island of Sal (Cape Verde, North Atlantic) between 2008 and 2020 (from 506 to 35 507 nests), making this now one of the largest loggerhead (Caretta caretta) nesting aggregations in the world. We use 20 128 measurements of the size of nesting turtles to show that their mean annual size has decreased by about 2.4 cm, from 83.2 to 80.8 cm. This decrease in the mean size of nesting turtles was not caused by the removal of larger turtles, for example by selective harvesting. Rather we develop a theoretical model to show than this decrease in mean size can be explained by an influx of first-time nesters, combined with a decrease in the size of those first-time nesters over time. A reduction in mean size of nesting turtles has been reported across the Atlantic, Pacific and Indian Oceans, and may be a common feature of population recoveries in sea turtles.


Asunto(s)
Especies en Peligro de Extinción , Tortugas , Animales , Tamaño Corporal , Océano Índico , Comportamiento de Nidificación
4.
Biol Lett ; 18(8): 20220263, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35946234

RESUMEN

The implications of logger accuracy and precision are rarely considered prior to their application in many ecological studies. We assessed the accuracy and precision of three temperature data loggers widely used in ecological studies (Hobo®, iButton® and TinyTag®). Accuracy was highest in TinyTags (95% of readings were within 0.23°C of the true temperature) and lowest in HOBOs and iButtons (95% of were readings within 0.43°C and 0.49°C of the true temperature, respectively). The precision (standard deviation of the repeat measurements) was greatest in TinyTags (0.04°C), followed by iButtons (0.17°C) and then HOBOs (0.22°C). As a case study, we then considered how modelled estimates of sea turtle hatchling sex ratios (derived from temperature), could vary as a function of logger accuracy. For example, at 29°C when the mean sex ratio derived was 0.47 female, the sex ratio estimate from a single logger could vary between 0.40 and 0.50 for TinyTags and 0.29 and 0.56 for both HOBOs and iButtons. Our results suggest that these temperature loggers can provide reliable descriptions of sand temperature if they are not over-interpreted. Logger accuracy must be considered in future ecological studies in which temperature thresholds are important.


Asunto(s)
Razón de Masculinidad , Tortugas , Animales , Femenino , Temperatura
5.
Glob Chang Biol ; 27(24): 6592-6601, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34558767

RESUMEN

Reconstruction of past conditions provides important information on how ecosystems have been impacted by climate change, but generally for microhabitats worldwide there are no long-term empirical measurements. In these cases, there has been protracted debate about how various large-scale environmental proxies can best be used to reconstruct local temperatures. Here we help resolve this debate by examining how well environmental proxies hindcast sand temperatures at nest depths for five sea turtle nesting sites across the world. We link instrumental air temperature and sea surface temperature records with empirical sand temperature observations in the Atlantic (Ascension Island and Cape Verde), the Indian Ocean (Chagos Archipelago), the Caribbean (St Eustatius) and the Pacific (French Polynesia). We found strong correlations between sea surface temperatures, air temperatures and sand temperatures at all our study sites. Furthermore, Granger causality testing shows variations in sea surface temperature and air temperature precede variations in sand temperatures. We found that different proxies (air or sea temperature or a combination of both) predicted mean monthly sand temperatures within <0.5°C of empirical observations. Reconstructions of sand temperatures over the last 170 years reveal a slight warming of temperatures (maximum 0.5°C per century). An analysis of 36 published datasets revealed that the gradient of the relationship between sand temperature and air temperature is relatively constant, suggesting long-term changes in sand temperature could be extended around the world to include nesting sites where there are no empirical measurements of sand temperature. Our approaches are likely to have utility for a range of microhabitats where there is an interest in long-term changes in temperature.


Asunto(s)
Microclima , Tortugas , Animales , Cambio Climático , Ecosistema , Temperatura
6.
Ecol Appl ; 31(7): e02418, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34278636

RESUMEN

Space use estimates can inform conservation management but relaying high-accuracy locations is often not straightforward. We used Fastloc-GPS Argos satellite tags with the innovation of additional data relay via a ground station (termed a "Mote") to record high volumes (typically >20 locations per individual per day) of high accuracy tracking data. Tags were attached in the Chagos Archipelago (Indian Ocean) in 2018-2019 to 23 immature turtles of two species for which there have been long-standing conservation concerns: 21 hawksbill turtles (Eretmochelys imbricata) and two green turtles (Chelonia mydas). Over long tracking durations (mean 227.6 d per individual), most turtles moved very little. For example, 17 of 21 hawksbill turtles remained continuously in the lagoon where they were equipped, with 95% and 50% utilization distributions (UDs) averaging only 1.03 and 0.18 km2 , respectively. Many individuals, and both species, could use the same small spaces, i.e., individuals did not maintain unique home ranges. However, three hawksbill turtles travelled hundreds of kilometers from the tagging site. Our results show that, for some large marine vertebrates, even small protected areas of only a few square kilometers can encompass the movements of a large proportion of individuals over long periods. High accuracy tracking may likewise reveal the details of space use for many other animals that move little and/or use important focal areas and where previous low-accuracy tracking techniques have tended to overestimate space use.


Asunto(s)
Tortugas , Animales , Fenómenos de Retorno al Lugar Habitual , Océano Índico
7.
Biol Lett ; 17(5): 20210038, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33975488

RESUMEN

There are major concerns about the ecological impact of extreme weather events. In the oceans, marine heatwaves (MHWs) are an increasing threat causing, for example, recent devastation to coral reefs around the world. We show that these impacts extend to adjacent terrestrial systems and could negatively affect the breeding of endangered species. We demonstrate that during an MHW that resulted in major coral bleaching and mortality in a large, remote marine protected area, anomalously warm temperatures also occurred on sea turtle nesting beaches. Granger causality testing showed that variations in sea surface temperature strongly influenced sand temperatures on beaches. We estimate that the warm conditions on both coral reefs and sandy beaches during the MHW were unprecedented in the last 70 years. Model predictions suggest that the most extreme female-biased hatchling sex ratio and the lowest hatchling survival in nests in the last 70 years both occurred during the heatwave. Our work shows that predicted increases in the frequency and intensity of MHWs will likely have growing impacts on sea turtle nesting beaches as well as other terrestrial coastal environments.


Asunto(s)
Antozoos , Tortugas , Animales , Arrecifes de Coral , Femenino , Océanos y Mares , Temperatura
8.
J Anim Ecol ; 89(4): 1008-1016, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31785174

RESUMEN

Patterns of animal movement associated with foraging lie at the heart of many ecological studies and often animals face decisions of staying in an environment they know versus relocating to new sites. The lack of knowledge of new foraging sites means there is risk associated with a decision to relocate (e.g. poor foraging) as well as a potential benefit (e.g. improved foraging). Using a unique long-term satellite tracking dataset for several sea turtle species, combined with capture-mark-recapture data extending over 50 years, we show how, across species, individuals generally maintain tight fidelity to specific foraging sites after extended (up to almost 10,000 km) migration to and from distant breeding sites as well as across many decades. Migrating individuals often travelled through suitable foraging areas en route to their 'home' site and so extended their journeys to maintain foraging site fidelity. We explore the likely mechanistic underpinnings of this trait, which is also seen in some migrating birds, and suggest that individuals will forgo areas of suitable forage encountered en route during migration when they have poor knowledge of the long-term suitability of those sites, making relocation to those sites risky.


Asunto(s)
Tortugas , Animales , Aves , Cruzamiento
9.
Proc Biol Sci ; 286(1911): 20191472, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31551061

RESUMEN

The distributions of migratory species in the ocean span local, national and international jurisdictions. Across these ecologically interconnected regions, migratory marine species interact with anthropogenic stressors throughout their lives. Migratory connectivity, the geographical linking of individuals and populations throughout their migratory cycles, influences how spatial and temporal dynamics of stressors affect migratory animals and scale up to influence population abundance, distribution and species persistence. Population declines of many migratory marine species have led to calls for connectivity knowledge, especially insights from animal tracking studies, to be more systematically and synthetically incorporated into decision-making. Inclusion of migratory connectivity in the design of conservation and management measures is critical to ensure they are appropriate for the level of risk associated with various degrees of connectivity. Three mechanisms exist to incorporate migratory connectivity into international marine policy which guides conservation implementation: site-selection criteria, network design criteria and policy recommendations. Here, we review the concept of migratory connectivity and its use in international policy, and describe the Migratory Connectivity in the Ocean system, a migratory connectivity evidence-base for the ocean. We propose that without such collaboration focused on migratory connectivity, efforts to effectively conserve these critical species across jurisdictions will have limited effect.


Asunto(s)
Migración Animal , Conservación de los Recursos Naturales , Política Ambiental , Animales , Ecosistema , Geografía , Océanos y Mares
10.
Oecologia ; 188(2): 429-439, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29992416

RESUMEN

Stable isotope analysis (SIA) can be a useful tool for tracking the long-distance movements of migratory taxa. However, local-scale sources of isotopic variation, such as differences in habitat use or foraging patterns, may complicate these efforts. Few studies have evaluated the implications of local-scale foraging specializations for broad-scale isotope-based tracking. Here, we use > 300 h of animal-borne video footage from green turtles (Chelonia mydas) paired with SIA of multiple tissues, as well as fine-scale Fastloc-GPS satellite tracking, to show that dietary specialization at a single foraging location (Shark Bay, Western Australia) drives a high level of among-individual δ13C variability (δ13C range = 13.2‰). Green turtles in Shark Bay were highly omnivorous and fed selectively, with individuals specializing on different mixtures of seagrasses, macroalgae and invertebrates. Furthermore, green turtle skin δ13C and δ15N dispersion within this feeding area (total isotopic niche area = 41.6) was comparable to that from a well-studied rookery at Tortuguero, Costa Rica, where isotopic dispersion (total isotopic niche area = 44.9) is known to result from large-scale (> 1500 km) differences in foraging site selection. Thus, we provide an important reminder that two different behavioral dynamics, operating at very different spatial scales, can produce similar levels of isotopic variability. We urge an added degree of caution when interpreting isotope data for migratory species with complex foraging strategies. For green turtles specifically, a greater appreciation of trophic complexity is needed to better understand functional roles, resilience to natural and anthropogenic disturbances, and to improve management strategies.


Asunto(s)
Dieta , Tortugas , Animales , Isótopos de Carbono , Costa Rica , Isótopos de Nitrógeno
11.
Adv Mar Biol ; 79: 1-31, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30012274

RESUMEN

Why females would mate with multiple partners and have multiple fathers for clutches or litters is a long-standing enigma. There is a broad dichotomy in hypotheses ranging from polyandry having benefits to simply being an unavoidable consequence of a high incidence of male-female encounters. If females simply give in to mating when it is too costly to avoid being harassed by males (convenience polyandry), then there should be a higher rate of mating as density increases. However, if females actively seek males because they benefit from multiple mating, then mating frequency, and consequently the incidence of multiple paternity of clutches, should be high throughout. To explore these competing explanations, here we review the incidence of multiple paternity for sea turtles nesting around the World. Across 30 rookeries, including all 7 species of sea turtle, the incidence of multiple paternity was only weakly linked to rookery size (r2=0.14). However, using high resolution at-sea GPS tracking we show that the specifics of movement patterns play a key role in driving packing density and hence the likely rate of male-female encounters. When individuals use the same focal areas, packing density could be 100× greater than when assuming individuals move independently. Once the extent of adult movements in the breeding season was considered so that movements and abundance could be combined to produce a measure of density, then across rookeries we found a very tight relationship (r2=0.96) between packing density and the incidence of multiple paternity. These findings suggest that multiple paternity in sea turtles may have no benefit, but is simply a consequence of the incidence of male-female encounters.


Asunto(s)
Reproducción/fisiología , Tortugas/fisiología , Animales , Femenino , Masculino
12.
Proc Biol Sci ; 284(1848)2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28179520

RESUMEN

For species with temperature-dependent sex determination (TSD) there is the fear that rising temperatures may lead to single-sex populations and population extinction. We show that for sea turtles, a major group exhibiting TSD, these concerns are currently unfounded but may become important under extreme climate warming scenarios. We show how highly female-biased sex ratios in developing eggs translate into much more balanced operational sex ratios so that adult male numbers in populations around the world are unlikely to be limiting. Rather than reducing population viability, female-biased offspring sex ratios may, to some extent, help population growth by increasing the number of breeding females and hence egg production. For rookeries across the world (n = 75 sites for seven species), we show that extreme female-biased hatchling sex ratios do not compromise population size and are the norm, with a tendency for populations to maximize the number of female hatchlings. Only at extremely high incubation temperature does high mortality within developing clutches threaten sea turtles. Our work shows how TSD itself is a robust strategy up to a point, but eventually high mortality and female-only hatchling production will cause extinction if incubation conditions warm considerably in the future.


Asunto(s)
Análisis para Determinación del Sexo , Razón de Masculinidad , Temperatura , Tortugas/fisiología , Animales , Cruzamiento , Femenino , Masculino
13.
Proc Biol Sci ; 284(1849)2017 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-28202810

RESUMEN

Estimating the absolute number of individuals in populations and their fecundity is central to understanding the ecosystem role of species and their population dynamics as well as allowing informed conservation management for endangered species. Estimates of abundance and fecundity are often difficult to obtain for rare or cryptic species. Yet, in addition, here we show for a charismatic group, sea turtles, that are neither cryptic nor rare and whose nesting is easy to observe, that the traditional approach of direct observations of nesting has likely led to a gross overestimation of the number of individuals in populations and underestimation of their fecundity. We use high-resolution GPS satellite tags to track female green turtles throughout their nesting season in the Chagos Archipelago (Indian Ocean) and assess when and where they nested. For individual turtles, nest locations were often spread over several tens of kilometres of coastline. Assessed by satellite observations, a mean of 6.0 clutches (range 2-9, s.d. = 2.2) was laid by individuals, about twice as many as previously assumed, a finding also reported in other species and ocean basins. Taken together, these findings suggest that the actual number of nesting turtles may be almost 50% less than previously assumed.


Asunto(s)
Conservación de los Recursos Naturales , Tortugas , Animales , Ecosistema , Especies en Peligro de Extinción , Femenino , Sistemas de Información Geográfica , Océano Índico , Comportamiento de Nidificación
14.
Glob Chang Biol ; 23(11): 4922-4931, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28621028

RESUMEN

The study of temperature-dependent sex determination (TSD) in vertebrates has attracted major scientific interest. Recently, concerns for species with TSD in a warming world have increased because imbalanced sex ratios could potentially threaten population viability. In contrast, relatively little attention has been given to the direct effects of increased temperatures on successful embryonic development. Using 6603 days of sand temperature data recorded across 6 years at a globally important loggerhead sea turtle rookery-the Cape Verde Islands-we show the effects of warming incubation temperatures on the survival of hatchlings in nests. Incorporating published data (n = 110 data points for three species across 12 sites globally), we show the generality of relationships between hatchling mortality and incubation temperature and hence the broad applicability of our findings to sea turtles in general. We use a mechanistic approach supplemented by empirical data to consider the linked effects of warming temperatures on hatchling output and on sex ratios for these species that exhibit TSD. Our results show that higher temperatures increase the natural growth rate of the population as more females are produced. As a result, we project that numbers of nests at this globally important site will increase by approximately 30% by the year 2100. However, as incubation temperatures near lethal levels, the natural growth rate of the population decreases and the long-term survival of this turtle population is threatened. Our results highlight concerns for species with TSD in a warming world and underline the need for research to extend from a focus on temperature-dependent sex determination to a focus on temperature-linked hatchling mortalities.


Asunto(s)
Cambio Climático , Calor , Razón de Masculinidad , Tortugas/fisiología , Animales , Cabo Verde , Dinámica Poblacional , Reproducción , Procesos de Determinación del Sexo , Temperatura
15.
Nature ; 465(7301): 1066-9, 2010 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-20531470

RESUMEN

An optimal search theory, the so-called Lévy-flight foraging hypothesis, predicts that predators should adopt search strategies known as Lévy flights where prey is sparse and distributed unpredictably, but that Brownian movement is sufficiently efficient for locating abundant prey. Empirical studies have generated controversy because the accuracy of statistical methods that have been used to identify Lévy behaviour has recently been questioned. Consequently, whether foragers exhibit Lévy flights in the wild remains unclear. Crucially, moreover, it has not been tested whether observed movement patterns across natural landscapes having different expected resource distributions conform to the theory's central predictions. Here we use maximum-likelihood methods to test for Lévy patterns in relation to environmental gradients in the largest animal movement data set assembled for this purpose. Strong support was found for Lévy search patterns across 14 species of open-ocean predatory fish (sharks, tuna, billfish and ocean sunfish), with some individuals switching between Lévy and Brownian movement as they traversed different habitat types. We tested the spatial occurrence of these two principal patterns and found Lévy behaviour to be associated with less productive waters (sparser prey) and Brownian movements to be associated with productive shelf or convergence-front habitats (abundant prey). These results are consistent with the Lévy-flight foraging hypothesis, supporting the contention that organism search strategies naturally evolved in such a way that they exploit optimal Lévy patterns.


Asunto(s)
Ecosistema , Peces/fisiología , Alimentos , Locomoción/fisiología , Modelos Biológicos , Conducta Predatoria/fisiología , Agua de Mar , Sistemas de Identificación Animal , Animales , Evolución Biológica , Conducta Exploratoria/fisiología , Funciones de Verosimilitud , Biología Marina , Perciformes/fisiología , Tiburones/fisiología , Natación/fisiología
16.
Ecology ; 96(10): 2834-47, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26649403

RESUMEN

Considerable uncertainties often surround the causes of long-term changes in population abundance. One striking example is the precipitous decline of southern sea lions (SSL; Otariaflavescens) at the Falkland Islands, from 80 555 pups in the mid 1930s to just 5506 pups in 1965. Despite an increase in SSL abundance over the past two decades, the population has not recovered, with the number of pups born in 2014 (minimum 4443 pups) less than 6% of the 1930s estimate. The order-of-magnitude decline is primarily attributed to commercial sealing in Argentina. Here, we test this established paradigm and alternative hypotheses by assessing (1) commercial sealing at the Falkland Islands, (2) winter migration of SSL from the Falkland Islands to Argentina, (3) whether the number of SSL in Argentina could have sustained the reported level of exploitation, and (4) environmental change. The most parsimonious hypothesis explaining the SSL population decline was environmental change. Specifically, analysis of 160 years of winter sea surface temperatures revealed marked changes, including a period of warming between 1930 and 1950 that was consistent with the period of SSL decline. Sea surface temperature changes likely influenced the distribution or availability of SSL prey and impacted its population dynamics. We suggest that historical harvesting may not always be the "smoking gun" as is often purported. Rather, our conclusions support the growing evidence for bottom-up forcing on the abundance of species at lower trophic levels (e.g., plankton and fish) and resulting impacts on higher trophic levels across a broad range of ecosystems.


Asunto(s)
Monitoreo del Ambiente , Leones Marinos/fisiología , Migración Animal , Animales , Argentina , Islas Malvinas , Femenino , Masculino , Dinámica Poblacional , Estaciones del Año , Factores de Tiempo
17.
J Anim Ecol ; 84(3): 587-9, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26247896

RESUMEN

Logging cameras and accelerometers have opened our eyes to the secret lives of many enigmatic species. Here some of the new opportunities provided by this technology are reviewed. Recent discoveries are highlighted including the observation of selective feeding on energy-rich parts of prey. As such, biologging cameras provide new opportunities for consideration of selective feeding within the same sort of theoretical framework (marginal value theory/optimal foraging) that exploitation of prey patches has been examined. A recent study with the world's largest bony fish, the ocean sunfish (Mola mola), is highlighted where animal-borne cameras allowed the ground-truthing of data sets collected with depth recorders and accelerometers. This synergistic use of a range of biologging approaches will help drive an holistic understanding of the free-living behaviour of a range of species.


Asunto(s)
Tetraodontiformes/fisiología , Animales
18.
Ecol Lett ; 17(2): 137-43, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24304813

RESUMEN

The optimum path to follow when subjected to cross flows was first considered over 80 years ago by the German mathematician Ernst Zermelo, in the context of a boat being displaced by ocean currents, and has become known as the 'Zermelo navigation problem'. However, the ability of migrating animals to solve this problem has received limited consideration, even though wind and ocean currents cause the lateral displacement of flyers and swimmers, respectively, particularly during long-distance journeys of 1000s of kilometres. Here, we examine this problem by combining long-distance, open-ocean marine turtle movements (obtained via long-term GPS tracking of sea turtles moving 1000s of km), with a high resolution basin-wide physical ocean model to estimate ocean currents. We provide a robust mathematical framework to demonstrate that, while turtles eventually arrive at their target site, they do not follow the optimum (Zermelo's) route. Even though adult marine turtles regularly complete incredible long-distance migrations, these vertebrates primarily rely on course corrections when entering neritic waters during the final stages of migration. Our work introduces a new perspective in the analysis of wildlife tracking datasets, with different animal groups potentially exhibiting different levels of complexity in goal attainment during migration.


Asunto(s)
Migración Animal , Tortugas , Algoritmos , Animales , Masculino , Mar Mediterráneo
19.
Glob Chang Biol ; 20(1): 140-6, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24323534

RESUMEN

Populations may potentially respond to climate change in various ways including moving to new areas or alternatively staying where they are and adapting as conditions shift. Traditional laboratory and mesocosm experiments last days to weeks and thus only give a limited picture of thermal adaptation, whereas ocean warming occurring over decades allows the potential for selection of new strains better adapted to warmer conditions. Evidence for adaptation in natural systems is equivocal. We used a 50-year time series comprising of 117 056 samples in the NE Atlantic, to quantify the abundance and distribution of two particularly important and abundant members of the ocean plankton (copepods of the genus Calanus) that play a key trophic role for fisheries. Abundance of C. finmarchicus, a cold-water species, and C. helgolandicus, a warm-water species, were negatively and positively related to sea surface temperature (SST) respectively. However, the abundance vs. SST relationships for neither species changed over time in a manner consistent with thermal adaptation. Accompanying the lack of evidence for thermal adaptation there has been an unabated range contraction for C. finmarchicus and range expansion for C. helgolandicus. Our evidence suggests that thermal adaptation has not mitigated the impacts of ocean warming for dramatic range changes of these key species and points to continued dramatic climate induced changes in the biology of the oceans.


Asunto(s)
Cambio Climático , Copépodos/fisiología , Adaptación Fisiológica , Animales , Océano Atlántico , Biodiversidad , Densidad de Población , Temperatura
20.
J Anim Ecol ; 83(1): 5-6, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24192383

RESUMEN

Migration may be a high-risk period. In a study involving three species of raptor migrating from Europe to Sub-Saharan Africa, Klaassen et al. (2014) satellite-tracked 51 out of 69 birds to their deaths and showed that rate of mortality during migration was 6x that during stationary phases when birds were on their winter and summer grounds. Travel across the Sahara was particularly risky. Satellite tracking has also been used to infer mortality in other taxa (e.g. sea turtles) and may allow high-risk hotspots to be identified for wide-ranging species.


Asunto(s)
Migración Animal/fisiología , Rapaces/fisiología , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA